
Improved A-P Iterative Algorithm in Spline
Subspaces�

Jun Xian1, Shi-Ping Luo2, and Wei Lin1

1 Department of Mathematics, Sun Yat-sen University,
Guangzhou, 510275, China, xianjun11@sohu.com

2 Department of Mathematics, South China Normal University,
Guangzhou, 510631, China, stslw@zsu.edu.cn

Abstract. In this paper, we improve A-P iterative algorithm, and use
the algorithm to implement the reconstruction from weighted samples,
and obtain explicit convergence rate of the algorithm in spline subspaces.

1 Introduction

For a bandlimited signal of finite energy, it is completely described by the famous
classical Shannon sampling theorem. This classical theorem has broad applica-
tion in signal processing and communication theory and has been generalized
to many other forms. However, in many real applications sampling points are
not always regularly. It is well-known that in the sampling and reconstruction
problem for non-bandlimited spaces, signal is often assumed to belong to a shift-
invariant spaces[1, 2, 4, 5, 7, 8, 9, 10]. As the special shift-invariant spaces, spline
subspaces yield many advantages in their generation and numerical treatment
so that there are many practical applications for signal or image processing[1, 2,
3, 9].

For practical application and computation of reconstruction, Goh et al., show
practical reconstruction algorithm of bandlimited signals from irregular samples
in [11], Aldroubi et al., present a A-P iterative algorithm in [5]. In this paper, we
improve the A-P iterative algorithm in spline subspaces. The improved algorithm
occupies better convergence than the old one.

2 Improved A-P Iterative Algorithm in VN

Aldroubi presented A-P iterative algorithm in [5]. In this section, we will improve
the algorithm. The improved algorithm occupies faster convergence. We will
discuss the cases of non-weighted samples and weighted samples, respectively.

We define some symbols. VN = { ∑

k∈Z

ckϕN (· − k) : {ck} ∈ �2} is spline

subspace generated by ϕN = χ[0,1] ∗ · · · ∗ χ[0,1] (N convolutions), N ≥ 1.
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Let χj,1(x) = χ
[xj ,

xj+xj+1
2 )

(x), χj,2(x) = χ
[

xj+xj+1
2 ,xj+1)

(x), ∀xj ∈ X (X is

sampling set),

W (Lp) = {f ∈ Lp :‖ f ‖W (Lp)= (
∑

k∈Zd

esssupx∈[0,1]d |f(x + k)|p)(1/p) < ∞}

if 1 ≤ p < ∞,

W (L∞) = {f ∈ L∞ :‖ f ‖W (Lp
v)= sup

k∈Zd

esssupx∈[0,1]d |f(x + k)| < ∞}

if p = ∞. Let oscillation oscδ(f)(x) = sup|y|≤δ |f(x + y) − f(x)|.
We show some lemmas that will be used in the proof of Theorem 2.1 , 2.2,

and 2.3.
Lemma 2.1[5] If ϕ is continuous and has compact support, then for

anyf ∈ V p(ϕ) = { ∑

k∈Z

ckϕ(· − k) : (ck) ∈ �p} the conclusions (i)-(ii) hold:

i.‖f‖Lp ≈ ‖c‖�p ≈ ‖f‖W (Lp),

ii.V p(ϕ) ⊂ W0(Lp) ⊂ W0(Lq) ⊂ W (Lq) ⊂ Lq(R)(1 ≤ p ≤ q ≤ ∞).
Lemma 2.2 If f ∈ VN , then for any 0 < δ < 1 we have ‖oscδ(f)‖2

L2 ≤
(3Nδ)2

∑

k∈Z

|ck|2.

Proof. We have the following equalities and inequalities:

‖oscδ(f)‖2
2 =

∫ ∞

−∞
| sup
|y|≤δ

|
∑

n∈Z

cn(ϕN (x + y − n) − ϕN (x − n))||2dx

≤
∫ ∞

−∞
(
∑

n∈Z

|cn| sup
|y|≤δ

|ϕN (x + y − n) − ϕN (x − n)|)2dx

=
∫ 1

0

∑

k∈Z

(
∑

m∈Z

|ck−m| sup
|y|≤δ

|ϕN (x + y + m) − ϕN (x + m)|)2dx.

