
Multi-agent System for Irregular Parallel
Genetic Computations

J. Momot, K. Kosacki, M. Grochowski, P. Uhruski, and R. Schaefer

Institute of Computer Science, Jagiellonian University, Kraków, Poland
{momot,kosacki,grochows,uhruski,schaefer}@ii.uj.edu.pl

Abstract. The paper presents the multi-agent, parallel computing sys-
tem (MAS) composed of a platform of software servers and a set of com-
puting agents. The generic actions of agents and the system government
are so designed that it can perform irregular concurrent genetic computa-
tions in heterogeneous computer network with a number of computation
nodes and connection topology varying in time. The effectiveness of MAS
solution is discussed in terms of average migration and communication
overheads. Additionally, the MAS system with autonomous, diffusion-
based scheduling is compared with low-level distributed implementation,
which utilizes the centralized greedy scheduling algorithm.

1 Introduction

The multi-agent system (MAS) seems to be an attractive way to overcome trans-
parency and scalability problems in distributed computing systems. Moreover
MAS’s are well suited to maintain loosely-coupled, locally synchronized paral-
lel tasks due to the autonomous activity of agents (there is no overhead for
global synchronization) and low cost of local communication among the agents
located close together. Distributed computing systems composed of mobile tasks
have recently been intensively developed (see e.g. PYRAMID in NASA [5]). The
advantages of scheduling by agent migration have also been proved in [4,6]. A
particular case of such loosely-coupled parallel computations is multi-deme, par-
allel genetic algorithms. They are an advantageous tool for solving difficult global
optimization problems, especially in case of problems with many local extrema
(see e.g. [1]). The Hierarchical Genetic Strategy (HGS) introduced by Ko�lodziej
and Schaefer [2] constitutes one of their instances. The main idea of the HGS
is to run a set of dependent evolutionary processes, called branches, in parallel.
The dependency relation has a tree structure with the restricted number of levels
m. The processes of lower order (close to the root of the structure) represent
a chaotic search with low accuracy. They detect the promising regions on the
optimization landscape, in which more accurate process of higher order are acti-
vated. Populations evolving in different processes can contain individuals which
represent the solution (the phenotype) with different precision. This precision
can be achieved by binary genotypes of different length or by different pheno-
type scaling. The strategy starts with the process of the lowest order 1, called

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 623–630, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



624 J. Momot et al.

the root. After the fixed number of evolution epochs the best adapted individual
is selected. We call this procedure a metaepoch of the fixed period. After every
metaepoch a new process of order 2 can be activated. This procedure is called
a sprouting operation (SO). Sprouting can be generalized in some way to HGS
branches of higher order up to m − 1. Sprouting is performed conditionally ac-
cording to the outcome of the branch comparison operation (BCO). BCO can be
also used to reduce branches of the same degree that checks the same region of
the optimization landscape. Details of both the SO and BCO depend strongly
upon the implementation of the HGS.

The first HGS implementation [2] utilizes the Simple Genetic Algorithm
(SGA) as the basic mechanism of evolution in every process. The next imple-
mentation of the HGS RN was obtained by using real-number encoding, normal
mutation, and the simple arithmetic crossover instead of SGA (see [3]).

2 Autonomous Agent’s Platform

The paper depicts an agent approach to the HGS application, which utilizes the
MAS platform (see [4] and references inside). The MAS platform is composed
of software servers statically allocated on computer nodes that perform infor-
mation, migration, and hibernation policies for mobile computing units called
agents. The MAS computing application is composed of intelligent, mobile agents
that wrap the computational tasks. They can be dynamically created and de-
stroyed. Each of them, with partial autonomy, can decide on its current location.
The computing application is highly transparent with respect to the hardware
platform, the number of computers and the configuration and addressing of the
computer network. In order to facilitate agent building, which should combine
the computational and scheduling purposes, Smart Solid architecture was intro-
duced. Each Smart Solid Agent is represented by the pair A = (S, T ) where T
is the computational task executed by the agent, including all data required for
computation, S is shell responsible for the agent logic required to maintain the
computational task, including the communication capabilities and scheduling
mechanism. To perform scheduling the shell S enforces on computational task
T the following functionalities:

– T has to be able to denominate the current requirement for computational
power and RAM,

– T must allow pausing and continuing of its computation (pausing is needed
for the hibernating task in case of agent migration or partitioning, and con-
tinuation is needed to restore the paused job),

