An Open Grid Service Environment for
Large-Scale Computational Finance Modeling
Systems

Clemens Wiesinger, David Giczi, and Ronald Hochreiter

Department of Statistics and Decision Support Systems, University of Vienna

Abstract. In this paper we present the basic concepts of our complex
problem modeling and solving environment based on a state of the art
component architecture. We propose a system where components exist
as instances of meta-components carrying relevant semantic information
about the application problem realm. The implementation of the system
follows the Open Grid Service Environment (OGSE) Service Stack, also
discussed in this paper. A motivating workflow example from the field of
computational finance is given.

1 Introduction

In the last decade the structure of applications changed from large monolithic
pieces of code with some internal structuring to workflow applications, see [I0].
Recently, Grid and Web Service based applications emerged, which provide the
basis for the adaptation of our AURORA Financial Management System (see
[13] for a discussion about prior implementations). In general, this system is
a complex problem modeling and solving tool for large-scale financial decision
models. Many efforts have been undertaken to bridge gaps between computer
science and computational management science (for operational research ap-
proaches see e.g. [12][A], for distributed computing approaches see [6]). However,
most of the available solutions for tackling problems in this area focus either
entirely on low-level specialized problem formulations or on special optimization
problem solutions. There is practically no abstract layer that provides a com-
mon framework in which components are interchangeable due to clear interface
definitions and service descriptions.

In this paper we outline the nature of large-scale financial problems in general
in section Pl and give an example for an typical problem in this area. Further-
more, we use this example to show how to apply a Grid environment to enhance
the performance by exploiting intra-component and workflow parallelisms. The
development of the Open Grid Service Environment architecture motivated by
general considerations of component-based architectures for problem solving en-
vironments is discussed in section [

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3036, pp. 83-00 2004.
(© Springer-Verlag Berlin Heidelberg 2004



84 C. Wiesinger, D. Giczi, and R. Hochreiter

2 DMotivation for a Financial Problem Modeling and
Solving Environment

In comparison to exact sciences like pure mathematics, decision science usually
deals with incomplete information along with subjective models and even more
subjective interpretation of solutions. Innovative models and solutions often ex-
ist but are spread throughout the scientific community. Therefore, the need for
a common workflow platform for interchangeable components to reevaluate re-
sults and to extend large financial workflows in certain areas arises. Hence the
proposed system should be capable of integrating and orchestrating different
components for the realization of larger tasks, where maybe only a small part
of the whole workflow is of interest to a specific researcher. In this manner com-
ponents implemented by other people with different research focuses become
useable and comparable.

It seems obvious, that such a flexible system needs higher level semantic de-
scriptions of specific components. This is attained by defining meta-components
and orchestrating these into a meta-workflow which gives a compound semantic
description of what needs to be done and defines the steps to achieve this goal.
Each concrete component is an implementation of a meta-component. The inter-
changeability of components derived from a meta-component arises from their
common definition of their input and output structure.

Furthermore, it is important to emphasize that computational finance is an
area where problems can be made arbitrarily complex in a computational sense.
Like models from meteorology, chemistry, physics and material sciences models
can be configured to consume all available computational power by making them
finer and by that more realistic.

2.1 An Example from Computational Finance

As a prominent example for a computational heavy task, with possibly many
subtasks, we present a specific multi-stage stochastic modeling and optimization
problem, meaning that during the considered time period multiple consecutive
decisions and possible recourse actions are modeled and subject to optimization.
The goal of the optimization is to minimize the subjective risk of a financial
portfolio, which is calculated from the return distribution, derived from historical
development of the considered assets. The processing of this task can be broken
into subtasks as described below. Each subtask exists as abstract description of
the task to be performed and interchangeable actual implementations with the
same input and output structure.

Below we present the meta-components that are involved in the workflow
and also illustrate an example for an executable workflow formed from concrete
implementations of the used meta-components. In contrast to the meta-workflow
the concrete workflow is ready to be processed by workflow enactment mecha-
nisms.