By induction method and properties of ϕN , we can easily check that
∑

k∈Z

sup
x∈[0,1]

|ϕ′
N (x + k)| ≤ N (�)

From (�) and properties of ϕN , we can obtain the following estimate:

‖oscδ(f)‖2
2 ≤

∫ 1

0

∑

k∈Z

(
∑

m∈Z

|ck−m|2 sup
|y|≤δ

|ϕN (x + y + m) − ϕN (x + m)|2)dx

≤
∑

k∈Z

|ck|2
∫ 1

0
(
∑

m∈Z

sup
|y|≤δ

|ϕN (x + y + m) − ϕN (x + m)|)2dx
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≤ δ2
∑

k∈Z

|ck|2
∫ 1

0
(
∑

m∈Z

sup
|y|≤δ

|ϕ′
N (x + θy + m)|)2dx

≤ δ2
∑

k∈Z

|ck|2
∫ 1

0
(
∑

m∈Z

sup
t∈[−1,2]

|ϕ′
N (t + m)|)2dx

≤ (3Nδ)2
∑

k∈Z

|ck|2.

The last inequality of the above inequalities derives from (�). From x ∈
[0, 1],0 < θ < 1 and 0 < δ < 1, we have the forth inequality of the above
inequalities.

Lemma 2.3[5] For any f ∈ V p(ϕ) the following conclusions hold:

1.‖oscδ(f)‖W (Lp) ≤ ‖c‖�p‖oscδ(ϕ)‖W (L1),

2.‖ ∑
k∈Z

ckϕ(· − k)‖W (Lp) ≤ ‖c‖�p‖ϕ‖W (L1).
Lemma 2.4 If X = {xn} is real sequence with supi(xi+1 − xi) = δ < 1,

then for any f =
∑

k∈Z
ckϕN (· − k) ∈ VN we have ‖Qf‖L2 ≤ ‖Qf‖W (L2) ≤

(3 + δ)‖c‖�2‖ϕ‖W (L1).

Proof. : For f =
∑

k∈Z
ckϕN (· − k) we have

|f(x) − (Qf)(x)| = |
∑

j∈Z

(f(x) − f(xj))χj,1(x) +
∑

j∈Z

(f(x) − f(xj+1))χj,2(x)|

≤
∑

j∈Z

|f(x) − f(xj)|χj,1(x) +
∑

j∈Z

|f(x) − f(xj+1)|χj,2(x)

≤
∑

j∈Z

osc δ
2
(f)(x)χj,1(x) +

∑

j∈Z

osc δ
2
(f)(x)χj,2(x)

= osc δ
2
(f)(x).

From this pointwise estimate and Lemma 2.3 we get

‖f − Qf‖W (L2) ≤ ‖osc δ
2
(f)‖W (L2)

≤ ‖c‖�2‖osc δ
2
(ϕN )‖W (L1).

And by the results of [7] or [8] we know

‖osc δ
2
(ϕN )‖W (L1) ≤ (2 + δ)‖ϕN‖W (L1).

Putting the above discuss together, we have

‖Qf‖L2 ≤ ‖Qf‖W (L2) ≤ ‖f − Qf‖W (L2) + ‖f‖W (L2)

≤ (2 + δ)‖c‖�2‖ϕN‖W (L1) + ‖
∑

k∈Z

ckϕN (· − k)‖W (L2)

≤ (2 + δ)‖c‖�2‖ϕN‖W (L1) + ‖c‖�2‖ϕN‖W (L1)

≤ (3 + δ)‖c‖�2‖ϕN‖W (L1).
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The following Theorem 2.1 is one of our main theorems in this paper.
Theorem 2.1 Let P be an orthogonal projection from L2(R) to VN and

Q[f(x)] =
∑

j

f(xj)χj,1(x) +
∑

j

f(xj+1)χj,2(x). If sampling set X = {xn} is a

real sequence with supi(xi+1 − xi) = δ < 1 and 3Nδ

2
√∑

k

|ϕ̂N (π+2kπ)|2
< 1, then any

f ∈ VN can be recovered from its samples {f(xj) : xj ∈ X} on sampling set X
by the iterative algorithm

{
f1 = PQf,
fn+1 = PQ(f − fn) + fn.