– T must allow partitioned into two subtasks T → {T1, T2}.
The shell S can perform the following actions: (a-1) execute T ; (a-2) pause T ;

(a-3) continue T ; (a-4) denominate own load requirement; (a-5) compute gradi-
ent, and check the migration condition; (a-6) partition T → {T1, T2} and create
Ai = (Si, Ti), i = 1, 2; (a-7) migrate; (a-8) disappear. These actions allow A to
accomplish two goals: (G-1) - perform computation of carried task, (G-2) - find a



Multi-agent System for Irregular Parallel Genetic Computations 625

better execution environment. The easiest possibility to get (G-1) is to execute
(a-1). A more extended decision algorithm fitted to the HGS implementation
will be presented in the next section. If a new agent is created and also when
the shell recognizes a significant change of load on the local servers, the agent
then checks if it should continue to realize (G-1). If no, then it passes to (G-2)
by using the scheduling mechanism based on the diffusion phenomenon. Briefly
depicting that mechanism we can say that the shell queries task requirements
for resources (action (a-4)) and computes load concentration on the local server
and nearest surrounding servers (action (a-5)). To achieve those values the shell
communicates with both the computational task and the local server on which
the agent is located. That information is necessary to compute agent binding
energy on the server and local load concentration gradient. The gradient speci-
fies a possible direction for migration (destination server). If the binding energy
on the destination server exceeds the binding energy on the current server more
than the predefined threshold, then the agent migrates (action (a-7)). The agent
can keep migrating until it finds sufficient resources. If agent A is too large to
migrate, then the actions (a-6) and (a-8) are performed, and both produced
agents A1 and A2 will start scheduling independently.

3 HGS Agents

We concentrated on the agent-oriented project of the HGS that searches global
extrema of the objective function. The HGS produces a tree with nodes being
demes, and the edges being created when the sprouting operation occurs. A tree
is created by the stochastic process, thus its size (number of demes) might be
different in various runs of the algorithm. The HGS is concurrent in its nature,
because computations performed in each branch do not have much influence on
each other. The only point where two demes meet is when a deme sprouts. The
information passed to produce a new deme is very small - only one individual.
If the HGS is synchronized regularly (as it was done in [2]), all demes stop
after each metaepoch, which enables us to relatively easy employ operations of
branch reduction (BR) and conditional sprouting (CS) in those points of global
synchronization. CS searches all the demes of one level and checks, using BCO,
whether the deme that is to be sprouted will not be too close to any of them. BR
requires a comparison of each pair of the demes on the same level and, if they are
searching the same area, reducing them to a single deme. These operations are
complex and very time consuming. Furthermore, in the case of implementation
in distributed environment, they require more communication.

The architectural idea that naturally springs to one’s mind is to put one
deme into an agent and let it do the calculations. However, the time needed to
process one deme is small in relation to the time needed to create and maintain
an agent. Thus we have decided to construct an agent in such a way that it can
contain a limited number of demes. When demes sprout, children (new demes)
are stored in the same agent until there is no room for them. If this occurs, a
new agent with all demes that could not be stored is created.



626 J. Momot et al.

Instead of CS we introduce local conditional sprouting (LCS), which behaves
in exactly the same way as CS but only within one agent. This means that before
creating another deme it is checked whether there are any other demes of the
same level that are very close to this new deme. If there are no such cases, then
we create a new deme, otherwise we don’t. Another mechanism is the ‘killing
agent’. It walks around the platform asking other agents for data about demes
computed by them and finally reduce all demes that are scanning the same region
to a single one. So this agent would actually perform an operation similar to BR
and also reduce redundant demes that were sprouted due to a lack of global CS.

We use a very restrictive stop condition for the demes of higher levels. A deme
finishes when either it has computed a maximal fixed number of metaepochs or
it is stopped when it did not make enough progress in the best fitness.

Following the idea given above we have implemented the HGS as a set of
Smart Solid Agents. In T (computational task space of an agent) we store a chart
of active demes (“populations”) and a chart of sprouted demes (“sprouted”).
The agent can denominate the requirements for computational power by
estimating the upper bound of a number of metaepochs to be computed by all
the active populations. T can be paused after the metaepoch for each contained
deme is finished. Its activity, when trying to achieve (G-2), can be described by
the code below:

if (thereIsBetterEnvironment()) {
computeGradient(); // (a-5)
if (thereIsSufficientEnvironment()) {

pause(); migrate(); continue(); // (a-2), (a-7), (a-3)
} else {

// create two agents, both with half of the populations of old agent
partition T → {T1, T2} and create Aj = (Sj , Tj), j = 1, 2; // (a-6)
disappear(); // (a-8)

