
Encoding Multiple Solutions in a Linear Genetic
Programming Chromosome

Mihai Oltean1, Crina Groşan1, and Mihaela Oltean2

1 Department of Computer Science,
Faculty of Mathematics and Computer Science,

Babeş-Bolyai University, Kogălniceanu 1
Cluj-Napoca, 3400, Romania.

{moltean,cgrosan}@cs.ubbcluj.ro
2 David Prodan College, Cugir, 2566, Romania.

olteanmihaelaelena@yahoo.com

Abstract. Linear Genetic Programming (LGP) is a Genetic Program-
ming variant that uses linear chromosomes for solution encoding. Each
LGP chromosome is a sequence of C language instructions. Each instruc-
tion has a destination variable and several source variables. One of the
variables is usually chosen to provide the output of the program. In this
paper, we enrich the LGP technique by allowing it to encode multiple
solutions for a problem in the same chromosome. Numerical experiments
show that the proposed Multi-Solution LGP significantly outperforms
the standard Single-Solution LGP on the considered test problems.

1 Introduction

Linear Genetic Programming (LGP) [1] is a Genetic Programming [2] variant
that uses linear chromosomes for solution encoding. Each LGP chromosome is a
sequence of C language instructions. Each instruction has a destination variable
and several source variables. One of the variables is usually chosen to provide
the output of the program.

In this paper an improved variant of Linear Genetic Programming is pro-
posed. The obtained technique is called Multi-Solution Linear Genetic Program-
ming (MS-LGP). In the proposed variant each chromosome stores multiple so-
lutions of the problem being solved. All the solutions represented in a MS-LGP
individual are decoded by traversing the chromosome only once. Partial results
are stored by using Dynamic Programming. The best solution encoded in a MS-
LGP chromosome will represent (will provide the fitness of) that individual.

Several numerical experiments with MS-LGP and with the standard Single-
Solution Linear Genetic Programming (SS-LGP) are performed by using 4 test
functions. For each test problem the relationships between the success rate and
the population size and the code length are analyzed. Results show that MS-LGP
significantly outperforms SS-LGP for all the considered test problems.

The paper is organized as follows. In section 2 Linear Genetic Programming
is described. In sub-section 2.3 is described the way in which multiple solutions

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 1281–1288, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

1282 M. Oltean, C. Groşan, and M. Oltean

are encoded in a LGP chromosome. Several numerical experiments are performed
in section 3.

2 Linear Genetic Programming

Linear Genetic Programming (LGP) [1] uses a specific linear representation of
computer programs. Instead of the tree-based GP expressions [2] of a func-
tional programming language (like LISP), programs of an imperative language
(like C) are evolved.

A LGP individual is represented by a variable-length sequence of simple
C language instructions. Instructions operate on one or two indexed variables
(registers) r or on constants c from predefined sets. The result is assigned to a
destination register, e.g. ri = rj * c.
An example of the LGP program is the following one:

void LGP(double r[8])
{
r[0] = r[5] + 73;
r[7] = r[3] - 59;
r[2] = r[5] + r[4];
r[6] = r[7] * 25;
r[1] = r[4] - 4;
r[7] = r[6] * 2;

}

2.1 Decoding LGP Individuals

A linear genetic program can be turned into a functional representation by suc-
cessive replacements of variables starting with the last effective instruction [1].

Usually one of the variables (r[0]) is chosen as the output of the program.
This choice is made at the beginning of the program and is not changed during
the search process. In what follows we will denote this LGP variant as Single-
Solution Linear Genetic Programming (SS-LGP).

2.2 Genetic Operators

The variation operators used in conjunction with Linear Genetic Programming
are crossover and mutation. Standard LGP crossover works by exchanging con-
tinuous sequences of instructions between parents [1].

Two types of standard LGP mutations are usually used: micro mutation and
macro mutation. By micro mutation an operand or an operator of an instruction
is changed [1].

Macro mutation inserts or deletes a random instruction [1].
Since we are interested more in multi-solutions paradigm rather than in vari-

able length chromosomes we will use fixed length chromosomes in all experiments
performed in this paper. Genetic operators used in numerical experiments are
uniform crossover and micro mutation.

Encoding Multiple Solutions in a Linear Genetic Programming Chromosome 1283

LGP uniform crossover. LGP uniform crossover works between instructions.
The offspring’s genes (instructions) are taken with a 50% probability from the
parents.