The convergence is geometric, that is,

‖fn+1 − f‖L2 ≤ (
3Nδ

2
√∑

k

|ϕ̂N (π + 2kπ)|2
)n‖f1 − f‖L2 .

Proof. By Pf = f and ‖P‖op = 1, for any f =
∑

k∈Z

ckϕN (· − k) ∈ VN we have

‖(I − PQ)f‖2
L2 = ‖Pf − PQf‖2

L2 ≤ ‖P‖2
op‖f − Qf‖2

L2 = ‖f − Qf‖2
L2

=
∫

|
∑

j∈Z

f(x)χj,1(x) +
∑

j∈Z

f(x)χj,2(x) −
∑

j∈Z

f(xj)χj,1(x)

−
∑

j∈Z

f(xj+1)χj,2(x)|2dx

≤
∫

(
∑

j∈Z

|f(x) − f(xj)|χj,1(x) +
∑

j∈Z

|f(x) − f(xj+1)|χj,2(x))2dx

=
∫ ∑

j∈Z

|f(x) − f(xj)|2χj,1(x) +
∑

j∈Z

|f(x) − f(xj+1)|2χj,2(x)dx

≤
∫ ∑

j∈Z

|osc δ
2
(f)(x)|2χj,1(x) +

∑

j∈Z

|osc δ
2
(f)(x)|2χj,2(x)dx

= ‖osc δ
2
(f)‖2

L2 ≤ (3N
δ

2
)2

∑

k∈Z

|ck|2 = (3N
δ

2
)2‖c‖2

�2

≤ (
3Nδ

2
√∑

k

|ϕ̂N (π + 2kπ)|2
)2‖f‖2

L2 .

The third equality is from property
∑

j

(χj,1(x) + χj,2(x)) = 1. The forth

equality derives from property suppχj,i ∩ suppχk,l = ∅(j �= k, i �= l). By Lemma
2.2, the forth inequality holds. And we have

‖fn+1 − f‖L2 = ‖fn + PQ(f − fn) − f‖L2 = ‖PQ(f − fn) − (f − fn)‖L2



62 J. Xian, S.-P. Luo, and W. Lin

≤ ‖I − PQ‖‖f − fn‖L2 ≤ · · · ≤ ‖I − PQ‖n‖f − f1‖L2 .

Combining with the estimate of ‖I − PQ‖, we can imply

‖fn+1 − f‖L2 ≤ (
3Nδ

2
√∑

k

|ϕ̂N (π + 2kπ)|2
)n‖f1 − f‖L2 .

Taking assumption 3Nδ

2
√∑

k

|ϕ̂N (π+2kπ)|2
< 1, we know the algorithm is convergent.

In the following, we will show improved A-P iterative algorithm from
weighted samples.

Theorem 2.2 Let P be an orthogonal projection from L2(R) to VN and
weight function satisfy the following three conditions (i)-(iii):
(i)suppϕxj

⊂ [xj − a
2 , xj + a

2 ]
(ii) there exist M > 0 such that

∫ |ϕxj (x)|dx ≤ M,
(iii)

∫
ϕxj

(x)dx = 1.
Let Af(x) =

∑

j

〈f, ϕxj 〉χj,1(x) +
∑〈f, ϕxj+1〉χj,2(x). If sampling set X = {xn}

is a real sequence with 0 < supi(xi+1 − xi) = δ < 1 and we choice proper δ
and a such that 3N

2
√∑

k

|ϕ̂N (π+2kπ)|2
(δ + a(3 + a)M) < 1, then any f ∈ VN can be

recovered from its weighted samples {〈f, ϕxj
〉 : xj ∈ X} on sampling set X by

the iterative algorithm
{

f1 = PAf,
fn+1 = PA(f − fn) + fn.

