
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3036, pp. 43–50, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Design and Implementation of the Cooperative
Cache for PVFS

In-Chul Hwang, Hojoong Kim, Hanjo Jung, Dong-Hwan Kim, Hojin Ghim,
Seung-Ryoul Maeng, and Jung-Wan Cho

Division of Computer Science, Dept. of Electrical Engineering & Computer Science, KAIST,
373-1 Kusung-dong Yusong-gu, Taejon, 305-701, Republic of Korea

{ichwang, hjkim, hanjo, dhkim, hojin, maeng, jwcho}
@calab.kaist.ac.kr

Abstract. Recently, there have been many efforts to get high performance in
cluster computing with inexpensive PCs connected through high-speed net-
works. Some of them were to provide high bandwidth and parallelism in file
service using a distributed file system. Other researches for distributed file
systems include the cooperative cache that reduces servers’ load and improves
overall performance. The cooperative cache shares file caches among clients so
that a client can request a file to another client, not to the server, through inter-
client message passing. In various distributed file systems, PVFS (Parallel
Virtual File System) provides high performance with parallel I/O in Linux
widely used in cluster computing. However, PVFS doesn't support any file
cache facility. This paper describes the design and implementation of the coop-
erative cache for PVFS (Coopc-PVFS). We show the efficiency of Coopc-
PVFS in comparison to original PVFS. As a result, the response time of Coopc-
PVFS is shorter than or similar to that of original PVFS.

1 Introduction

Recently, there have been many efforts to get high performance in cluster computing
with inexpensive PCs connected through high-speed networks. It is necessary to con-
nect PCs with efficient inter-connection network and to support applications effi-
ciently in operating system to get high performance. Among these efforts, there have
been many researches about distributed file systems which access disks much slower
than any other component in cluster computing.

Among researches for distributed file systems, the cooperative cache [4,5,6] was
proposed to reduce servers’ load and to get high performance. Because the access
time of another client’s memory is faster than that of a server’s disk, to get the block
from another client’s memory has faster response time than to get a block from a
server’s disk. In the cooperative cache, a client finds a block first from its own file
system cache, and then the other clients’ file system caches before finding the block
from servers’ disks.

44 I.-C. Hwang et al.

 In various distributed file systems, PVFS (Parallel Virtual File System) [1,2],
which supports parallel I/O on Linux which is widely used in cluster computing, was
developed in Clemson University. PVFS can get high bandwidth by stripping files
over I/O servers. However, PVFS doesn’t support any file system caching facility but
only supports applications with transfer of data from/to I/O servers.

In this paper, we describe the design and implementation of the cooperative cache
for PVFS (Coopc-PVFS). We also present various performance results with Coopc-
PVFS and PVFS on the CAN cluster [8] at KAIST. We present the result of executing
a simple matrix multiplication program. Then, we show the result for the BTIO
benchmark programs [9].

The rest of this paper is organized as follows. In the next section, we discuss the
related work of PVFS and cooperative cache. In section 3, we describe the design
and implementation of Coopc-PVFS. In section 4, we present and discuss the per-
formance results. In section 5, we summarize major contributions of this work and
discuss future work.

2 Related Work

2.1 PVFS (Parallel Virtual File System)

PVFS [1,2], which supports parallel I/O on Linux widely used in cluster computing,
was developed in Clemson university.

PVFS is composed of compute nodes, single metadata manager and I/O servers.
The compute nodes are clients that use PVFS services. The metadata manager man-
ages the metadata of PVFS files. The I/O servers store the actual data of PVFS files.
In PVFS, a file data is stripped over I/O servers.

There are two schemes by which users can access files in PVFS. First, users can
access files by recompiling their application codes with the PVFS user-level library –
the PVFS library scheme. Another scheme is that users can access files through UNIX
I/O system call using the PVFS kernel module – the PVFS kernel module scheme

There was a research for the file system caching effect of PVFS. Vilayannur et al.
[3] designed and implemented a file system cache of a client in the PVFS library
scheme. They showed that a file system cache in a client is efficient if many applica-
tions in the client share files among them. But their research was limited to a file
system cache in a single node. Because many users share files in cluster environ-
ments, the cooperative cache is more appropriate than a file system cache in a client.

