
Knapsack Model and Algorithm for HW/SW
Partitioning Problem

Abhijit Ray, Wu Jigang, and Srikanthan Thambipillai

Centre for High Performance Embedded Systems,
School of Computer Engineering, Nanyang Technological University,

Singapore,639798, Republic of Singapore
{PA8760452, asjgwu, astsrikan}@ntu.edu.sg

Abstract. Hardware software partitioning is one of the most significant
problem in embedded system design. The size of the total solution space
for this problem is typically quite large. This problem has been investi-
gated extensively. This paper is the first work to model the problem into
a knapsack problem. We present a way to split the problem into standard
0-1 knapsack problems, so that most of the classical approaches for 0-1
knapsack problems can be directly applied. We use tight lower bound
and tight upper bound on each of these knapsack problems to eliminate
sub-problems, which are guaranteed not to give optimal results.

1 Introduction

Hardware software partitioning (HSP) problem is the problem of deciding for
each subsystem, whether the required functionality is to be implemented in hard-
ware or software to get the desired performance, while maintaining least cost.
At the same time, hardware area minimization and latency constraints present
contradictory objectives to be achieved through hardware-software partitioning.

Most of the existing approaches to HSP are based on either hardware ori-
ented partitioning or software oriented partitioning. A software-oriented ap-
proach means that initially the whole application is allotted to software and
during partitioning system parts are moved to hardware until constraints are
met. In a hardware-oriented approach on the other hand, the whole applica-
tion is implemented in hardware and during partitioning the parts are moved to
software until constraints are violated. A software oriented approach has been
proposed by Ernst et al [3], Vahid et al [4]. Hardware oriented approach has been
proposed in Gupta et al [5], Niemann et al [6]. In [9], the authors proposed a flex-
ible granularity approach for hardware software partitioning. Karam et al [7],
proposes partitioning schemes for transformative applications i.e., multimedia
and digital signal processing applications. The authors try to optimize the num-
ber of pipeline stages and memory required for pipelining. The partitioning is
done in an iterative manner. Rakhmatov et al [8] modeled the hardware software
partitioning as a unconstrained bipartitioning problem.

In this paper, we model the partitioning problem into some standard knap-
sack problems, which can be solved independently to arrive at the solution. Also

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3036, pp. 200–205, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Knapsack Model and Algorithm for HW/SW Partitioning Problem 201

for every subproblem we calculate the lower bound and its upper bound, this
helps in rejecting subproblems, which are not expected to give optimal results.
The advantage of our work is that it provides the optimal solution. Moreover,
many problems are rejected based on their lower bound and upper bound, and
this reduces the number of subproblems that need to be solved; hence the algo-
rithm is quite fast.

2 Model of the Physical Problem

We consider a basic case which can be later extended. In our case the application
can be broken down into parts such that each of them can be run simultaneously
or in other words the parts do not have any sort of data dependency between
them. So we have a set of items S = {p1, p2, . . . , pn} to be partitioned into
hardware and software. Let hi and si be the time required for the part pi to
be run in hardware and software respectively. Also let ai be the area required
for hardware implementation of part pi. And let A be the total area available
for hardware implementation. Our goal is to allot each part into hardware and
software so that the combined running time of the whole application is minimized
in such a way that the area constraint is satisfied. Let us denote the solution
of the problems as a vector X = [x1, x2, . . . , xn] such that xi ∈ {0, 1}, where
xi = 0 (1) implies that the part pi is implemented in software (hardware). Since
the hardware and software can be run in parallel, the total running time of the
application is given by

T (X) = max{H(X), S(X)} (1)

where H(X) is the total running time of the parts running in hardware and
S(X) is the total running time of the parts in software. Since all the parts that
are implemented in hardware can be run in parallel to each other and all the
software parts has to be run in serial, we have

H(X) = max
1≤i≤n

{xi · hi} and S(X) =
n∑

i=1

(1 − xi) · si.