The convergence is geometric, that is,

‖fn+1 − f‖L2 ≤ (
3Nδ

2
√∑

k

|ϕ̂N (π + 2kπ)|2
(δ + a(3 + a)M))n‖f1 − f‖L2 .

Proof. By Pf = f and ‖P‖op = 1, for any f =
∑

k∈Z

ckϕN (· − k) ∈ VN we have

‖f − PAf‖L2 = ‖f − PQf + PQf − PAf‖L2

≤ ‖f − Qf‖L2 + ‖Qf − Af‖L2 (1).

From the proof of Theorem 3.1, we have the following estimate for ‖f − Qf‖L2 :

‖f − Qf‖L2 ≤ (
3Nδ

2
√∑

k

|ϕ̂N (π + 2kπ)|2
)‖f‖L2 (2).

For the second term ‖Qf − Af‖L2 of (1) we have the pointwise estimate

|(Qf − Af)(x)|
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= |
∑

j

(f(xj) − 〈f, ϕxj 〉)χj,1(x) +
∑

j

(f(xj+1) − 〈f, ϕxj+1〉)χj,2(x)|

= |
∫ ∑

j

(f(xj) − f(ξ))ϕxj
(ξ)χj,1(x)

+
∑

j

(f(xj+1) − f(ξ))ϕxj+1(ξ)χj,2(x)dξ|

≤ M(
∑

j

osc a
2
(f)(xj)χj,1(x) +

∑

j

osc a
2
(f)(xj+1)χj,2(x))

= MQ(
∑

k∈Z

|ck|osc a
2
(ϕN )(x − k)).

The above second equality derives from
∫

ϕxj
(x)dx = 1. By

∫ |ϕxj
(x)|dx ≤ M

and suppϕxj
⊂ [xj − a

2 , xj + a
2 ], we know the above first inequality.

From this pointwise estimate and Lemma 2.4, it follows that:

‖Qf − Af‖L2 ≤ M(3 + a)‖c‖�2‖osc a
2
(ϕN )‖W (L1)

≤ M(3 + a)
‖osc a

2
(ϕN )‖W (L1)

√∑

k

|ϕ̂N (π + 2kπ)|2
‖f‖L2

≤ M(3 + a)
3Na

2
√∑

k

|ϕ̂N (π + 2kπ)|2
‖f‖L2 (3).

By combining (1),(2) and (3), we can obtain

‖I − PA‖L2 ≤ 3N

2
√∑

k

|ϕ̂N (π + 2kπ)|2
(δ + a(3 + a)M).

Similar to the procedure in the proof of Theorem 3.1, we have

‖fn+1 − f‖L2 ≤ (
3N

2
√∑

k

|ϕ̂N (π + 2kπ)|2
(δ + a(3 + a)M))n‖f1 − f‖L2 .

Remark 1. Term ( 1
2 )n is added in the expression of convergence rate. This im-

proves the velocity of convergence. From the construction of operator Q and A,
we know why it appears in the expression of convergence rate.

The reconstruction algorithm in Theorem 2.1 and 2.2 require the existence of
orthogonal projection from L2 onto VN . For this purpose, the following Theorem
2.3 will construct the orthogonal projection. We can find the similar proof of
Theorem 2.3 in [5, 10].
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Theorem 2.3 Let X = {xn} be a real sequence such that 0 < supi(xi+1 −
xi) = δ < 1. Then

Pf =
∑

xj∈X

〈f, kxj 〉k̃xj

is orthogonal projection from L2 onto VN , where {kxj } and {k̃xj }.
Remark 2. : The above improved A-P iterative algorithm maybe be generalized
to the case of Lp(R) and V p(ϕ) whenever generator ϕ belongs to W0(L1). We
will study it in future work.

3 Conclusion

In this paper we pay main attention on the weighted sampling and reconstruc-
tion in spline subspaces. We give some reconstruction methods from different
weighted sampling in spline subspaces. The improved A-P iterative algorithm
performs better than the old A-P algorithm. And we obtain the explicit conver-
gence rate of the improved A-P iterative algorithm in spline subspaces.
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