Resources Virtualization in Fault-Tolerance
and Migration Issues

G. Jankowski, R. Mikolajczak, R. Januszewski, N. Meyer, and M. Stroinski

Poznan Supercomputing and Networking Center
61-704 Poznan, ul. Noskowskiego 12/14, Poland
{gracjan,fujisan,radekj,meyer,stroins}@man.poznan.pl

Abstract. One of the low-level services Grids can benefit from is check-
pointing. Unfortunately, the checkpointing technology imposes many
common problems that are still open. The example of such often-
encountered problems is recovering the identifiers of some checkpointed
resources. This paper describes the idea of low-level virtualization of such
identifiers. The mechanism allows overcoming the semantically imposed
limitations.

1 Introduction

In this paper we focus on the coherency of restored process memory with refer-
ence to the surrounding environment and resources rather than recovering the
processes themselves. Some variables in the process memory can hold the value
of the identifiers that point to an external resource. After migration it can turn
out that although the value has been restored properly, the external resource
cannot be linked with this value any more. The solution to this problem can be
the usage of transparent (from the program’s viewpoint) virtualization of these
resources identifiers.

2 Considered Resources’ Description

Actually each resource type has its own semantics. Although the general idea of
resources virtualization is invariable, the particular cases may require a little tune
attention. In this paper we opt for tackling the System V IPC objects and their
identifiers and keys. The System V IPC mechanisms include messages, shared
memory and semaphores objects. Each object is unambiguously identified by its
type and the key value. In order to gain access to a particular object, the process
has to use one of the system calls msgget(), shmget() or semget() for messages,
shared memory and semaphores, respectively. The key value, which determines
the desired object, is passed to these functions and the return value is the object
identifier through which further interaction with the object is performed. The
operating system can forbid access to the object for any reasons (e.g. lack of
rights to the object). If the process requires the object of IPC_PRIVATE key
value then the operating system supplies a completely new IPC object, i.e. not

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3036, pp. 449 2004.
(© Springer-Verlag Berlin Heidelberg 2004

450 G. Jankowski et al.

shared with anyone. The problem is that during the recovery phase some other
processes can already occupy the ITPC objects that were originally used. Fur-
thermore, the physical identifier of re-gained object will most probably have a
different value than it originally did.

3 Virtualization

The main idea of the presented solution is intercepting the crucial system calls
and replacing the virtual identifiers (passed by the process) with the physical
ones. The function that is executed as a result of interception is called the in-
tercepting system call. It is actually a wrapper. The wrapped function is named
the original system call. The original system call is finally invoked by the inter-
cepting system call. In some cases, the values that are returned by the original
system calls are replaced, too.

The virtual identifiers that are used by the user programs are mapped to
the physical ones by means of the mapping tables. Each mapping table defines a
separated mapping domain of identifiers of the resources of the same type. There
can be multiple mapping domains of a given kind of resources in the system at
the same time, but one resource instance can be associated with only one map-
ping domain. The format of the mapping table depends on the kind of resources
that are virtualized by this table. If any program has access to a mapping table,
we say that this program is associated with the mapping domain that is defined
by this table. Moreover, if a process is associated with the mapping domain, all
its children inherit this association. To increase the legibility of the presented
algorithms, we make an assumption that a single mapping domain can be associ-
ated with only one application (single- or multi-process). All domains associated
with the application must be the domains of different type of resources. It means
that for a given application and a given resource type, only one domain (i.e. only
one mapping table) can exist. The next assumption that simplifies further study
is that programs associated with different mapping domains should not commu-
nicate with each other. The mapping tables must be held in the shared memory.
Access to this memory must be synchronized. The values of virtual identifiers
must be unique within the scope of the mapping domain. However, the virtual
identifiers from different domains can have the same values, even if these are the
domains of resources of the same type. The first process that is created as a part
of the multi-process program as well as the single process (the single-process
application) is called the root process. All processes that are descended from the
root process are named branch processes.

The virtual key and virtual identifier of all types of the System V IPCs have
the same semantics. For this reason, in this section we refer to IPC objects
generally instead of considering each of them separately. In order to simplify the
following description, a special case when the object key equals IPC_PRIVATE
was omitted.

The mapping table used for managing the mapping domain of the System V
IPC object consists of four columns. The VKEY column holds the virtual key of

Resources Virtualization in Fault-Tolerance and Migration Issues 451

an IPC object. The RKEY column holds the physical value of the IPC object.
The VID column is the virtual value of the identifier of the IPC object and the
RID column is the physical identifier of the IPC object.