2.2 Cooperative Cache

The cooperative cache [4,5,6] was proposed to reduce servers’ load and to get high
performance. In the cooperative cache, if a file system cache in a client doesn’t han-
dle a request to a file, the client sends the request to the other client’s cache that
caches the file rather than to the server because the access time of another client’s
memory is faster than that of the server’s disk. Servers’ load can be reduced in the

Design and Implementation of the Cooperative Cache for PVFS 45

cooperative cache so that it is scalable as the number of clients increases. Because
there is much more memory in the cooperative cache than in a single file system
cache, the cooperative cache can handle more requests and improve overall system
performance.

There have been many researches about the cooperative caching. Dahlin et al. [4]
suggested the efficient cache management scheme called N-chance algorithm, Feeley
et al. [5] suggested another efficient cache management scheme called modified N-
chance algorithm in GMS (Global Memory Service). Sarkar et al. [6] suggested the
hint-based cooperative caching to reduce the management overhead using hint. Thus,
the hint-based cooperative cache is scalable and can be adopted in the large-scale
system such as cluster computer. Because Sarkar’s idea uses a file as a file system
management unit, it can not be applicable to parallel file systems in which many users
share large files concurrently.

3 Design and Implementation of Coopc-PVFS

3.1 Overview of Coopc-PVFS

In the PVFS kernel module scheme, an application reads a file from I/O servers
through the PVFS kernel module without a file system caching facility. We added the
cooperative caching to the PVFS kernel module scheme in computing nodes.

In figure 1, we present the workflow of Coopc-PVFS added in the PVFS kernel
module scheme.

Fig. 1. Workflow of Coopc-PVFS

In the cooperative cache added to PVFS kernel module scheme, when an applica-
tion reads a file, the cache manager in the client looks up whether the requested block
is in its own cache. If the block is in the cache manager, the cache manager copies the
block to the application. If the block is not found in its own cache manager, the cache
manager looks up whether there is any client that caches the block. If the block is
found in the other clients’ cache managers, the cache manager gets the block from
one of them, and then caches the block and copies the block to the application. If the

46 I.-C. Hwang et al.

block is not found in other clients’ cache manager, the cache manager gets the block
from I/O servers, and then caches the block and copies the block to the application.

3.2 Design of Coopc-PVFS

3.2.1 Information Management
Because of large overhead to maintain accurate information about cached blocks, we
designed Coopc-PVFS as a hint-based cooperative cache. To maintain the hint –
opened clients list, we added new function to the metadata manager to keep the cli-
ents list that contains information of clients that opened the file before. Whenever a
client opens a file, the client gets both the metadata and the opened clients list of the
file from the metadata manager.

To accurately look up a block whether other clients have it, the client must know
the information about cached blocks in other clients. To maintain this information, we
used the methods like below:

− In PVFS, when an application opens a file, the application gets metadata of the
file from the metadata manager. Using this mechanism, the metadata manager
manages the hint per file – the IPs of the clients which opened the file before,
named opened clients list. When an application opens a file in Coopc-PVFS, the
application gets not only the metadata of the file but also opened clients list.

− To maintain the information about cached blocks, when an application reads a
block that is not in its own cache, the cache manager exchanges its own informa-
tion (bitmap) about cached blocks with the information of other client’s cache
manager. After many accesses to the file which clients exchange the information
with each other, the client maintains approximately accurate information about
cached blocks in Coopc-PVFS.

− When an application closes a file, the cache manager doesn’t do anything. Be-
cause the cache manager caches blocks of the file, the metadata manager remains
the client which closes the file in opened clients list.

Unlike previous hint-based cooperative cache research [6], we managed informa-
tion and cached blocks per block, not per file. Because many clients share large files
among them in a parallel file system, it is more adaptable to manage information and
to cache per block than per file in Coopc-PVFS.

3.2.2 Consistency
In PVFS, all the accesses to files go through the I/O servers. To preserve the consis-
tency likewise in PVFS, the cache manager must invalidate blocks cached in other
clients before writing the block to the I/O server in Coopc-PVFS. To do that, when-
ever an application writes a block, the cache manager sends the block invalidation
propagation request to the metadata manager before sending the written block to the
I/O server. When the metadata manager gets the block invalidation propagation re-

Design and Implementation of the Cooperative Cache for PVFS 47

quest, it sends the block invalidation messages to the clients in opened clients list of
the file then all of the clients that receive the block invalidation message invalidate
the block. Therefore, all of cached blocks in other clients are invalidated before
sending the written block to the I/O server and we can preserve the consistency in
Coopc-PVFS the same as in PVFS.

