Distributed Computation of Optical Flow

Antonio G. Dopico', Miguel V. Correia?, Jorge A. Santos®, and Luis M. Nunes*

! Fac. de Informatica, U. Politecnica de Madrid, Madrid. dopico@fi.upm.es
2 Inst. de Engenharia Biomédica, U. do Porto, Fac. de Engenharia.
mcorreia@fe.up.pt
3 Inst. de Educacao e Psicologia, U. do Minho, Braga. jas@iep.uminho.pt
4 Direccién General de Trafico, Madrid. argos@dgt . es

Abstract. This paper describes a new parallel algorithm to compute
the optical flow of a video sequence. A previous sequential algorithm
has been distributed over a cluster. It has been implemented in a cluster
with 8 nodes connected by means of a Gigabit Ethernet. On this archi-
tecture, the algorithm, that computes the optical flow of every image on
the sequence, is able of processing 10 images of 720x576 pixels per second.

Keywords: Optical Flow, Distributed Computing

1 Introduction

There is a wide variety of areas of interest and application fields (visual percep-
tion studies, scene interpretation, motion detection, filter for in-vehicle inteligent
systems etc.) that can benefit from optical flow computing. The concept of opti-
cal flow derives form a visual system concept analogue to human retina, in which
a 3d world is represented in a 2d surface by means of an optical projection. In
the present case we will use a simplified 2d representation consisting in a matrix
of n pixels in which only grey values of image are considered. Spatial motion
and velocity is then represented as a 2d vector field showing the distribution of
velocities of apparent motion of the brightness pattern of a dynamic image.

The optical flow computation of a moving sequence is an intensive demand-
ing application both in memory and computational terms. As the computers
performance improves the users expectations raises too: higher resolution video
recording systems allow to reduce the negative effects of spatial and temporal
motion aliasing. In synthetic images with 1312x2000 pixels at 120 Hz are
used. Given the growing need of computer performance the parallelization of
the optical flow computation appears to be the only alternative to achieve a
massive processing of long video sequences.

This idea of parallelization was proposed some years ago, [2], with four pro-
cessors, obtained very modest results: processing up to 7-8 images of 64x64 pixels
per second, too small resolution to be useful.

More recently proposes the decomposition of the optical flow computa-
tion in small tasks: by dividing the image in independent parts the parallelization

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3037, pp. 380-387 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Distributed Computation of Optical Flow 381

becomes easier to approach, although with the drawback of the overheads asso-
ciated with dividing the images and grouping the obtained results. As this has
not been yet implemented no results are available.

A possible alternative to parallellization could be to simplify drastically
the optical flow algorithm. [4] Presents an alternative based on additions-
subtractions that needs much less computational resources but, according to
the authors, with the pay-off of incorrect results.

In the present work the parallelization of the optical flow computation is
approached with the objective of maximizing performance with no lost of the
quality of the results, allowing massive computing of long sequences using stan-
dard image resolutions. The gain due to parallelization will be referred to a
sequential version of an equivalent algorithm.

2 Optical Flow Computation Sequential Algorithm

Following the survey of Barron et al., [5], the method of Lucas, [6lJ7], has been
chosen to compute optical flow. This method seems to provide the best estimate
with less computational effort. Fleet’s method, [8], would possibly provide an
even better estimate, but the computational cost would be higher due to the use
of several Gabor spatio-temporal filters [5].

2.1 Lucas Optical Flow Algorithm

In Lucas’s method, optical flow is computed by a gradient based approach.
It follows the common assumption that image brightness remains constant
between time frames:

I(z,y,t) =1 (x+ udt,y + vt t + ot) (1)

which, by also assuming differentiability and using a Taylor series expansion,
can be expressed by the motion constraint equation:

Lyudt + Lydt + 1,5t = O (u*6t*, v 6t7) (2)
or, in more compact form (considering §t as the temporal unity):
VI -v+1,=0(v?) (3)

where O (v2) represents second order and above terms.

In this method, the image sequence is first convolved with a spatio-temporal
Gaussian to smooth noise and very high contrasts that could lead to poor es-
timates of image derivatives. Then, according to Barron et al. implementation,
the spatio-temporal derivatives I, I, and I; are computed with a four-point
central difference.

Finally, the two components of velocity v = (u,v) are obtained by a weighted
least-squares fit of local first-order constraints, assuming a constant model for v
in each small spatial neighborhood N, by minimizing:

3" W2 () [VI (%) v + L (x,1)) (4)
zeN

382 A.G. Dopico et al.

where W (x) denotes a window function that weights more heavily at the centre.
The solution results from:

v=(ATW?A)"'ATW?b (5)
where, for n points x; € N at a single time ¢,

- A= [VI (Xl) 3ty VI (Xn)]Ta
— W =diag [W (x1),..., W (x,,)] and
—b=—T(x1), ., Iy (x))".

