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Abstract. This paper presents a FE-analysis of shear localization in granular
bodies with a finite element method based on a hypoplastic constitutive law.
The law can reproduce essential features of granular bodies in dependence on
the void ratio, pressure level and deformation direction. To simulate the forma-
tion of a spontaneous shear zone inside of cohesionless sand during plane strain
compression, a hypoplastic law was extended by polar, non-local and gradient
terms. The effects of 3 different models on the thickness of a shear zone was
investigated.

1   Introduction

Localization of deformation in the form of narrow zones of intense shearing can develop
in granular bodies during processes of granular flow or shift of objects with sharp edges
against granular materials. Shear localization can occur spontaneously as a single zone,
in several zones or in a regular pattern. They can also be induced in granular bodies
along walls of stiff structures at granular bodies. An understanding of the mechanism of
the formation of shear zones is important since they act as a precursor to ultimate failure.

Classical FE-analyses of shear zones are not able to describe properly both the
thickness of localization zones and distance between them since they suffer from a
spurious mesh sensitivity (to mesh size and alignment). The rate boundary value problem
becomes ill-posed. (i.e. the governing differential equations of equilibrium or motion
change the type by losing ellipticity for static and hiperbolicity for dynamic problems)
[1]. Thus, the localization is reduced to a zero-volume zone. To overcome this drawback,
classical constitutive models require an extension in the form of a characteristic length to
regularize the rate boundary value problem and to take into account the microstructure of
materials (e.g. size and spacing of micro-defects, grain size, fiber spacing). Different
strategies can be used to include a characteristic length and to capture properly the post-
peak regime (in quasi-static problems): polar models [2], non-local models [3] and
gradient models [4].

In this paper, a spontaneous shear localization in granular bodies was investigated
with a finite element method based on a hypoplastic constitutive law extended by
polar, non-local and gradient terms.
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2   Hypoplasticity

Hypoplastic constitutive models [5], [6] are an alternative to elasto-plastic ones for
continuum modelling of granular materials. In contrast to elasto-plastic models, a
decomposition of deformation components into elastic and plastic parts, yield surface,
plastic potential, flow rule and hardening rule are not needed. The hypoplastic law
includes barotropy (dependence on pressure level), pycnotropy (dependence on den-
sity), dependence on the direction of deformation rate, dilatancy and contractancy
during shearing with constant pressure, increase and release of pressure during shear-
ing with constant volume, and material softening during shearing of a dense material.
The feature of the model is a simple formulation and procedure for determination of
material parameters with standard laboratory experiments [7]. Owing to that one set of
material parameters is valid within a large range of pressures and densities. The con-
stitutive law can be summarised as follows:
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wherein: σij - Cauchy stress tensor, e – current void ratio, 
o

ijσ  - Jaumann stress rate

tensor, ijσ
∧

 - normalised stress tensor, *
ijσ

∧
 - deviatoric part of the normalised stress

tensor, dij - rate of deformation tensor, wij - spin tensor, vi,j - gradient of velocity, fs -
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stiffness factor, fd – density factor, hs - granular hardness, θ - Lode angle, ec - critical void
ratio, ed – minimum void ratio, ei - maximum void ratio, ei0 - maximum void ratio at
pressure equal to zero, ed0 - minimum void ratio at pressure equal to zero, ec0 - critical
void ratio at pressure equal to zero, φc - critical angle of internal friction during
stationary flow, n – compression coefficient, α - pycnotropy coefficient, a1  – coefficient
determining the shape of the stationary stress surface.

The constitutive relationship requires 7 material constants: ei0, ed0, ec0, φc, hs, n and α.
The FE-analyses were carried out with the following material constants (for so-called
Karlsruhe sand): ei0=1.3, ed0=0.51, ec0=0.82, φc=30o, hs=190 MPa, n=0.5 and α=0.3 [6].