Fig. 2. Data structures used by a cache manager in Coopc-PVFS

3.3 Implementation of Coopc-PVFS

In figure 2, we present data structures used by the cache manager in Coopc-PVFS.
We implemented most of data structures using linked lists in Coopc-PVFS for dy-

namic addition and deletion of entries. For replacement of the cached block, we man-
aged the LRU list. For unused blocks allocated from system memory, we managed
the free list. Each cached block is managed by the size of stripping unit used in PVFS.
In PVFS, the size of stripping unit is 64KB by default and it can be changed for vari-
ous system configurations.

In the metadata manager, we manage opened clients lists of files using linked lists.
Each opened clients list of a file has its own lock in order to access it concurrently.

For allocating cache blocks from system memory, we didn’t use the page cache
system in Linux for the cache manager. If we use the page cache system in Linux, we
don’t know which blocks are cached in the cache manager – If we use, cache blocks
can be freed by the Linux memory manager so that we can’t know about that event.
Therefore, we must allocate cache blocks from kernel memory and do memory man-
agement for cache blocks. For doing memory management, we implemented the
cache replacement manager which can do memory management according to the
amount of free kernel memory in the system as a kernel thread.

4 Performance Evaluation

We used CAN cluster [8] in KAIST to evaluate the performance of Coopc-PVFS. The
system configuration of CAN cluster is presented in table 1.

48 I.-C. Hwang et al.

Table 1. System configuration

CPU Pentium IV 1.8GHz
Memory 512MByte 266MHz DDR

Disk IBM 60G 7200rpm
Network 3c996B-T(Gigabit Ethernet)

3c17701-ME(24port Gigabit Ethernet Switch)

OS , PVFS Linux(Kernel version 2.4.18) , 1.5.3

The metadata manager was allocated in one node and the I/O server was allocated
in another node. And one to four other clients were used to execute the test applica-
tions –a simple matrix multiplication program and BTIO benchmark programs. Each
program operates like below:
− Matrix multiplication program: Applications in four clients read two input files of

1024*1024 matrix and calculate the matrix multiplication and write the result to
the output file.

− BTIO benchmark programs: BTIO [9] is a parallel file system benchmark. BTIO
contains four programs. In table 2, we present each four programs. We can evalu-
ate the parallel I/O performance of Coopc-PVFS using four clients with smallest
sized class s in BTIO.

Table 2. BTIO benchmark programs

Full (mpi_io_full) MPI I/O with collective buffering
Simple (mpi_io_simple) MPI I/O without collective buffering
Fortran(fortran_io) Fortran 77 file operations used
Epi (ep_io) Each process writes the data belonging to its

part of the domain to a separate file

Table 3. Execution time of the matrix multiplication program

I/O server doesn’t caching data(iod_cool) 209.174 secsPVFS
I/O server caches data(iod_hot) 128.283 secs

anyone doesn’t cache data(iod_cool) 120.451 secs
I/O server cache data(iod_hot) 120.005 secs

Coopc-
PVFS

Coopc-PVFS cache data(coopc_hot) 120.029 secs

4.1 Execution Time of Matrix Multiplication Program

The execution time of the matrix multiplication program is in table 3.
To analysis of total read/write time of this program, we present the time break-

down of average execution time in figure 3.
The matrix multiplication program is a read-dominant program so that total read

time is much longer than total write time. In Coopc-PVFS, we can reduce the read
time to approximately zero because the file is cached in Coopc-PVFS after once a file
is read. When the I/O server doesn’t cache the file in PVFS, the waiting time is much

Design and Implementation of the Cooperative Cache for PVFS 49

larger than any other case because the variation of read time is much larger than any
other case. The write time in Coopc-PVFS is a little longer than that in PVFS because
the write in Coopc-PVFS has slightly overhead than in PVFS.

