Hunting for Bindings
in Distributed Object-Oriented Systems”*

Magdalena Stawinska

Faculty of Electronics, Telecommunications and Informatics
Gdansk University of Technology
Narutowicza 11/12, 80-952 Gdarsk, Poland
magg@eti.pg.gda.pl

Abstract. The paper examines the problem of finding a group of ob-
jects that are involved in a certain transitive relation. It is especially
important when a group of related objects has to be identified, for ex-
ample for monitoring. The article defines static and dynamic binding
relations between objects in a distributed object-oriented system. It also
presents an architecture for catching these relations since current operat-
ing systems do not support such mechanisms. In the paper the algorithm
for finding bindings of a given object is described.

1 Introduction

In distributed object-oriented systems objects are scattered over the network.
One of the main design goals of distributed systems is to provide different types
of transparency for users, e.g., location or replication transparency [1][2]. How-
ever, sometimes such transparency can be very uncomfortable for testers and
programmers, for example during debugging.

This paper presents the framework for finding objects that are involved
in a certain transitive relation. For instance, consider the situation when a
tester wants to examine method m of object 0. However, method m invokes
method m1 of object 0o. It means that object o1 is in a binding relation with
object 0g. The problem complicates when the so-called native and foreign ob-
jects are considered [3]. The former are objects with the full access to the source
code by testers while the latter are those ones for which testers have only on-line
access to objects’ methods but no access to the source code.

Finding bindings among distributed objects is necessary when programmers
want to isolate a group of bound objects, for example in order to limit the number
of monitored objects only to relevant ones. It is also important in program replay
or recovery [4]. The problem is similar to causality tracking, however it has a
different flavor [5].

This paper is organized as follows: in Section 2 the model of distributed
object-oriented system is presented. Section 3 introduces two important rela-
tions between objects: static and dynamic binding relations. In Section 4 the

* Funded in part by the State Committee for Scientific Research (KBN) under grant
4-T11C-004-22

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3036, pp. 35-E2 2004.
© Springer-Verlag Berlin Heidelberg 2004



36 M. Stawinska

architecture of the system for identifying bound objects is shown. Section 5
presents the algorithm for identifying bound objects and finally in Section 6 the
paper is concluded.

2 The System Model

A distributed object-oriented system is a finite set of objects performing a given
task. It is denoted by S = {01, 02, ...,0,,}, where n =1,2,3,... . There is a finite
set of hosts denoted by H = {hq, ha, ..., h.}, where k = 1,2,3,... . Objects are
located in hosts. One object can be located in only one host but many objects
may reside in one host. Objects and hosts are identifiable.

In contrast with classical procedural distributed systems like PVM (Parallel
Virtual Machine) [6] or MPI (Message Passing Interface) [7] where processes
communicate with each other by message passing, objects cooperate with other
objects through method invocations. In fact, remote method invocation mecha-
nisms only wrap the message-passing stuff. Messages are still sent and received
over the network, however, it is done by special software entities automatically
generated by compilers like stubs and skeletons [I][8]. They are responsible for
object binding, (un)marshaling parameters and results, issuing method on a tar-
get object. In fact, considering the lower level of abstraction, a remote method
invocation which returns a certain result consists of the following steps: (1) a
client object sends request req for the method invocation of a server object, (2)
the server object receives request req, (3) the server object carries out request
req, (4) the server object sends reply rep to request req, (5) the client object
receives reply rep. So invoking a remote method with a return value consists of
four communication actions: two sends and two receives. Two kinds of messages
are exchanged during a method invocation: requests (denoted by req) and replies
(denoted by rep). Requests as well as replies are messages (denoted by mesg). A
message consists of an identifier, a source object, a target object and contents.
In case of requests the contents contains an identifier of a method to be invoked
and parameters (if any). The contents of replies comprises a method identifier
that has been invoked and a return value (if any). Figure Mlschematically shows
a method call in terms of sending and receiving requests and replies. Please no-
tice that it is also possible to model local invocations on a given object in the
send/receive request/reply semantics (although it is inefficient). There are three
objects in Figure I} 01,02 and o3. Horizontal lines represent time and arrows
denote messages. Symbols s(-) and r(-) stand for send and receive events, re-
spectively. Subsequent events are numbered in the context of a given object (e;).
An identifier of a message consists of a source object identifier (unique in the
system) and a number of an event in the context of the source object (unique in
the object). Message identifiers contain a type of a message (reply or request).

For simplicity reasons it is assumed that all methods of an object are public
and can be invoked remotely.