Hence, the problem discussed in this paper can be modeled into

P





minimize T (X)

subject to
n∑

i=1
xi · ai ≤ A

(2)

3 Problem Splitting and Algorithm

Given a knapsack capacity C and set of items S = {1, . . . , n}, where each item
has a weight wi and a benefit bi. The problem is to find a subset S′ ⊂ S, that

202 A. Ray, W. Jigang, and S. Thambipillai

maximizes the total profit
∑

i∈S′ bi under the constraint that
∑

i∈S′ wi ≤ C.
This is the knapsack problem. Mathematically, it can be described as follows

0-1 KP






maximize
n∑

i=1
pi · xi

subject to
n∑

i=1
wi · xi ≤ C,

xi ∈ {0, 1}, i = 1, . . . n

(3)

where xi is a binary variable equalling 1 if item i should be included in the
knapsack and 0 otherwise. It is well known that this problem is NP-complete
[2, 1, 10].

Let’s assume that the items are ordered by their efficiencies in a non-
increasing manner, where the efficiency is defined as

ej =
bj

wj
(4)

Let

bj =
j∑

i=1

bi and wj =
j∑

i=1

wi j = 1, 2, . . . , n (5)

The residual capacity r is defined as

r = C − wt−1 (6)

By linear relaxation, [2] showed that an upper bound on the total benefit of
0-1 KP is

u = �bt−1 + r · bt

wt
� (7)

and the lower bound is given by,

l = bt−1 (8)

In HSP problem, sort all the items p1, p2, . . . , pn in decreasing order of their
hardware running time, so that after sorting we have the items ordered as
p′
1, p

′
1, . . . , p

′
n and the following condition is satisfied

h′
i ≥ h′

j for all i ≤ j and 0 ≤ i, j ≤ n. (9)

Let us define ST =
n∑

i=1
s′

i and Ri = ST − s′
i. Now we split the problem P into

the following n subproblems P1, P2, · · · , Pn.

Knapsack Model and Algorithm for HW/SW Partitioning Problem 203

3.1 Subproblem Pk:

Let k ≥ 1. We fix p′
k to be implemented in hardware i.e., xk = 1, and all the

items 1, 2, . . . , k − 1 are in software, because if any of them, say j is in hardware
then any subproblem l such that l > j is a subset of subproblem j. That is we
have x1 = 0, x2 = 0, · · · , xk−1 = 0. The total time is

T (X) = max

{
h′

k, Rk −
n∑

i=k+1

xi · s′
i

}

We have to minimize the total running time T (X), i.e.,

minimize T (X) ⇐⇒ minimize

{
Rk −

n∑

i=k+1

xi · s′
i

}

⇐⇒ maximize

{
n∑

i=k+1

xi · s′
i

}

subject to the constraint xi ∈ {0, 1} and the area constraint
n∑

i=k+1

xi · ai ≤ A − ak (10)

Formally, the subproblem k is described as

Pk






maximize
n∑

i=k+1
xi · s′

i

subject to
n∑

i=k+1
xi · ai ≤ A − ak

(11)

The bounded interval of subproblem Pk are

Lk = max{h′
k, Rk − uk},

Uk = max{h′
k, Rk − lk},

and the optimal solution of Pk would lie in the range [Lk, Uk] where lk and uk

are the lower and upper bound of total benefit of Pk, respectively.
If after creating subproblem i, we find that

n∑

j=i+1

aj ≤ A − ai (12)

This means that after we have fixed items ai to be implemented in hardware
and a1, a2, . . . , ai−1 into software, the rest of the items left to be partitioned
can be implemented easily in hardware as there are enough hardware space left.
Hence, we can stop creating more subproblems as soon as eq[12] is satisfied.

A point to be noted is that all subproblems are not of the same size. This is
because for subproblem Pi, we fix item i to be implemented in hardware and all
the items 1, 2, . . . , i−1 are in software. This is because if in subproblem Pi, item
k, {k < i} is implemented in hardware then it becomes a subset of subproblem
Pk. Therefore the size of the problem decreases from subproblem 1 to n.