An Open Grid Service Environment 85

AN
Time Meta—Workflow

Series
Model

AN
Time
Series

T Feich Data AA_T Estimate Model AI_T Simulate Paths
Parameters

‘lf 7

TDNPIuyRNlu T Risk Optimizati T | Generate Tree
AN
Result

Concrete Workflow

Yahoo Finance

1 ARIMA (DSE) Simulate ARIMA

CVaR Model Stagewise Tree
MSP Solver I Building

Pie Chart T

Fig. 1. OGSE workflow - multi-stage tree generation and portfolio risk minimization.
Above the line the abstract meta-component workflow is described, while in the lower
part the corresponding instanciation is shown. Every concrete implementation shown
in the lower part has exactly one corresponding meta-description in the upper part. A
rectangle with a circle in the upper left corner represents a meta-component, while a
rectangle with a filled circle represents an implementation.

1. Data fetching and converting components: collect econometric (time series)
data and convert to a suitable input format for consecutive steps. Differences
between actual implementations arise from differences in data sources and
data formats. All series are stored in the time series XML structure.

2. Estimation components: to capture inter-period dependencies in our data we
use time series models to estimate the properties of our stochastic process.
These components fit the data handed over from the previous step to a time
series model and store the estimated parameters in a suitable format.

3. Simulation components: these components simulate a pre-defined number of
trajectories according to the parameters of the model which are the output
of the estimation step.

4. Tree generation components: in our example a tree is build out of the sim-
ulated trajectories. A tree can be viewed as a multi-dimensional filtration.



86 C. Wiesinger, D. Giczi, and R. Hochreiter

The output of a tree generation procedure is a XML tree object. We choose
a method of stepwise merging of time series paths combined with a stage
wise tree building procedure (see [5] and [7]).

5. Optimization components: solves e.g. a CVaR (Conditional Value at Risk)
minimization problem (see [T5]) with the tree structure from the tree gen-
eration step, and uses externally defined minimal expected return p and
confidence level a.

6. Presentation components: these components present results graphically in
form of reports, tables, and charts.

The meta-component workflow and the described instanciation of the work-
flow are depicted in Fig. [l

2.2 Parallel Performance Issues

It seems quite obvious that the finer the tree is, the better the true stochas-
tic process is approximated. We could consider a reasonable realistic tree that
models the time horizon as five stages where every node has five successors. The
resulting tree consists of 3906 nodes with 3125 terminal nodes. If we double the
amount of time steps and the number of successors in every node, we end up
with 11111111111 nodes and 10000000000 terminal nodes, which accounts for an
enormous increase in the computational complexity of the problem. However, it
was shown in many publications that for this class of optimization problems par-
allel implementations can achieve a nearly linear speedup. Reported efficiency is
usually larger than 90%, see for a general overview of parallel optimization
and for multi-stage stochastic optimization, which is the common approach
to solving large scale financial management problems. A first approach towards
implementing multi-stage stochastic solvers on the Grid was successfully de-
picted in [LI]. There is also scope for parallelization of other components besides
the optimization itself, especially the tree generation methods, which are often
computationally demanding, see e.g. [8] for a parallel clustering algorithm with
super-linear growth, which can be used as the basis of many tree generation
techniques.

Furthermore, it is possible to exploit not only intra-component parallelisms,
but also concurrent work on different tasks of a workflow. The OGSE architecture
is meant to provide the infrastructure for handling different types of parallelism
in one common framework.

3 OGSE Architecture

3.1 OGSE Components

Figure Pl summarizes the ideas of [14] and [9] mapped to a component-based
architecture which defines the ten main (software) building blocks of an open
PSE.



An Open Grid Service Environment 87

$ Administration
$ Service Monitoring $ Security
$ Portal $ Job and Resource Control

Portal Broker

Design, Description Collaboration
and Integration

Component and Workflow Science and Recommender
Orchestration System

Fig. 2. OGSE Components for complex problem solving.

— Portal: portal contains user-centric presentations of the portal services.
Groups of users have different roles such as scientific users, developers, and
administrators with different views on the Grid-enabled problem solving en-
vironment.

— Service monitoring: the monitoring component provides facilities to compose
monitoring operations, gather survey information about service activities
and states, keep track of workflow execution, and include debugging and
€ITOI Tecovery.

— Administration: these services enable members of privileged groups to per-
form maintenance and configuration of the problem solving infrastructure.
Typical tasks are user management, service control, and service update.

