
Load Balancing Issues for a Multiple Front
Method

Christophe Denis1, Jean-Paul Boufflet1, Piotr Breitkopf2, Michel Vayssade2,
and Barbara Glut3∗

1 Department of Computing Engineering, UMR 6599 Heudiasyc,
Compiègne University of Technology, BP 20529

F-60205 Compiègne cedex, France
2 Department of Mechanical Engineering, UMR 6066 Roberval

Compiègne University of Technology, BP 20529
F-60205 Compiègne cedex, France

{Christophe.Denis,Jean-Paul.Boufflet,
Piotr.Breitkopf,Michel.Vayssade}@utc.fr

3 Institute of Computer Science
AGH University of Science and Technology

Cracow, Poland

Abstract. We investigate a load balancing strategy that uses a model
of the computational behavior of a parallel solver to correct an initial
partition of data.

1 Introduction

We deal with linear systems K · u = f issued from finite elements. The frontal
approach interleaves assembly and elimination avoiding to directly manage the
entire matrix K. A variable is eliminated when its corresponding equation is
fully summed (I. Duff et al [1,2]). Rather than parallelize an existing code (P.R.
Amestoy et al [3]), one can perform tasks in independent modules like in J.
Scott [4] MP42 solver based on the frontal code by I. Duff and J. Reid [2]. We
use an implementation of a multiple front parallel method in the context of our
academic software SIC [5,6].
The domain is partitioned using METIS [7] and CHACO [8]. This initial

partition tends to minimize the communications and to balance the subdomain
amount of data assuming that the computation cost is proportional to the num-
ber of vertices of the subgraph and that the order of assembly does not matter.
[9] seems to confirm the analysis presented by B. Hendrickson [10,11]:

equipartitioning of data volumes does not result systematically in well balanced
computational times.
We design a load balancing process transferring finite elements between sub-

domains to improve the initial partition. Test data are from the PARASOL
project (http://www.parallab.uib.no/parasol).

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3037, pp. 163–170, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

164 C. Denis et al.

2 Problem Formulation

We use a non-overlapping domain decomposition:

1. the graph Gelem associated with the finite element mesh is partitioned into
Ns subdomains SD(j);

2. each SD(j) is partially condensed in parallel;
3. an interface problem is built and then treated.

This process for an equivalent assembled matrix K can be block ordered:



K
(1)
ii K

(1)
ib

. . .
...

K
(Ns)
ii K

(Ns)
ib

K
(1)
bi . . . K

(Ns)
bi Kbb =

∑Ns

j=1 K
(j)
bb




Subscript i indicates “internal” and b “boundary”. K
(j)
ii are the terms of

K associated with the internal variables of SD(j). The terms of K
(j)
bi (resp.

K
(j)
ib) correspond to the interactions between internal variables of SD(j) and the

boundary ones. For each SD(j), we build the following matrix and a partial LU
condensation




K
(j)
ii K

(j)
ib

K
(j)
bi K

(j)
bb


 =




L
(j)
ii 0

L
(j)
bi I


 ·




U
(j)
ii U

(j)
ib

0 S
(j)
bb


 (1)

The block S
(j)
bb denotes the local Schur complement of SD(j).

S =
Ns∑
j=1

S
(j)
bb =

Ns∑
j=1

(
K

(j)
bb − (L(j)

bi · U
(j)
ib)

)
(2)

Using (1) we get the global Schur complement matrix :

S =
Ns∑
j=1

(
K

(j)
bb − K

(j)
bi · (K(j)

ii)
−1 · K

(j)
ib

)
(3)

We use a frontal method to partially condense the matrices associated with
each SD(j) and to treat the interface problem. The nested multiple front ap-
proach is based on the treatment of groups of (K(j)

bb − K
(j)
bi · (K(j)

ii)
−1 · K

(j)
ib).

Matrices S
(j)
bb can be viewed as a super-elements that can be assembled in a

frontal matrix and partially condensed. The computational scheme we consider
is a tree of tasks (1).

Definition 1. A computation tree ANs,y has Ns leaves and y levels.