A sequence of events of a given object forms its history (h). For instance in
Figure [} h,, = (e1,€2), ho, = (e1,€2) and ho, = (e1,e2,e3,e4). A history of an



Hunting for Bindings in Distributed Object-Oriented Systems 37

e1 = s(req) ez = r(rep)
01
Teq:(01.1,01,02,m,p) rep = (01.1702,01,7”)
02
e1 =r(req) e2 = s(rep)
05 —®@ °
e1 = s(req) ea = r(req) es = s(rep) es =r(rep) time
req = (03.1, 03,03, m,p) rep = (03.1,03,03,7)

Fig. 1. Method invocations in the send/receive request/reply semantics in distributed
object-oriented systems.

object is available for other objects. It may be implemented by interception of
communication events. For example interceptors are defined in CORBA [g§]. The
Eternal system, which provides fault tolerance for distributed objects, intercepts
method invocations in order to assure replica consistency [9].

3 Relations among Distributed Objects

Relations among objects concern the static or dynamic point of view.

3.1 Statically Bound Objects

In case of native objects, it is possible to deduce certain connections among
objects by examining their source code.

Definition 1 (The static binding relation) Object 01 is in the “static bind-
ing” relation with object oo if the following conditions are satisfied:

SB1. Object o1 is a client of object 0s.
SB2. Condition SB1 can be deduced from the source code of object oy .
SB3. Object 01 does not create object os.

Notation 01 %5 0o means that object o1 is in the “static binding” relation with
object 0s.

The simplest static binding relation is presented in Example [Tl

Example 1
class A { class B { class C {
public void m1() {} public void m1() {} public void m1() {3}
public void m2() { public void m2() {} public void m2() {}
oB.m1(); }; public void m3() {}
} };

public void m3() {
C c = new CQ;
c.m1(Q);



38 M. Stawinska

Let’s assume that the system consists of two objects: 0A and oB which are
instances of classes A and B, respectively. It is clear from the pseudo-code of class
A (i.e. condition SB2 is satisfied) that oA is a client of 0B (0A.m2 calls oB.m1).
It means that SB1 is satisfied. Since there is no instruction of 0B creation in the
scope of 0A, also SB3 is satisfied. It implies that 0A 35 0B. Let’s notice that
although SB1 and SB2 are satisfied in case of objects 0A and ¢, 0A %4 ¢ since
SB3 is violated.

Relation ¢4 is not symmetrical. In spite of 0A %, 0B, 0B %, 0A since
condition SB1 is not satisfied. Relation G- is transitive.

Example 2
class A { class B { class C {
public void m1() {} public void m1() {} public void m1() {}
public void m2() { public void m2() { public void m2() {3}
objB.m1(); objC.m1(); public void m3() {}
} } };
3 I

Let’s assume that there are three objects 0bjA, objB and 0bjC which are in-
stances of classes A, B and C defined in Example Pl It is easy to notice that
0bjA % 0bjB and 0bjB %, 0bjC since SB1, SB2 and SB3 are satisfied. It means
that if 0bjA is to exist, also 0bjB should exist and if 0bjB is to exist also 0bjC
should exist what implies that since 0bjA should exist, 0bjC should exist. The
presented deduction is performed on the source code analysis (SB2 is satisfied).
In fact, objA is an indirect client of 0bjC' (SB1 is satisfied). Also 0bjC is not
created by objA (SB3 is satisfied too).

The static binding relation is suitable for finding hypothetical relationships
among objects. For instance, in Example[lit is possible that method 0A.m2 will
be never invoked in real execution, i.e., oA will never be a client of 0B. Relation

%, only indicates that a given binding is probable but it does not guarantee
that it really happens.

3.2 Dynamically Bound Objects

In case of foreign objects, the source code is unavailable. In order to identify
bindings among foreign objects, or to identify bindings that happened in the
past, it is necessary to analyze their histories.

Definition 2 (The dynamic binding relation) Object o1 is in the dynamic
binding relation with object oo if the following conditions are satisfied:

DBI1. In the history of object 01 exists event e which is a sending of a request of
a method invocation of object 0s.

DB2. If o1 is in the dynamic binding relation with object oo and oy is in the
dynamic binding relation with object oz then o1 is in the dynamic binding relation
with object o3.

Notation 01 4 02 means that object o1 is in the dynamic binding relation with
object 0s.



Hunting for Bindings in Distributed Object-Oriented Systems 39

For example in Figure [l 0 &4 0g since e; € h,, and e; = s(01.1,01, 02, m, p).
Let’s notice that o3 %4 o3 since e; € hy, and e; = s(03.1,03,03,m,p). In
comparison to relation %, relation %, is transitive by definition (condition
DB2). Please notice, that DB2 is not a property since relation 4,4 may concern
the same objects but different methods and transitivity will be not satisfied.