The product ATW?2A is a 2 x 2 matrix given by:

[SWEEE W LX)
ATWIA = | W2 () 1, () I, (x) W2 () 12 () (©)

where all sums are taken over points in the neighborhood N

Simoncelli [IT0] present a Bayesian perspective of equation @ They model
the gradient constraint using Gaussian distributions. This modification allows
to identify unreliable estimates using the eigenvalues of ATW?2A.

2.2 Implementation

Now the sequential implementation of the Lucas-Kanade algorithm is explained

[LTHT2]:

— The implementation first smoothes the image sequence with a spatiotempo-
ral Gaussian filter to attenuate temporal and spatial noise as do Barron et
al. [5]:

e Temporal smoothing Gaussian filter with o = 3.2, requiring 60 + 1 (21)
frames, the current frame, 30 (10) past frames and 3¢ (10) future frames.

e Spatial smoothing Gaussian filter with ¢ = 3.2, requiring 60 + 1 (21)
pixels, the central pixel and 30 (10) pixels for each side relative to this
central pixel. This symmetric Gaussian filter in one dimension is applied
twice, first in the X dimension and then in the Y dimension.

— After the smoothing, spatiotemporal derivatives (I;, I, I,) are computed
with 4-point central differences with mask coefficients:

1
73(~1,8,0,-8.1) (7)

— Finally, the velocity is computed from the spatiotemporal derivate:
e A spatial neighborhood of 5x5 pixels is used for the velocity calculations.
e A weight matrix identical to Barron [5], i.e., with 1-D weights of
(0.0625,0.25,0.375, 0.25,0.0625) is also used for the velocity calculations.
e The noise parameters used are o1 = 0.08, o3 = 1.0, o, = 2.0 ([9)).
e Velocity estimates where the highest eigenvalue of ATTW?2A is less than
0.05 is considered unreliable and removed from the results ([5]).

Distributed Computation of Optical Flow 383

2.3 Sequential Algorithm Results

Figure [1l.a shows an image of a interlaced video sequence with 720x576 pixels,
that have been processed with the described algorithm. The optical flow obtained
is shown in figure [Mlb. The car on the left is going faster than the car on the
center and the car on the right is going slower than the car on the center.

Fig. 1. Video Sequence: Frames 19 and 29.

3 Parallelization of the Optical Flow Computing

The parallelization of the sequential algorithm is explained in this section.

3.1 Parallel Algorithm

The execution time of the different tasks of the sequential algorithm have been
measured to obtain an estimation of its weights. The measures have been ob-
tained using a workstation with an Intel Xeon 2.4 GHz and 1GB of main memory,
though the important data are not the absolute times but the relationship among
the different tasks.

— The temporal smooth, in T, is slower than the others because it works with
a high number of images. Moreover it has to read them from the disk (12
ms).

— The spatial smooth in X employs 8 ms.

— The spatial smooth in Y employs 7 ms. Probably the difference is because
now the image is in the cache memory.

— Computation of the partial derivatives, (It,Ix,Iy), 10 ms.

— Computation of the velocity of each pixel and writing the results to disk,
130 ms. This is more than triple the time spent by the rest of the tasks.

384 A.G. Dopico et al.

These times are spent with each image in the video sequence.

Unlike [3] the images have not been divided to avoid the introduction of un-
necessary overheads, because in that case they had to be divided, then processed
and finally group the results. Moreover, the possible boundary effects should be
taken into account. Anyway, this option could be useful in some cases.

To structure the parallelization, the existing tasks have been taken into ac-
count. The first four tasks are connected as a pipeline because they need the data
of several images to work properly. The last one only needs a single image and
it is actually independent. The fourth task will send derivatives from complete
images to different copies of task five in a rotative way.

Although a 8 nodes cluster has been used for the implementation, the followed
schema is flexible enough to be adapted to different situations:

— Four nodes. The first one executes all the tasks except computing the velocity
of the pixels (37 ms). The rest of the nodes compute the velocities, when
they finish with an image, they start with the next one (130/3 = 43 ms per
node). One image would be processed every 43 ms (maximum of 37 and 43).

— Eight nodes. The first node computes the temporal smooth and the spa-
tial smooth for the X co-ordinate (1248=20ms). The second one com-
putes the spatial smooth for the Y co-ordinate and the partial derivatives
(7+10=17ms). The rest of the nodes compute the velocities (130/6=21ms).
An image is processed every 21 ms (maximum of 20, 17 and 21).