— Design, description and integration: the system requires the usage and de-
velopment of XML-based standards and specifications. Existing service stan-
dards, mainly lead-managed by the World Wide Web Consortium (W3C),
Globus, and the Global Grid Forum (GGF), are exploited to provide a flex-
ible (plug-in alike) service architecture for component integration (through
semantic descriptions and rules).

— Security: the security component covers authentication, authorization, and
confidentiality. Typical features are single sign-on, role-based user access,
and data signing and encryption in the Grid environment.

— Job and resource control: every workflow consists of different jobs which have
to be scheduled and are later submitted to several resources in the Grid sys-
tem. According to the workflow orchestration, jobs have certain dependencies
which have to be taken into consideration, when the workflow enactment is
handled. Furthermore, resource monitoring and user role restrict the resource
allocation and usage.

— Collaboration: is supported by user forums, Frequently Asked Questions
(FAQs) and news bulletins, where relevant Grid and complex problem solving
issues are discussed, common problems are listed and updates are announced.
Collaboration services aim at creating a responsive scientific community,



88 C. Wiesinger, D. Giczi, and R. Hochreiter

where each user has an active role in the development and improvement of
the complex problem solving environment.

— Science and recommender system: the recommender system advises re-
searchers in the form of a knowledge base. Successful workflows are stored for
knowledge mining. Along with workflow orchestration execution times and
benchmarks are stored to compare different solutions and identify possible
weaknesses in assembled workflows.

— Component and workflow orchestration: the orchestration workbench pro-
vides all accessible workflow components and predefined workflows that are
stored in repositories along the Grid sites. A visual modeling desktop sup-
ports the user in discovering of workflow components and assembling of a
specific workflow.

— Portal broker: the portal broker is the missing link in the complex problem
solving architecture which integrates and connects the above named archi-
tectural components. The broker handles all messages between services and
provides events to the user portal.

The above enumeration lists most of the issues considered important in the
development of a PSE on the Grid. We understand that in a complete financial
management system all of these mentioned points are nearly equally important
and must be properly treated. As our research is mostly influenced by the fi-
nancial application side we currently focus on the workflow orchestration, the
building of the portal, the portal broker, and the definition of appropriate XML-
based structures for service, problem, model, and data description. Other issues
will be treated superficially in the next phase and extended in a later stage of
the research project. If industrial partners start to use the system for consulting
purposes other issues especially security and accounting gain importance.

3.2 OGSE Service Stack

The component collection introduced in section Bl provides a complex com-
pound of highly distributed architectural services over an open PSE. To establish
the distributed architecture, we propose an integrated service stack, the OGSE
Service Stack (see Fig. Bl), based on well defined and commonly used standards.
The core building block of the OGSE Service Stack is the W3C Web Service
Stack which covers XML specification work in the workflow orchestration
and enactment (workflow processing and monitoring services), service discovery,
service description, and messaging. Semantics, also elementary covered by a W3C
initiative, enhance the service core with PSE-specific descriptions in the area of
problems, models, and (I/O) data. This vocabulary provides the foundation for
an advanced arrangement of entities to an associative net, where constraints
and relations are modelled with an assertional language into an ontology. The
matching between a request for service through description data and the actual
semantic data is provided by the matchmaking service. The OGSE API allows
software developers to provide their own services.



An Open Grid Service Environment 89

Financial

Engineering SCM Energy Models

Complex PSE L.
Applications & Interfaces -

Complex PSE Application Programming Interface |

Workflow Orchestration

Workflow Enactment Semantic

Descriptions

Service Repository (Problem,
Data, and

Ontologies
Model/Service Model)

Service Description .
P Matching

Web Service Stack
enhanced by Semantics

Service Messaging

Markup Language
(XML

Complex PSE Interface to Grid—type Environment |
Grid -

!
Grid-type Environment |
I
I

Fig. 3. OGSE Stack for complex problem solving applications.

The main goal of this stack is to establish an integration framework for a
broad range of application areas with the main focus on an intelligent service
discovery and workflow assembling in a computer processable way. The view
on the service stack is application-centric from top down and Grid-centric from
bottom up. The main ideas are the provision of

— application-centric services, that aim to cover the wrapping of existing legacy
code, semantically describe facilities of the typical financial computation
data, match the repository with the means of application data, and combine
intelligent search features with the workflow orchestration.