Example. Let us consider the two parents C1 and C2 given in Table 1. The two
offspring O1 and O2 are obtained by uniform recombination as shown in Table 1.

Table 1. LGP uniform recombination

Parents Offspring
C1 C2 O1 O2

r[5] = r[3] * r[2];
r[3] = r[1] + 6;
r[0] = r[4] * r[7];
r[5] = r[4] – r[1];
r[1] = r[6] * 7;
r[0] = r[0] + r[4];
r[2] = r[3] / r[4];

r [2] = r [0] + r[3];
r [1] = r [2] * r[6];
r [4] = r [6] - 4;
r [6] = r [5] / r[2];
r [2] = r [1] + 7;
r [1] = r [2] + r[4];
r [0] = r [4] * 3;

r[5] = r[3] * r[2];
r [1] = r [2] * r[6];
r[0] = r[4] * r[7];
r[5] = r[4] – r[1];
r [2] = r [1] + 7;
r [1] = r [2] + r[4];
r [0] = r [4] * 3;

r [2] = r [0] + r[3];
r[3] = r[1] + 6;
r [4] = r [6] - 4;
r [6] = r [5] / r[2];
r[1] = r[6] * 7;
r[0] = r[0] + r[4];
r[2] = r[3] / r[4];

LGP Mutation. LGP mutation works inside of a LGP instruction. By mu-
tation each operand (source or destination) or operator is affected with a fixed
mutation probability.

Example. Consider an individual C which is affected by mutation. An offspring
O is obtained as shown in Table 2 (modified variables are written in boldface):

Table 2. LGP mutation

C O

r[5] = r[3] * r[2];
r[3] = r[1] + 6;
r[0] = r[4] * r[7];
r[5] = r[4] – r[1];
r[1] = r[6] * 7;
r[0] = r[0] + r[4];
r[2] = r[3] / r[4];

r[5] = r[3] * r[2];
r[3] = r [6] + r [0];
r[0] = r[4] + r[7];
r [4] = r[4] – r[1];
r[1] = r[6] * 2;
r[0] = r[0] + r[4];
r [0] = r[3] / r[4];

2.3 Multi Solutions Linear Genetic Programming

We enrich the LGP structure in two ways:

(i) We allow as each destination variable to represent the output of the program.
In the standard LGP only one variable is chosen to provide the output.

1284 M. Oltean, C. Groşan, and M. Oltean

(ii) We check for the program output after each instruction in chromosome. This
is again different from the standard LGP where the output was checked after
the execution of all instructions in a chromosome.

After each instruction, the value stored in the destination variable is consid-
ered as a potential solution of the problem. The best value stored in one of the
destination variables is considered for fitness assignment purposes.

Example. Consider the chromosome C given below:

void LGP(double r[8])
{
r[5] = r[3] * r[2];
r[3] = r [1] + 6;
r[0] = r[4] * r[7];
r[6] = r[4] - r[1];
r[1] = r[6] * 7;
r[2] = r[3] / r[4];

}

Instead of encoding the output of the problem in a single variable (as in SS-
LGP) we allow that each of the destination variables (r[5], r[3], r[0], r[6], r[1] or
r[2]) to store the program output. The best output stored in these variables will
provide the fitness of the chromosome.

For instance, if we want to solve symbolic regression problems, the fitness of
each destination variable r[i] may be computed using the formula:

f(r[i]) =
n∑

k=1

|ok,i − wk|,

where ok,i is the result obtained in variable r[i] for the fitness case k, wk is the
targeted result for the fitness case k and n is the number of fitness cases. For
this problem the fitness needs to be minimized.

The fitness of an individual is set to be equal to the lowest fitness of the
destination variables encoded in the chromosome:

f(C) = min
i

f(r[i]).

Thus, we have a Multi-Solution program at two levels: first level is given by
the possibility that each variable to represent the output of the program and
the second level is given by the possibility of checking for the output at each
instruction in the chromosome.

Our choice was mainly motivated by the No Free Lunch Theorems for Search
[4]. There is neither practical nor theoretical evidence that one of the variables
employed by the LGP is better than the others. More than that, Wolpert and
McReady [4] proved that we cannot use the search algorithm’s behavior so far
for a particular test function to predict its future behavior on that function.