Relation 3+, extends %, since sometimes the source code of objects is un-
available (foreign objects) or even if it is available it is impossible to find out
with which objects the interaction will be performed (e.g. a dynamic vector of
object references).

3.3 Bound Objects
It is useful for further consideration to define more general binding relation.

Definition 3 (The binding relation) Object o1 is in the binding relation
with oo if object 01 is in the static binding relation with oy or object 01 is in the
dynamic binding relation with os, i.e., (01 & 02) <= (01 5 02) V (01 T4 02).

Since relation 9~ is transitive and 3»4 is transitive by definition then relation
% defined as a logical sum is transitive.

Binding relations can be represented by directed graphs where vertices depict
objects in the system and directed edges denote binding relations (e.g. Figure ).

L B

O L B
01 | hosty 02,04\ @ 04 | hosta| 03

02 | hosty | 01,03 05 | hosta| 04
03 | hosty | og @hastl hostz
[

N\
o

[ network
[ [
o |[L B hosts hosty A0 L B
06 | hosts | 02,05 LICY| hosti| 01,02, 03
@ @ LICQ hOStQ 04, 05
LIC5| hosts| og

Fig. 2. The architecture for finding bound objects.

4 The Architecture for Finding Bound Objects

Figure [2 presents the architecture for finding objects which are involved in the
binding relations defined in the previous section. There are three important
entities in Figure[2: Global Information Center (GIC), Local Information Center
(LIC) and Object-Location-Bindings (OLB) tables. Both GIC and LIC objects
keep the so-called OLB tables where they store necessary information. Column L
has the same meaning for GIC-OLB or LIC-OLB tables. It shows a location of
an object from column O. In case of a GIC-OLB table, column O contains LIC
objects registered in a given GIC object whereas column O of a LIC-OLB table



40 M. Stawinska

shows objects registered in a given LIC object. For example, in Figure 2 GIC}
keeps information about LICY, LIC and LIC3, while LIC3 stores information
about object 0g. Column B has different meaning for GIC-OLB and LIC-OLB
tables. A GIC-OLB table contains data about objects registered in a given LIC
object. However, in case of LIC objects column B indicates the set of objects
which a given object from column O is in relation & with. For instance, in
Figure B from GIC:-OLB it is clear that two objects are registered in LIC,
(04 and o5). However, table LIC5-OLB indicates that og & 09 and 0g & 05.

GIC as well as LIC objects are responsible for keeping current information in
their OLB tables. The presented architecture assumes that it exists a special layer
(not depicted in the figure) that is responsible for recording histories of objects
to the log. In order to keep a GIC-OLB table up-to-date different strategies can
be used, e.g., push (changes are pushed to GIC objects), pull (GIC objects pull
information from LIC ones) or mized (pull or push when necessary) models [10].

The hierarchical structure of the architecture assures scalability [I]. In order
to improve performance and availability GIC objects may be replicated [T][2][9].

In order to find out a list of objects bound with a given object a graph of
bindings in the system can be constructed.

5 Constructing a Graph of Bindings

A graph of bindings in a system can be constructed with Algorithm [ The
result of Algorithm[is array A[n] [n] of object bindings, where n is the number
of objects in the system. Function index(0ObjectId) assigns ObjectId in the
system to a column number in A (see Figure B). Function object (idx) (reverse
to index (-)) assigns idx in A to an object id. In array A two values are possible:
0 and 1. If value A[i]j] equals 1 it means that object(i) & object(j), otherwise

object(i) ¥ object(j).

Algorithm 1 (Constructing a matrix of bindings)
1. Update the GIC-OLB table (if necessary).
2. Construct array A[n][n] and fill it with O values.
3. For each LIC in the GIC-OLB table do:

(a) Get column 0 of the LIC-OLB table

(b) For each object o in column O do:

Get relevant values from column B of the LIC-OLB table
For each value b from column B do:
Alindex(o)] [index(b)] = 1

The result of Algorithm[I]is the matrix of bindings in the system. For the system
in Figure B the result of the algorithm is shown in Figure 3. In order to get a
directed graph it is necessary to transform array A by, for example, Algorithm
The obtained graph is presented in Figuredl In order to generate a list of bound
objects Algorithm Bl may be applied.



Hunting for Bindings in Distributed Object-Oriented Systems 41

01 02 03 04 O5 Og
object () ¢ index(-) ¢

0o 1 2 3 4 5

0[01110]0[0[0] o1 P

z 11110]10[0[0]1] o9 (:..lllliil=lll..i' 03
2 2 [0[1[0]1]0]0]0s ,
£ s [1]0[0]0[1]0] o .