A hypoplastic constitutive law cannot describe realistically shear localization since
it does not include a characteristic length. A characteristic length was taken into
account by means of a polar, non-local and gradient theory.

3   Enhanced Hypoplasticity

3.1   Polar Hypoplasticity

The polar terms were introduced in a hypoplastic law (Eqs.1-11) with the aid of a
polar (Cosserat) continuum [2]. Each material point has for the case of plane strain
three degrees of freedom: two translational degrees of freedom and one independent
rotational degree of freedom. The gradients of the rotation are connected to curvatures
which are associated with couple stresses. It leads to a non-symmetry of the stress
tensor and a presence of a characteristic length.

The constitutive law can be summarised for plane strain as follows [9], [10] (Eqs.3-
11 and Eqs.12-17):
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wherein mi – Cauchy couple stress vector, 
o

im  – Jaumann couple stress rate vector,  dij

c

– polar rate of deformation tensor, ki – rate of curvature vector, wc – rate of Cosserat
rotation, d50 – mean grain diameter, ac – micro-polar constant (ac=a1

-1) [10].



Modelling of Shear Zones in Granular Materials within Hypoplasticity         343

3.2   Nonlocal Hypoplasticity

A non-local approach is based on spatial averaging of tensor or scalar state variables
in a certain neighbourhood of a given point (i.e. material response at a point depends
both on the state of its neighbourhood and the state of the point itself). To obtain a
regularisation effect for both the mesh size and mesh inclination, it is sufficient to
treat non-locally only one internal constitutive variable (e.g. equivalent plastic strain
in an elasto-plastic formulation [4] or measure of the deformation rate in a
hypoplastic approach [11]) whereas the others can retain their local definitions. In the

hypoplastic calculations, the non-local measure of the deformation rate kl kld d d= in

Eq.1 was treated non-locally:
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where r is the distance from the material point considered to other integration points
of the entire material body, w is the weighting function (error density function) and A
is the weighted volume. The parameter l denotes a characteristic length (it determines
the size of the neighbourhood influencing the state at a given point).

3.3   Gradient Hypoplasticity

The gradient approach is based on the introduction of a characteristic length by incor-
porating higher order gradients of strain or state variables into the constitutive law [4].
By expanding e.g. the non-local measure of the deformation rate d(x+r) in Eq.18 into
a Taylor series around the point r=0, choosing the error function w as the weighting
function (Eq.19), cancelling odd derivative terms and neglecting the terms higher than
the second order one can obtain the following expression (2D-problems):
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where l is a characteristic length. To evaluate the gradient term of the measure of the
deformation rate d and to consider the effect of adjacent elements, a standard central
difference scheme was used [12]:
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where “i” denotes a grid point and “I” a grid element.
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4   FE-Results

The FE-calculations of plane strain compression tests were performed with a sand
specimen which was ho=10 cm high and b=2 cm wide (length l=1.0 m). As the initial
stress state, the state with σ22=σc+γdx2 and σ11=σc was assumed in the sand specimen
where σc denotes the confining pressure (σc=0.2 MPa), x2 is the vertical coordinate
measured from the top of the specimen, γd denotes the initial volume weight (σ11 -
horizontal normal stress, σ22 - vertical normal stress).

A quasi-static deformation in sand was initiated through a constant vertical
displacement increment prescribed at nodes along the upper edge of the specimen.. To
preserve the stability of the specimen against the sliding along the bottom boundary, the
node in the middle of the bottom was kept fixed.

To numerically obtain a shear zone inside of the specimen, a weaker element with
a higher initial void ratio, e0=0.90, was inserted in the middle of the left side.

4.1   Polar Hypoplasticity

Figs.1 and 2 present the results of plane strain compression within polar continuum
compared t. The normalized load-displacement curves with a different mean grain
diameter (d50=0 mm, 0.5 mm and 1.0 mm) in dense specimen (eo=0.60, σc=0.2 MPa)
are depicted in Fig.1. Fig.2 shows the deformed FE-meshes with the distribution of
void ratio (the darker the region, the higher the void ratio).