Encoding Multiple Solutions in a Linear Genetic Programming Chromosome 1285

The Multi-Solution ability has been tested within other evolutionary model
such as Multi Expression Programming [3]. For these methods it has been shown
[3] that encoding multiple solutions in a single chromosome leads to significant
improvements.

3 Numerical Experiments

In this section several experiments with SS-LGP and MS-LGP are performed.
For this purpose we use several well-known symbolic regression problems. The
problems used for assessing the performance of the compared algorithms are:

f1(x) = x4 + x3 + x2 + x,
f2(x) = x6 – 2x4 + x2,
f3(x) = sin(x4 + x2),
f4(x) = sin(x4) + sin(x2).
For each function 20 fitness cases have been randomly generated with a uni-

form distribution over the [0, 1] interval.
The general parameters of the LGP algorithms are given in Table 3. The

same settings are used for Multi Solution LGP and for Single-Solution LGP.

Table 3. The parameters of the LGP algorithm for symbolic regression problems

Parameter Value
Number of generations 51
Crossover probability 0.9
Mutations 2 / chromosome
Function set F = {+, -, *, /, sin}
Terminal set Problem inputs + 4 supplementary registers
Selection Binary Tournament
Algorithm Steady State

For all problems the relationship between the success rate and the chromo-
some length and the population size is analyzed. The success rate is computed
as the number of successful runs over the total number of runs.

3.1 Experiment 1

In this experiment the relationship between the success rate and the chromo-
some length is analyzed. The population size was set to 50 individuals. Other
parameters of the LGP are given in Table 3. Results are depicted in Figure 1.

Figure 1 shows that Multi-Solution LGP significantly outperforms Single-
Solution LGP for all the considered test problems and for all the considered
parameter setting. More than that, large chromosomes are better for MS-LGP
than short chromosomes. This is due to the multi-solution ability: increasing the
chromosome length leads to more solutions encoded in the same individual. The

1286 M. Oltean, C. Groşan, and M. Oltean

Fig. 1. The relationship between the success rate and the number of instructions in a
chromosome. Results are averaged over 100 runs.

easiest problem is f1. MS-LGP success rate for this problem is over 90% when
the number of instructions in a chromosome is larger than 12. The most difficult
problem is f4. For this problem and with the parameters given in Table 3, the
success rate of the MS-LGP algorithm never increases over 47%. However, these
results are very good compared to those obtained by SS-LGP (the success rate
never increases over 5%).

Encoding Multiple Solutions in a Linear Genetic Programming Chromosome 1287

3.2 Experiment 2

In this experiment the relationship between the success rate and the population
size is analyzed. The number of instructions in a LGP chromosome was set to
12. Other parameters for the LGP are given in Table 3. Results are depicted in
Figure 2.

Figure 2 shows that Multi-Solution LGP performs better than Single-Solution
LGP. Problem f1 is the easiest one and problem f4 is the most difficult one.

Fig. 2. The relationship between the population size and the success rate. Population
size varies between 10 and 100. Results are averaged over 100 runs.

1288 M. Oltean, C. Groşan, and M. Oltean

4 Conclusions

In this paper an improved variant of the Linear Genetic Programming technique
has been proposed. The improvement consists in encoding multiple solutions of a
problem in a single chromosome. It has been show how to efficiently decode this
chromosome by traversing it only once. Numerical experiments have shown that
Multi-Solution LGP significantly outperforms Standard Single-Solution LGP for
all the considered test problems.

References

1. Brameier M. and Banzhaf W., A Comparison of Linear Genetic Programming and
Neural Networks in Medical Data Mining, IEEE Transactions on Evolutionary Com-
putation, 5, 17-26, 2001.

2. Koza J. R., Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press, Cambridge, MA, 1992.

3. Oltean M., Solving Even-Parity Problems using Multi Expression Programming,
in Proceedings of the the 7th Joint Conference on Information Sciences, Research
Triangle Park, North Carolina, Edited by Ken Chen (et. al), pp. 315-318, 2003.

4. Wolpert D.H. and McReady W.G., No Free Lunch Theorems for Search, Technical
Report, SFI-TR-05-010, Santa Fe Institute, 1995.

	Introduction
	Linear Genetic Programming
	Decoding LGP Individuals
	Genetic Operators
	Multi Solutions Linear Genetic Programming

	Numerical Experiments
	Experiment 1
	Experiment 2

	Conclusions