Time breakdown of average execution time

0

50

100

150

200

250

iod_cool_PVFS iod_hot_PVFS iod_cool_coopc iod_hot_coopc coopc_hot_coopc

Se
co

nd
s Waiting

Write

Read

Fig. 3. Execution time breakdown of the matrix multiplication program

Time breakdown of BTIO benc hmarking res ults

0

2

4

6

8

10

12

14

16

18

20

PV FS Coopc -
PV FS

PV FS Coopc -
PV FS

PV FS Coopc-
PV FS

PVFS Coopc-
PVFS

ep_io fortran_io mpi_io_s imple mpi_io_full

Se
co

nd
s Wait ing

Write
Read

Fig. 4. Execution time breakdown of BTIO benchmark programs

4.2 Performance Evaluation using Benchmark Programs

In figure 4, we present the time breakdown of BTIO benchmarking results.
BTIO benchmark programs are write-dominant programs so that total write time

is much longer than total read time in the results. Using MPI, we can get much shorter
write time. Collective I/O reduces almost part of write time. In most cases, write time
of Coopc-PVFS is longer than in PVFS because the write in Coopc-PVFS has more
overhead than the write in PVFS and read time of Coopc-PVFS is shorter than in
PVFS because cli-ents cache all files in Coopc-PVFS. Totally, the execution time in

50 I.-C. Hwang et al.

Coopc-PVFS is a little longer than in PVFS. Therefore, we can know that the per-
formance improvement of writing is needed in Coopc-PVFS.

5 Conclusion and Future Work

In this paper, we describe the design and implementation of the cooperative cache for
efficient data sharing that is not supported in PVFS.

We evaluated Coopc-PVFS with many programs. In a matrix multiplication pro-
gram, we can execute the program in Coopc-PVFS faster than in PVFS about
6%~50%. When we executed write-dominant BTIO benchmark programs, we can
know that using Coopc-PVFS has a little worse than using PVFS.

In the future, we will evaluate the performance of Coopc-PVFS using many sci-
entific applications in cluster. Using the cooperative cache can improve the perform-
ance of reading, but the cooperative cache can not improve the performance of writ-
ing. Therefore, we will support the write buffering and develop new write schemes to
improve the write performance. And we will adopt the collective I/O request tech-
nique which the cache manager sends many requests at a time instead of sending a
request at a time.

References

1. P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur, "PVFS: A Parallel File System
For Linux Clusters'', Proceedings of the 4th Annual Linux Showcase and Conference, At-
lanta, GA, October 2000, pp. 317-327

2. R. B. Ross, "Providing Parallel I/O on Linux Clusters" ,Second Annual Linux Storage
Management Workshop, Miami, FL, October 2000.

3. M.Vilayannur,M.Kandemir, A.Sivasubramaniam, "Kernel-Level Caching for Optimizing
I/O by Exploiting Inter-Application Data Sharing", IEEE International Conference on
Cluster Computing (CLUSTER'02),September 2002

4. Dahlin, M., Wang, R., Anderson, T., and Patterson, D. 1994. "Cooperative Caching: Using
remote client memory to improve file system performance", In Proceedings of the First
USENIX Symposium on Operating Systems Design and Implementation. USENIX Assoc.,
Berkeley, CA, 267-280

5. Feeley, M. J., Morgan, W. E., Pighin, F. H., Karlin, A. R., and Levy, H. M. 1995. "Imple-
menting global memory management in a workstation cluster", In Proceedings of the 15th
symposium on Operating System Principles(SOSP). ACM Press, New york, NY, 201-212

6. Prasenjit Sarkar , John Hartman, "Efficient cooperative caching using hints", Proceedings
of the second USENIX symposium on Operating systems design and implementation,
p.35-46, October 29-November 01, 1996, Seattle, Washington, United States

7. "Linux Kernel Threads in Device Drivers",
http://www.scs.ch/~frey/linux/kernelthreads.html

8. Can cluster, http://camars.kaist.ac.kr/~nrl
9. Parkson Wong, Rob F. Van der Wijngaart, NAS Parallel Benchmark I/O Version 2.4, NAS

Technical Report NAS-03-002, NASA Ames Research Center, Moffett Field, CA 94035-
1000

	1 Introduction
	2 Related Work
	2.1 PVFS (Parallel Virtual File System)
	2.2 Cooperative Cache

	3 Design and Implementation of Coopc-PVFS
	3.1 Overview of Coopc-PVFS
	Design of Coopc-PVFS
	3.2.1 Information Management
	3.2.2 Consistency

	Implementation of Coopc-PVFS

	4 Performance Evaluation
	4.1 Execution Time of Matrix Multiplication Program
	4.2 Performance Evaluation using Benchmark Programs

	5 Conclusion and Future Work
	References