400000105 0g 04

510(0[1]0]0]0] o6

table A 05

Fig. 3. The matrix of bindings in the Fig. 4. The transformed matrix
system in Figure 2] from Figure B

Algorithm 2 (Transforming A2G)
1. Put n vertices.
2. Label each vertex according to function object()
3. For each column in A do:
For each value in column do:
if (A[i1[j] == 1) then {draw an arrow from object(i) to object(j)}

Algorithm 3 (Finding a list of bound objects)

1. A; // up-to-date table of bindings (Algorithm 1)
Vector V; // the dynamic list of bound objects
Set S; // a result set of bound objects
int I = index(0); // for what object -- 0 we have to look for
boolean isRemoved; // indicates if an element was removed from V
2. do{
isRemoved = false; // nothing was removed from vec

makeBoundObjectList(V, S, A, I); // see point 5
if( V.size() > 0){
I =V[0]; // take index of object to be checked
V.remove(0); // remove it from from vector V
isRemoved = true;} // indicate that the length of V was decreased
}while ((V.size() != 0) || isRemoved );
3. check in A if 0 is in the relation with itself; update S if necessary
S contains a list of indexes which object 0 is bound with
5. Procedure makeBoundObjectList(V, S, A, I):
for (i = 0; i < A[I].length; i++)
if ( A[I1[i] == 1 ) then // object(I) in relation with object(i)?
if ( S.add(i) ) then // check if elem. i in S and add if not
V.add(i); // we must check bindings of object(i)
// so remember it in V

IS

The result obtained from Algorithm[3 on table A from Figure [ for finding bind-
ings of 07 is S = {1,3,2,5,4} what implies (after object(-)) {02, 04, 03, 06,05}



42 M. Stawinska

The main idea of Algorithm [ is to investigate A in order to find objects that
are transitively bound with a specified object. Procedure makeBoundObjectList
looks for objects that are in relation & with a given object (I) and if it finds
some, set S is updated (please notice that this is a set so no duplicates are al-
lowed). Next, since the added object may be in the relation with other objects
(and since it has just been added to the set, so it was not checked earlier) it must
be added to V for further investigation. From vector V elements are systematically
removed as they are checked for relations in makeBoundObjectList ().

6 Conclusions

The paper describes the algorithm for finding objects involved in the transi-
tive binding relation with a given object. It is especially important if a tester
wants to identify a group of objects. The article presents the framework archi-
tecture for maintaining information about bindings among distributed objects.
The algorithm makes use of OLB tables, GIC and LIC services. It constructs the
2-dimensional table of bound objects. Having such a table it is possible to find
out all objects that are bound with a given object. The situation complicates
in the case of foreign objects since it is practically impossible to deduce rela-
tionships. It implies that special architectures for logging relevant information is
necessary. The presented algorithms have been implemented in a prototype tool
in order to verify the concepts in practice.

References

1. G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems. Concepts and
Design. Addison-Wesley Longman Limited, 1994.

2. A.S. Tanenbaum, Distributed Operating Systems. Prentice-Hall International, Inc.,
1995.

3. M. Stawinska, “Testability of Distributed Objects,” in Proc. of the 5-th Inter-
national Conference on Parallel Processing and Applied Mathematics, Springer-
Verlag, 2003. (to appear).

4. E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A survey of
rollback-recovery protocols in message-passing systems,” ACM Computing Surveys,
vol. 34, no. 3, pp. 375-408, 2002.

5. L. Alvisi, K. Bhatia, and K. Marzullo, “Causality tracking in causal message-
logging protocols,” Distributed Computing, vol. 15, no. 1, pp. 1-15, 2002.

6. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam,
PVM:Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked Par-
allel Computing. MIT Press, 1994.

7. Message Passing Interface Forum, ed., MPI: A Message-Passing Interface Stan-
dard. Message Passing Interface Forum, June 1995.

8. OMG, Common Object Request Broker Architecture: Architecture and Specifica-
tion, v3.0. http://www.omg.org, December 2002.

9. P. Narasimhan, L. Moser, and P. M. Melliar-Smith, “State Synchronization and
Recovery for Strongly Consistent Replicated CORBA Objects,” in Proc. of the
IEEE Int. Conf. on Depend. Syst. and Net., IEEE Computer Society Press, 2001.

10. OMG, Ewvent Service Specification, v1.1. http://www.omg.org, March 2001.



	Introduction
	The System Model
	Relations among Distributed Objects
	Statically Bound Objects
	Dynamically Bound Objects
	Bound Objects

	The Architecture for Finding Bound Objects
	Constructing a Graph of Bindings
	Conclusions