204 A. Ray, W. Jigang, and S. Thambipillai

3.2 Algorithm

The outline of the algorithm for solving the HSP problem is given below:

BOUND := 0;
sort all the items to be partitioned in decreasing order of
their hardware running time;
form the subproblems P(i), i=1, 2,...,n;
for(i:=1 ; i <= n ; i++){

calculate the upper bound U(i)
and the lower bound L(i) for P(i);

if(L(i) > BOUND){
BOUND := L(i);

}
}
while(there are subproblems left to be solved){

select the subproblem with the highest lower bound;
if(U(i) < BOUND){

reject this subproblem;
}else {

solve this subproblem;
B(i): = benifit of the above solution;
if (B(i) > BOUND){

BOUND := B(i);
}

}
}

4 Experimental Works

The proposed algorithm was implemented on a Pentium, 500MHz system, run-
ning on Linux. We used random data for partitioning. For solving the individual
0-1 knapsack problems we used the algorithm for 0-1 knapsack problem, given
in [1]. The experiment was performed for different problem sizes and area con-
straints. Table 1 gives a count of the number of subproblems that needed to be
solved to arrive at the optimal solution for the whole problem.

5 Conclusion

We have proposed a algorithm for hardware/software partitioning problem. The
proposed algorithm models the problem into the Knapsack problem, which is
a known NP-complete problem, and then splits the whole problem into some
independent sub-problems. Upper and lower bounds of each subproblem is used
to reject some sub-problems. As a result, fewer subproblems needs to be solved.

Knapsack Model and Algorithm for HW/SW Partitioning Problem 205

Table 1. Number of subproblems solved for different problem size and area constraints.

size fraction of area put as constraint
n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

30 1 3 1 1 1 1 1 1 1
60 1 1 1 1 1 1 1 1 1
90 1 1 1 1 1 1 1 1 1

300 1 1 1 1 1 1 1 1 1
500 1 1 1 1 1 1 1 1 1
700 1 1 1 1 1 1 1 1 1

1000 1 1 1 1 1 1 1 1 1
2000 1 1 1 1 1 1 1 1 1
3000 1 1 1 1 1 1 1 1 1

Also, since the subproblems can be solved in parallel, this approach can be effec-
tively used in a distributed computing environment. We are currently extending
our knapsack model to consider cases when the items to be partitioned are not
independent and hence communication between the items to be partitioned be-
comes an issue.

References

1. D. Pisinger,A minimal algorithm for the 0-1 knapsack problem, Operations Re-
search, 1997,Page(s): 758-767.

2. D. Pisinger, Algorithms for knapsack problems, Ph.D. Thesis, 1995, Page(s):1-200.
3. R. Ernst, J.Henkel and T. Benner,Hardware-Software Cosynthesis for Microcon-

trollers,IEEE Design and Test of Computers, 1993, Page(s):64-75.
4. F.Vahid, D.D. Gajski and J. Jong, A binary-constraint search algorithm for min-

imizing hardware during hardware/software partitioning, IEEE/ACM Proceedings
European Conference on Design Automation(EuroDAC), 1994, Page(s):214-219.

5. R.K. Gupta and G.D. Micheli, System-level synthesis using reprogrammable com-
ponents, Proceedings. [3rd] European Conference on Design Automation, 1992,
Page(s):2-7.

6. R. Niemann and P. Marwedel, Hardware/software partitioning using integer pro-
gramming, Proceedings European Design and Test Conference, 1996. ED&TC 96,
Page(s):473-479.

7. K.S. Chatha and R. Vemuri, Hardware-software partitioning and pipelined schedul-
ing of transformative applications, Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on , Volume: 10 Issue: 3 , Jun 2002, Page(s):193-208.

8. D.N. Rakhmatov and S.B.K. Vrudhula, Hardware-software bipartitioning for dy-
namically reconfigurable systems, Hardware/Software Codesign, 2002. CODES
2002. Proceedings of the Tenth International Symposium on, Page(s):145-150.

9. Jorg Henkel and Rold Ernst, An approach to automated hardware/software parti-
tioning using a flexible granularity that is driven by high-level estimation technique,
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on , Volume: 9
Issue: 2 , Apr 2001, Page(s):273-289.

10. W. Jigang, L. Yunfei and H. Schroeder, A minimal reduction approach for the col-
lapsing knapsack problem,Computing and Informatics, Volume: 20, 2001,Page(s):
359-369.

	Introduction
	Model of the Physical Problem
	Problem Splitting and Algorithm
	Subproblem ${@mathcal P_k}$:
	Algorithm

	Experimental Works
	Conclusion