— Sixteen nodes. The first four nodes are dedicated to the first four tasks (12,
8, 7 and 10 ms respectively). The rest of the nodes compute the velocities
(130/12=11ms). An image would be processed every 12ms (maximum of 12,
8,7,10,11).

In the three cases, the communication time has to be added. This time would
depend on the net (Gigabit, Myrinet, etc.) but in every case it has to be taken
into account and it will employ several milliseconds.

With this scheme, even if a cluster is not used it would not be a problem.
For example, a shared memory tetraprocessor could be used and the tasks could
be distributed in the same way than with a four nodes cluster.

With more than 16 nodes, there are not enough tasks to distribute. To obtain
a higher degree of parallelism the images would be divided as [3] proposes. Each
subimage would be independent of the rest if some boundary pixels are added.
That is, as the spatial smooth uses 25 pixels, the central one and 12 on each side,
each subimage would need 12 pixels more per boundary. So, to divide images
of 1280x1024 pixels in 4 subimages (2x2) they should be divided in regions of
652x524 pixels, with overlapped boundaries. In this way each image would be
totally independent.

3.2 Cluster Architecture

A cluster with 8 biprocessor nodes (2.4 GHz, 1GB RAM) running Linux (Debian
with kernel 2.4.21) and openMosix has been used. The nodes are connected using
a Gigabit Ethernet switch. This distributed memory architecture was chosen
because it is not expensive, it is easy to configure and it is broadly extended.

Distributed Computation of Optical Flow 385

3.3 Implementation

The tasks of the previously described algorithm have been assigned to the dif-
ferent nodes of the cluster. For communications, the message passing standard
MPI, in short, the open source implementation LAM/MPI version 6.5.8. of the
University of Indiana, has been used.

For the mentioned communications, non blocking messages have been used,
in such a way that the computation and the communications are overlapped.
Moreover, the use of persistent messages avoids the continuous creation and
destruction of the data structures used by the messages. This has been possible
because the communication scheme is always the same. The information that
travels between two given nodes has always the same structure and the same
size so, the message backbone can be reused.

About the non blocking messages, a node, while processing the image i, has
already started a non blocking sending to transfer the results of processing the
previous image i-1 and has also started a non blocking reception to simultane-
ously gather the next image i+1. This allows simultaneously send, receive and
compute in each node.

About the task distribution among the nodes, the scheme has been the fol-
lowing:

— Node 1. Executes the following tasks:

e Reads the images of the video sequence from the disk.

e Executes the temporal smooth. To do that, the current image and the
twelve previous ones are used

e Executes the spatial smooth for the x co-ordinate.

e Sends to the node 2 the image smoothed in t and x.

— Node 2. Executes the following tasks:

e Receives the image from node 1.

e Executes the spatial smooth for the y co-ordinate.

e Computes the partial derivative in t of the image. To do that five images
are used, the current one, the two previous and the two next. So, if the
image i is received, the derivative in t of the image i-2 is computed.

e Computes the partial derivatives in x and y of the image.

e Sends the computed derivatives It, Ix and Iy to the next nodes (from
3 to 8) in a cyclic mode. When the node 8 is reached, it starts again in
the node 3.

— Rest of the nodes. They execute the following tasks:

o Receive the partial derivatives in t, x and y of the image, It, Ix and Iy.
e Using the derivatives, computes the velocity of each pixel as (vx, vy).
e Write in the disk the computed velocities.

Figure @ shows the distribution of the tasks among the nodes.

386 A.G. Dopico et al.

Compute

Velocities Wy
(Vx, Vy)
Node 3
Compute
Velocities VX
(Vx, Vy)
Node 4
Compute VXV
Use 13 images Use 5 images Velocities .
VX,
Smooth Y W)
Smooth T Smoothed T-X Compute It,Ix.ly Node 5
Smooth X |Images Derivates I ly
It, Ix,ly -
Node 1 Node 2 Velocities

(V% W)
Node 6

Video Sequence
Input Data

Compute
Velocities
(Vx, Vy)

Node 7

Compute
Velocities
(Vx, W)

Node 8 Optical Flow

=
=]
=]
=
]

Fig. 2. Tasks Distribution.

3.4 Results

With this parallelization scheme and using the above described cluster, the com-
putation of the optical flow is achieved at 30 images per second with images of
502x288 pixels. For images of 720x576 pixels the obtained speed is 10 images
per second. Note that the optical flow, in both cases, is computed for every im-
age in the video sequence without skipping any one. This performance means a
speedup of 6 over the sequential version employing 8 nodes.