Load Balancing Issues for a Multiple Front Method 165

SD (1) SD (4)(2)SD SD (3)

bbS
w

bbS
u

bbS
v

K
u

inter

condcond

inter max q(u)

max q(u)

max q(u)

+

+

= Q

L(3)

L(2)

L(1)

inter

v w
condcond

inter
u

Fig. 1. The computation tree A4,3 and the principle of the estimation of the compu-
tation

A task u is associated with a vertex u of the computation tree and q(u) is
an estimation of the number of operations. Let L(i) be the set of vertices of
ANs,y at level i. The leaves in L(1) correspond to the partial condensations of
the SD(j). For a task u associated with an internal vertex of ANs,y we define:

– Su
bb obtained by partial condensation on SD(j) or on the assembly Ku

inter of
two matrices S

(i)
bb ;

– Ku
inter the interface matrix obtained by assembling two matrices S

(i)
bb .

On the computation tree A4,3 of Fig. (1), subdomains SD(3) and SD(4) are
partially condensed by tasks v and w. We obtain two matrices Sv

bb and Sw
bb. They

are assembled in the interface matrix Ku
inter. The boundary variables between

subdomains SD(3) and SD(4) correspond to fully summed rows and columns of
Ku

inter. We obtain Su
bb by partially condensing Ku

inter. The interface problem of
level L(3) is then solved and individual variables are obtained by successive back
substitutions.
We use a coarse grain parallel approach where tasks are the partial condensa-

tion and interface problems. The communication times and the back restitution
times are negligible.
The goal is to correct an initial partition of the graph Gelem. An estimator

of the number of operations of the frontal method is applied on SD(j):

Q1(V (j)
e , SD(j)) =

∑
γ∈assembling

|Fγ |+
∑

γ∈elimination

|Fγ |2 (4)

where V
(j)
e is the reordering vector of the finite elements of SD(j). Q1 [12] counts

operations and gives 10% error between the estimated time for SD(j) and the
actual time TSD(j) .

166 C. Denis et al.

The second estimator counts the number of operations for the partial con-
densation of Ku

inter.
We evaluate then the maximum number of operations max q(u) for each level

L(i) as shown in Fig. (1). The sum Q =
∑
max q(u) provides an estimation of

the cost. In an ideal case of equal tasks at each level, Q is a tight estimation,
otherwise it gives an upper bound.
We consider balanced trees obtained with multi-level tools [7]. First a unique

task of L(1) is assigned per processor. Then, S(i)
bb are sent to processors comput-

ing the associated tasks according to the computation tree.

Table 1. The PARASOL data and the finite element meshes used for our experiments

name No. elts order name No. elts order
MT1 5 328 97 578 SUSPEN D1 18 171 14 517

SHIPSEC8 35 280 114 919 C1 42 689 34 707
X104 6 019 108 384 MISSILE4 27 804 166 824

3 Principle of the Heuristics

The initial partition P is first computed using [7]. Then we apply the following
heuristics:

1. for each subdomain SD(j) compute first a V
(j)
e , then Q1(V

(j)
e , SD(j)) ;

2. select SD(max) with maximum estimated number of operations;
3. determine the set Nmax of indices of subdomains that are neighbors to

SD(max);
4. virtually aggregate the subdomains of Nmax;
5. compute QNmax

moy the average number of operation of these subdomains;
6. compute Qtrans the number of operations to be transferred from SD(max);
7. compute mt the number of elements to be transferred;
8. transfer a subset of mt finite elements from SD(max) to the virtual subdo-
main.

The volume Qtrans is half the difference between the maximum estimated
number of operations and QNmax

moy and mt is ratio Qtrans over the number of
operations per element. By applying this process k times we improve the initial
partition. For our experiments we set k = 100 and select the best result.
A transfer primitive chooses finite elements near the common boundary in

order to limit the growth of the interface. Consider examples from Fig. (2) to
Fig. (4).
In Fig. (2) SD(1) has the maximum estimated number of operations. Grey

elements are near the boundary between SD(1) and the virtual subdomain
[SD(2),SD(3)] (N1 = {2, 3}).