}
}
The following code is activated when the agent tries to achieve (G-1).

execute T; // (a-1)
if (mustDoPartitioning) {

// create two new agents first with “parents” second with “children”
partition T → {T1, T2} and create Aj = (Sj , Tj), j = 1, 2; // (a-6)

}
disappear(); // (a-8)

The functioning of task T is described in the code below:

do {
for (int i = 0; i < populationsCount; i++) {

if (populations[i].endOfComputing()) {
kill(populations[i]);

} else {



Multi-agent System for Irregular Parallel Genetic Computations 627

popualtions[i].metaepoch();
if (populations[i].canSprout()) {

sprouted.insert(populations[i].sprout());
}

}
}
if (isPlaceForSprouted()) { storeSprouted(); }
else {

mustDoPartition = true;
return;

}
} while (thereAreAnyLivingPopulations())
storeResults(); // returns results to the Requester unit

A partition is done polymorphously; it acts differently depending on the state
of the “mustDoPartition” flag (see code below).

if (mustDoPartition) {
T1 ← T; T2 ← sprouted;

} else {
T1 ← first half of T; T2 ← second half of T;

}
Aside from Smart Solid Agents dynamically created and destroyed, the HGS
application contains a single requester unit that sends the first computing
agent on the platform. All the results computed by the agents are sent to the
requester which stores them and then chooses the best.

4 Experiments

The MAS-HGS implementation was tested with sample inputs to check its run-
time properties. The experiments were conducted within a network of 45 PC
machines connected by a TCP/IP protocol based network. Machines ranged
from PIII, 256Mb RAM up to dual PIV 1Gb RAM machines and worked under
Linux and MS Windows operating systems.

Table 1. The average results of HGS computations with diffusive scheduling

Objective Agents amount Execution times [sec] Parallel Over-

function Total Average Migration Communication Computation time [sec] head %
1 2 3 4 5 6 7 8

Rastrigin 193,0 42,7 358,9 141,7 7923,0 187,1 5,94
Griewangk 183,7 22,0 168,55 110,95 6421,3 288,2 4,17
Schwefel 163,0 40,4 288,6 138,0 22259,4 558,1 1,88



628 J. Momot et al.

Fig. 1. The dynamics of HGS computing agents.

We performed computations for three well known global optimization bench-
marks: 20-dimensional Rastrigin, 10-dimensional Griewangk, and 10-dimensional
Schwefel. Each row of Table 1 contains values averaged over 10 runs performed
for the particular objective. The Total Agents amount (column 2) is the num-
ber of agents produced in the whole run, while Average (column 3) is the mean
number of active agents during each run for each objective. Columns 4-6 contain
sums of all agents’ migration, communication, and computation times. Column
7 shows the average parallel time, which includes migration and communication,
measured by the requester. It is a good approximation of the mean wall clock
time period of the total experiment. The computation time, stored in column 6,
can be greater then the serial time for the whole computation, because signifi-
cant negative synergy may occur among agents allocated on the same computer.
The last column, Overhead %, shows the fraction of execution times that agents
spend on migration and communication.

Figure 1 presents the amount of actively computing agents varying during
the experiment runtime. We chose runs whose parameters were closest to the
mean ones presented for each objective in the Table 1. A high agent dynamic is
caused by the HGS strategy that sprouts many demes in the first phase of the
search and then demes are reduced to ones that search close to the local extrema.
Sprouting is stochastic so it is impossible to predict when the particular agent
will be partitioned and, in consequence, to plan the optimal a’priori allocation
for each new agent.



Multi-agent System for Irregular Parallel Genetic Computations 629

Table 2. Speedup of HGS computations for the Griewangk objective with Round-
Robin and Diffusive Scheduling. Selected experiments with largest (a) and smallest
(b) amounts of demes are shown. Section (c) presents mean values for all conducted
experiments (10).

Serial Diffusive Scheduling Round-Robin

time Total agents Parallel Speedup Parallel Speedup

[sec] amount time [sec] time [sec]

(a) 6891 244 371 18,57412 318 21,66981

6766 299 299 22,62876 334 20,25749

(b) 3387 122 374 9,05615 163 20,77914

2687 94 228 11,78509 131 20,51145

(c) 4221,9 183,7 288,2 14,44104 204,9 20,66099

The mean number of active agents (see column 3 in Table 1) is lower while
the maximum is about two times greater than the number of processors (see
Figure 1), so the upper limit of speedup was temporarily activated.