4 Conclusions and Future Works

This paper presents a new distributed algorithm for computing the optical flow
of a video sequence. This algorithm is based on the balanced distribution of its
tasks among the nodes of a cluster of computers. The distribution done is flexible
and can be adapted to several environments, with shared memory as well as with
distributed memory. Moreover, it is easily adaptable to a wide range of nodes
number: 4, 8, 16, 32 or more.

The algorithm has been implemented on a cluster with 8 nodes and a gigabit
Ethernet, where 30 images per second can be processed with images of 502x288
pixels, or 10 images per second if the images are of 720x576 pixels. With respect
to the sequential version the resulting speedup is 6 times faster.

Taking into account the modest performance obtained in with four pro-
cessors (6-7 images per second with images of 64x64 pixels), or the inconvenients
of the simplified algorithms [4] the results obtained with the algorithm proposed

Distributed Computation of Optical Flow 387

here are very hopeful. The interesting parallelization [3] cannot be compared
because it is not yet implemented.

The obtained performance brings important advantages. Working with longer
sequences, larger images (1280x1024 pixels or even larger) and higher frequen-
cies is now feasible. Increased temporal resolution is particularly beneficial in
complex scenarios with high speed motion. In this line, the particular motion
aliasing pattern of the current interlaced cameras can be reduced by an ad-
ditional algorithm that duplicates the frequency and may be helpful prior the
optic flow computation: the video sequence can be rebuilt by combining each half
frame both with the prior and with the next half-frame, (hfl+hf2); (hf2-+hf3);
(hf3+hf4); (hf4+hf5), and so on. The result is an upgraded sequence with less
motion aliasing and double temporal frequency.

Regarding real time applications, by connecting the video signal directly to
one of the nodes of the cluster and digitizing the video sequence on the fly, the
current implementation of the algorithm allows on line optical flow calculation
of images of 502x288 pixels at 25 to 30 Hz.

References

1. Lim, S., Gamal, A.: Optical flow estimation using high frame rate sequences. In:
Proceedings of the International Conference on Image Processing (ICIP). Volume 2.
(2001) 925-928

2. Valentinotti, F., Di Caro, G., Crespi, B.: Real-time parallel computation of dis-
parity and optical flow using phase difference. Machine Vision and Applications 9
(1996) 87-96

3. Kohlberger, T., Schnorr, C., Bruhn, A., Weickert, J.: Domain decomposition for
parallel variational optical flow computation. In: Proceedings of the 25th German
Conference on Pattern Recognition, Springer LNCS. Volume 2781. (2003) 196-202

4. Zelek, J.: Bayesian real-time optical flow. In: Proceedings of the 15th International
Conference on Vision Interface. (2002) 266-273

5. Barron, J., Fleet, D., Beauchemin: Performance of optical flow techniques. Inter-
national Journal of Computer Vision 12 (1994) 43-77

6. Lucas, B.: Generalized Image Matching by Method of Differences. PhD thesis,
Department of Computer Science, Carnegie-Mellon University (1984)

7. Lucas, B., T., K.: An iterative image registration technique with an application to
stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial
Intelligence (IJCAI). (1981) 674-679

8. Fleet, D., Langley, K.: Recursive filters for optical flow. IEEE Transactions on
Pattern Analysis and Machine Intelligence 17 (1995) 61-67

9. Simoncelli, E., Adelson, E., Heeger, D.: Probability distributions of optical flow. In:
IEEE Conference on Computer Vision and Pattern Recognition. (1991) 310-315

10. Simoncelli, E.: Distributed Representation and Analysis of Visual Motion. PhD
thesis, Massachusetts Institute of Technology (1993)

11. Correia, M., Campilho, A., Santos, J., Nunes, L.: Optical flow techniques applied
to the calibration of visual perception experiments. In: Proceedings of the Int.
Conference on Pattern Recognition, 13 ICPR. Volume 1. (1996) 498-502

12. Correia, M., Campilho, A.: Real-time implementation of an optical flow algorithm.
In: Proceedings of the Int. Conference on Pattern Recognition, 16th ICPR, Volume
IV. (2002) 247-250

	Introduction
	Optical Flow Computation Sequential Algorithm
	Lucas Optical Flow Algorithm
	Implementation
	Sequential Algorithm Results

	Parallelization of the Optical Flow Computing
	Parallel Algorithm
	Cluster Architecture
	Implementation
	Results

	Conclusions and Future Works