Load Balancing Issues for a Multiple Front Method 167

Table 2. Q the estimated amount of computation, Tglob the real computing time (in
s), the obtained gain (in %), and ∆mesu the load balancing criterion

name tree method Q Tglob (s) gain (%) ∆mesu (%)
MT1 A Pmetis 1, 17.1011 94,4 96

A PmetisC 1, 00.1011 89,6 5,1 98
B Pmetis 1, 09.1011 66,7 71
B PmetisC 8, 05.1010 59.1 11,4 80
C Pmetis 4, 26.1010 43,0 54
C PmetisC 3, 15.1010 36,9 14,2 72

SHIPSEC8 A Pmetis 4, 02.1011 266,6 81
A PmetisC 3, 85.1011 239,1 10,3 89
B Pmetis 2, 75.1011 160,5 71
B PmetisC 1, 75.1011 112,7 29,8 89
C Pmetis 1, 40.1011 108,3 71
C PmetisC 1, 20.1011 101,1 6,6 79

X104 A Pmetis 2, 01.1011 162,9 98
A PmetisC 2, 01.1011 162,9 0 98
B Pmetis 7, 84.1010 70,1 76
B PmetisC 6, 39.1010 57,4 18.1 91
C Pmetis 4, 53.1010 48,5 46
C PmetisC 4, 48.1010 46,8 3.5 48

SUSPEN D1 A Pmetis 2, 67.109 21, 1 88
A PmetisC 1, 19.109 9, 9 53,1 73
B Pmetis 1, 20.109 9, 9 50
B PmetisC 9, 28.108 4, 1 58, 6 80
C Pmetis 7, 75.108 6, 7 44
C PmetisC 4, 05.108 3, 8 43, 8 73

C1 A Pmetis 1, 78.1010 129, 9 80
A PmetisC 8, 87.109 84, 2 35, 2 88
B Pmetis 9, 23.109 99, 4 54
B PmetisC 3, 38.109 30, 1 69, 7 90
C Pmetis 3, 11.109 24, 7 54
C PmetisC 1, 74.109 15, 4 37, 7 90

MISSILE4 A Pmetis 1, 44.1011 1220 71
A PmetisC 3, 91.1010 395, 3 67, 6 99
B Pmetis 1, 04.1011 891, 6 65
B PmetisC 4, 81.1010 406, 6 54, 4 67
C Pmetis 6, 13.1010 448, 3 59
C PmetisC 2, 26.1010 204, 5 54, 4 93

We compute a level structure through SD(1) from the boundary elements of
[SD(2),SD(3)]. We apply the BFS algorithm on the element graph of SD(1) ini-
tializing its queue with boundary elements corresponding to level 0. We obtain
a spanning tree where level l contains elements at a distance of l edges to level
0. It may be seen as using a virtual vertex r connecting SD(1) and its associ-
ated virtual subdomain (Fig. (3)). We assume mt=4. We then transfer selected
elements to the neighbor subdomains (Fig. (4)).

168 C. Denis et al.

(3)

(2)
SD

SD

SD
(1) (4)

SD

SD
(N 1)

Fig. 2. The initial partition of the domain into 4 subdomains

r

(3)

(2)
SD

SD

SD
(1) (4)

SD

Fig. 3. Initialisation of the root r of the level structure in order to select the finite
elements to be transfered from SD(1) to the virtually aggregated subdomain

�
�
�

�
�
�

SD
(1)

SD
(4)

SD
(3)

SD
(2)

Fig. 4. mt finite element are transfered

4 Results

The experiments were performed on a 10 Athlon 2200+, 1Gb bi-processors clus-
ter, running LINUX Red Hat 7.1, with a 1 Gbit/s Ethernet network. Table (1)
gives the sizes of the PARASOL data, and of some arbitrary meshes. The order
column gives the size of the assembled matrix.
Three types of computation tree were used, and we define the labels: A for

A2,2, 2 subdomains and 2 levels; B for A4,3, 4 subdomains and 3 levels and C
for A8,4, 8 subdomains and 4 levels.
Table (2) presents the results: estimates Q, and measures Tglob. Pmetis is

the original METIS decomposition and PmetisC is the corrected one. TSD(j)

is measured for each SD(j) along with the load balancing criterion:

∆mesu =
1

Ns

∑Ns

j=1 TSD(j)

maxj TSD(j)

In the ideal case the TSD(j) are equal and ∆mesu = 1.