The irregularity of parallelism in the agent-oriented application may be mea-
sured as the ratio between the maximum and the mean number of agents active
during the whole computation. This ratio reaches the maximum value for the
Griewangk benchmark. In this case we performed a detailed speedup comparison
with a low level message passing (using fast RMI communication) distributed
application with a predefined number of fixed PC nodes, which utilizes central-
ized Round-Robin (RR) scheduling performed by the master unit. The RR is
one of the well known greedy policies that can handle cases with randomly ap-
pearing tasks. It is currently implemented as follows: each new sprouted deme is
registered by the master unit using the message sent by the process holding the
parent deme. Next, the master unit introduces the message to the process on a
selected machine, pressing it to start computation for the new deme. Both mes-
sages contain only deme parameters (deme branch degree, standard deviation
of mutation, etc.) and the seed individual (see [3]). Each deme sends the report
with the computation result to the master after the stop condition is satisfied.

The appearance of the tasks is totally random, therefore a low-level dis-
tributed application with fast explicit communication and RR scheduling is close
to the optimal solution in the case of clusters and LANs dedicated to parallel
computation. This solution may be treated as a reference point for the fastest
solution towards multi-agent solution.

5 Conclusions

– Multi-agent systems (MAS) are well suited to irregular parallel computa-
tions because the number of processing units (agents) may be dynamically



630 J. Momot et al.

adapted to the degree of concurrency of the algorithm. Moreover they al-
low utulizing of a multi purpose, heterogeneous computer network with a
number of computation nodes and connection topology varying in time.

– The flexibility of the presented MAS solution was obtained by both architec-
tural and implementation properties. We used Java language and CORBA
framework services due to their transparency and support for object migra-
tion (serialization). The MAS is composed of a network of software servers
and a set of Smart Solid Agents. Each one of the agents is a pair A = (S, T ),
where T stands for task space and S is a shell that provides all services re-
lated to scheduling and tasks’ communication. Diffusion scheduling ensures
proper agent location in the dynamic network environment.

– Preparing a parallel computing application of this kind we have to specify
only the task space T of agent classes. However, we are burdened by speci-
fying all details associated with explicit low-level distributed programming.

– Smart Solid Architecture used to implement the HGS imposes coarse-grained
parallelism. Grain size may be easily configured by changing agent capacity
(maximum number of demes).

– Total overhead caused by the use of Agent paradigm is low in comparison
with the computation time (about 5%, see Table 1). Comparison of this
solution with a fine-grained, fast low-level message passing application on
dedicated workstation cluster shows moderate losses of the average speedup
(see Table 2 section (c)). Presented solution becomes faster for larger prob-
lems, even winning with Round Robin (see Table 2 section (a)).

– Speedup computed in all the tests is far from linear. It is caused not only by
migration and communication overheads, but mainly by HGS irregularity.
Though a mean number of agents is lower than the number of PCs, the
maximum number is much higher.

References

1. Cantu-Paz E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer 2000.
2. Schaefer R., Ko�lodziej J.: Genetic search reinforced by the population hierarchy.

in De Jong K. A., Poli R., Rowe J. E. eds. Foundations of Genetic Algorithms 7
Morgan Kaufman Publisher 2003, pp. 383-399.

3. Wierzba B., Semczuk A., Ko�lodziej J., Schaefer R.: Hierarchical Genetic Strategy
with real number encoding. Proc. of the 6th Conf. on Evolutionary Algorithms and
Global Optimization �Lagów Lubuski 2003, Wydawnictwa Politechniki Warszawskiej
2003, pp. 231-237.

4. Grochowski M., Schaefer R., Uhruski P.: Diffusion Based Scheduling in the Agent-
Oriented Computing Systems. Accepted to LNCS, Springer 2003.

5. Norton Ch.: “PYRAMID: An Object-Oriented Library for Parallel Unstructured
Adaptive Mesh Refinement” accepted to LNCS, Springer 2001.

6. Luque E., Ripoll A., Cortés A., Margalef T.: A distributed diffusion method for
dynamic load balancing on parallel computers. Proc. of EUROMICRO Workshop
on Parallel and Distributed Processing, San Remo, Italy, January 1995. IEEE CS
Press.


	Introduction
	Autonomous Agent's Platform
	HGS Agents
	Experiments
	Conclusions