During the initialization of the process, if it is the root process that is initial-
ized, the memory for a mapping table it allocated, or if it is the branch process,
it is attached to the mapping domain of its parent.

When the xxxget(ﬂ intercepting system call is invoked, first by means of the
mapping table the virtual key (the one which is passed to the intercepting system
call) is translated to the physical one. If the mapping table does not contain
mapping for the current virtual key, the physical one is assigned the same value
as the virtual one. The physical key is passed to the xxxget() original system call.
If this function returns the error code, it is forwarded to the user process and the
execution of the intercepting system call is finished. If the original system call
returns the correct IPC object identifier (physical identifier), the RID column
of the mapping table is searched for it. If the searching succeeds, the row that
contains that value is marked and the virtual identifier is given the value of
the VID column of the marked row. Otherwise, if the current mapping domain
does not contain the virtual identifier of the same value as the one returned by
the original system call, the new virtual identifier is given the same value as
the just obtained physical one. If the physical identifier is not in the RID but
in the VID column of the mapping table, the new virtual identifier is given an
arbitrary value that is different from all the other within the VID column. If the
VID column of the mapping table does not contain the just established virtual
identifier yet, the new row is added to this table. The VKEY, RKEY, VID and
RID columns are given the values of virtual key, real key, virtual identifiers and
real identifiers, respectively. Finally, the value of the virtual identifier is returned
as a result of the intercepting system call.

The intercepting system calls that operate on the IPC objects take the virtual
IPC object identifier as a parameter. Before the original system call is called,
the virtual object identifier must be translated into the physical one. To achieve
that, the VID column of the mapping table is searched for the virtual value
that has been passed to the intercepting system call. The row that contains the
searched value is marked. The physical identifier that is passed to the original
system call is taken from the RID column of the marked row. The value returned
by the original system call is forwarded to the user process.

The values of physical keys and objects identifiers are the same as the values
of the related virtual ones until the execution is not interrupted by migration
or failure. The presented algorithm can be applied by the user-level and kernel-
level checkpointing solutions, but it better fits the former case. To simplify the
description below, the algorithms made by the root process and the branch
processes are described separately.

The root process is recovered as the first one. It reallocates and restores the
mapping table and then, for each row in this table, tries to request from the
system the IPC object of the same key value as it was before the recovery phase

! xxxget() stands for msgget() or shmget() or semget().

452 G. Jankowski et al.

(by means of the xxxget() original system call). If, unluckily, the originally used
key is occupied by another process, the new physical key is given an arbitrary
value that is different from all other keys that are currently occupied. The value
returned by the xxxget() original system call is the new physical value of the IPC
object identifier. The RKEY and RID columns of the current row of the mapping
table are updated with the values of the new physical key and identifier, respec-
tively. If the type of the recovered IPC object is the shared memory and if the
root process had it attached to its own memory space, the memory is attached
to the root process’ address space. Finally, the state or content (depending on
the case) of the just recovered object is restored.

When the root process finishes the recovery phase, each branch process is
attached to the mapping table. Generally, from the point of view of System
V IPC objects, access to a correctly filled mapping table is sufficient for the
branch processes to be executed properly. However, if the recovered IPC object
is the shared memory, the branch process for each row in the mapping table
additionally makes one more following step. If the shared memory, which is
associated with the current row in the mapping table, was attached to the current
process, it is reattached.

When a system call which releases the IPC object ends with success, the row
that is correlated with it must be removed from the mapping table. When the
root process is finished, the shared memory containing the mapping table must
be freed.

4 Conclusion

The idea presented above is a kind of hint how to look at the resources virtual-
ization issue rather than any formal and stiff standard proposition. An attempt
to define and classify the basic notions and terms associated with resources vir-
tualization has been made. The authors of this paper have implemented the
presented conception in psncLibCkpt package, a checkpointing library used on
user level, which supports the System V IPC objects virtualization (PROGRESS
project: http://progress.psnc.pl).

References

1. J.S. Plank, M.Beck, G. Kingsley, and K.LI. Libckpt: Transparent Checkpointing
Under UNIX, Conference Proceedings, Usenix Winter 1995. Technical Conference,
pages 213-223. January 1995.

2. Hua Zhong and Jason Nieh. CRACK: Linux Checkpointing / Restart As a Ker-
nel Module. Technical Raport CUCS-014-01. Department of Computer Science.
Columbia University, November 2002.

3. Eduardo Pinheiro. Truly-Transparent Checkpointing of Parallel Applications. Fed-
eral University of Rio de Janeiro UFRJ.
http://www.research.rutgers.edu/ edpin/epckpt/paper_html/.

	Introduction
	Considered Resources' Description
	Virtualization
	Conclusion