Load Balancing Issues for a Multiple Front Method 169

A B C
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

11

Q

Pmetis
PmetisC

Fig. 5. Q : the estimated amount of
computation before and after applying
the heuristics for the SHIPSEC8 data

A B C
0

50

100

150

200

250

300

T
gl

ob
 in

 s

Pmetis
PmetisC

Fig. 6. Tglob : the real computing time
(in s) before and after applying the
heuristics for the SHIPSEC8 data

Table (2) shows that ∆mesu is improved. The transfer primitive was modified
in order to limit the number of interface nodes.
Figs. (5) and (6) show a good correlation between Q and Tglob. However, we

do not obtain a perfect balance, because the estimations do not reflect exactly
the real computations. Moreover, moving elements influences the ordering and
consequently the computation time. It is therefore difficult to attain ∆mesu = 1.
As a rule, fewer than 10 iterations of the heuristics provide the maximum gain
reported in Table (2).

5 Conclusion

We propose a heuristics to correct an initial domain decomposition based on
equal volumes of data, in order to balance the estimated number of operations
of a multiple-front method. With this coarse-grained parallel approach, the pre-
liminary results obtained on the benchmark improve computing time. The mod-
ification of the boundary due to the transfer of finite elements can increase the
number of interface nodes and the size of the interface problem.

References

1. Duff, I., Erisman, A., Reid, J.: Direct Methods for Sparse Matrices. Monographs
on Numerical Analysis. Clarendon Press - Oxford (1986)

2. Duff, I.S., Scott, J.A.: MA42 – A new frontal code for solving sparse unsymmetric
systems, technical report ral 93-064. Technical report, Chilton, Oxon, England
(1993)

3. P.R. Amestoy, I.S. Duff, J.Y.L., Koster, J.: A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23 (2001) 15–
41

4. Scott, J.: The design of a parallel frontal solver,technical report ral-tr99-075. Tech-
nical report, Rutherford Appleton Laboratory (1999)

170 C. Denis et al.

5. Escaig, Y., Vayssade, M., Touzot, G.: Une méthode de décomposition de domaines
multifrontale multiniveaux. Revue Européenne des Eléments Finis 3 (1994) 311–
337

6. Breitkopf, P., Escaig, Y.: Object oriented approach and distributed finite element
simulations. Revue Européenne des Eléments Finis 7 (1998) 609–626

7. Karypis, G., Kumar, V.: Metis : A software package for partitioning unstructured
graphs, partitioning meshes, and computing fill-reducing orderings of sparse matri-
ces. Technical report, University of Minnesota, Department of Computer Science
(1998)

8. Hendrickson, B., Leland, R.: The chaco user’s guide, version 2.0. Technical report,
Sandia National Laboratories (1995)

9. Boufflet, J., Breitkopf, P., Denis, C., Rassineux, A., Vayssade, M.: Optimal ele-
ment numbering schemes for direct solution of mechanical problems using domain
decomposition method. In: 4th ECCOMAS Solid Mechanics Conference. (2000)
Espagne.

10. Hendrickson, B.: Graph partitioning and parallel solvers: Has the emperor no
clothes? In: Irregular’98, Lecture Notes in Computer Science. Volume 1457. (1998)
218–225

11. Hendrickson, B.: Load balancing fictions, falsehoods and fallacies. Applied Math-
ematical Modelling 25 (2000) 99–108

12. Boufflet, J., Breitkopf, P., Denis, C., Rassineux, A., Vayssade, M.: Equilibrage
en volume de calcul pour un solveur parallèle multi-niveau. In: 6ème Colloque
National en Calcul des Structures. (2001) 349–356 Giens, France.

	Introduction
	Problem Formulation
	Principle of the Heuristics
	Results
	Conclusion