— grid-centric services, that ensure compatibility requirements with compu-
tational grids (mainly covered by the Globus [16] initiative), workflow en-
actment on physical resources, and automatized discovery and allocation of
computational resources.

4 Conclusion

In this paper we presented the basic concepts of our complex problem modeling
and solving environment. This development grew out of the extension of the
AURORA Financial Management System and has reached the level of being a
unified framework for a broad range of application classes. The implementation
of the core meta-workflow and the component architecture is based on the Open
Grid Service Environment (OGSE). The meta-components within the system
carry the semantic description which can be used for workflow composition and



90

C. Wiesinger, D. Giczi, and R. Hochreiter

further (semi-)automatic component discovery and orchestration. A prominent
example from the field of computational finance was briefly discussed to sub-
stantiate the relevance of further development on this system.

References

10.

11.

12.

13.

14.

15.

16.

. Blomvall, J. A multistage stochastic programming algorithm suitable for parallel

computing. Parallel Computing. 29(4): 431-445.

. Censor, Y. and Zenios, S.A. Parallel Optimization: Theory, Algorithms and Appli-

cations. Oxford University Press. 1997.

. Champion, M., Ferris, C., Orchard, D., Booth, D. Haas, H., McCabe, F., Newcomer

E. Web Services Architecture. http://wuw.w3.org/TR/ws-arch/, W3C Working
Draft. 8 August 2003.

. Dempster, M.A.H, Scott, J.E. and Thompson, G.W.P. Stochastic Modeling and

Optimization using STOCHASTICS, Draft 2002. Forthcoming in Applications of
Stochastic Programming.,

. Dupacova, J., Groewe-Kuska, N. and Roemisch, W. Scenario reduction in stochas-

tic programming: An approach using probability metrics. Mathematical Program-
ming 95A (2003) 493-511

. Ferris, M.C. and Munson, T.S. Modeling Languages and Condor: Metacomputing

for Optimization. MetaNEOS Technical Report, 1998.

. Growe-Kuska, N., Heitsch, H. and Roémisch, W. Scenario reduction and scenario

tree construction for power management problems. IEEE Bologna Power Tech Pro-
ceedings (A. Borghetti, C.A. Nucci, M. Paolone eds.), 2003

. Iyer, L.S and Aronson, J. E. A parallel branch-and-bound method for cluster anal-

ysis. Annals of Operations Research 90 (1999) 65-86.

. Laszewski, G., Foster, 1., Gawor, J., Lane, P., Rehn, N. and Russell, M. Designing

Grid-based Problem Solving Environments and Portals. Argonne National Labora-
tory, 2001.

Leymann, F. and Roller, D. Workflow-based applications. IBM Systems Journal
36:1, 1997.

Linderoth, J. and Wright, S. Decomposition Algorithms for Stochastic Program-
ming on a Computational Grid. Technical Report Computer Sciences Department,
University of Wisconsin-Madison. 2002.

Kall, P. and Mayer, J. SLP-IOR: An interactive model management system for
stochastic linear programs. Mathematical Programming 75 (1996) 221-240.
Pflug, G.Ch., Swietanowski, A., Dockner, E. and Moritsch, H. The AURORA Fi-
nancial Management System: Model and Parallel Implementation Design. Annals
of Operations Research 99 (2000) 189-206

Houstis, E. and Rice, J.R. On the Future of Problem Solving Environments. De-
partment of Computer Sciences, Purdue University, 2000.

Rockafellar, R.T. and Uryasev, S.: Optimization of Conditional Value-At-Risk. The
Journal of Risk 2(3) (2000) 21-41

Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C., Maguire,
T., Sandholm, T., Vanderbilt, P., Snelling, D. Open Grid Services Infrastructure
(OGSI) Version 1.0. Global Grid Forum Draft Recommendation, 6/27/2003.



	Introduction
	Motivation for a Financial Problem Modeling and Solving Environment
	An Example from Computational Finance
	Parallel Performance Issues

	OGSE Architecture
	OGSE Components
	OGSE Service Stack

	Conclusion