The FE-results demonstrate that the larger the mean grain diameter, the higher the
maximum vertical force on the top. The lower mean grain diameter, the larger the
material softening (the behaviour of the material is more brittle). At the beginning, two
shear zones are created expanding outward from the weakest element. Afterwards, and
up to the end, only one shear zone dominates. The complete shear zone is already
noticeable shortly after the peak. It is characterised both by a concentration of shear
deformation and Cosserat rotation, and an increase of the void ratio. The thickness is
about tsz≅6 mm=12×d50 (d50=0.5 mm) and tsz≅10 mm=10×d50 (d50=1.0 mm). An in-
crease of the thickness of the shear zone with increasing d50 corresponds to a decrease
of the rate of softening. The material becomes softer, and thus a larger deformation
can develop. The calculated thickness of the shear zone in Karlsruhe sand (d50=0.5
mm) is in accordance with experiments: tsz=13×d50 [13] and 9×d50 [14].

4.2   Nonlocal Hypoplasticity

The results with a non-local measure of the deformation rate d* using a different char-
acteristic length l of Eq.18 (l=0 mm, 0.5 mm, 1.0 mm and 2.0 mm) for dense sand
(eo=0.60, σc=0.2 MPa) are shown in Fig.3.
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Fig. 1. Load-displacement curves (polar continuum):
a) d50=0.0 mm, b) d50=0.5 mm, c) d50=1.0 mm

  a)     b)    c)

Fig. 2. Deformed FE-meshes with the distribution of void ratio in the residual state (polar
continuum): a) d50=0.0 mm, b) d50=0.5 mm, c) d50=1.0 mm

Similarly as in a polar continuum, the larger the characteristic length, the larger the
maximum vertical force on the top and the smaller the material softening (the behaviour
is more ductile). The vertical forces are almost the same as within a polar continuum. If
the characteristic length is larger (l=2.0 mm), the shear zone does not appear. The
thickness of the shear zone tsz with l=0.5 mm is smaller than this with d50=0.5 mm within
a polar continuum. However, the thickness of the shear zone with l=1 mm is close to that
within a polar continuum: tsz≅7 mm=14×l=14×d50. In general, the relationship between
the non-local and polar characteristic length is l≅2×d50 on the basis of the shear zone
thickness.

4.3   Gradient Hypoplasticity

The results with a gradient measure of the deformation rate for dense sand (eo=0.60,
σc=0.2 MPa) are shown in Fig.4.
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Fig. 3. Load-displacement curves and deformed FE-meshes with the distribution of void ratio
in the residual state (non-local continuum): a) l=0 mm, b) l=0.5 mm, c) l=1.0 mm, d) l=2 mm

The evolution of the vertical force on the top is qualitatively similar as in the polar
and non-local continuum. The thickness of the shear zone tsz≅7.3 mm≅7×l (l=1.0 mm)
is slightly larger than within a non-local continuum (l=1.0 mm) and a polar continuum
(d50=0.5 mm).
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                                                                           b)                      c)                      d)

Fig. 4. Load-displacement curve and deformed FE-mesh with the distribution of void ratio in
the residual state (gradient continuum): a) l=0 mm, b) l=0.5 mm, c) l=1 mm, d) l=2 mm
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5   Conclusions

The results with a conventional hypoplastic constitutive model suffer from a mesh-
dependency. The thickness of shear zones is severely mesh-dependent.

A polar, non-local and gradient hypoplastic model provide a full regularisation of
the boundary value problem during plane strain compression. Numerical solutions
converge to a finite size of the localization zone upon mesh refinement.

The thickness of the localized shear zone and the bearing capacity of the granular
specimen increase with increasing characteristic length.

The characteristic length within a non-local and gradient theory can be related to the
mean grain diameter on the basis of a basis of a back analysis of experiments.
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