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Abstract. We present a generative probabilistic model for 3D scenes with stereo
views. With this model, we track an object in 3 dimensions while simultaneously
learning its appearance and the appearance of the background. By using a genera-
tive model for the scene, we are able to aggregate evidence over time. In addition,
the probabilistic model naturally handles sources of variability.
For inference and learning in the model, we formulate an Expectation Maximiza-
tion (EM) algorithm where Rao-Blackwellized Particle filtering is used in the E
step. The use of stereo views of the scene is a strong source of disambiguating
evidence and allows rapid convergence of the algorithm. The update equations
have an appealing form and as a side result, we give a generative probabilistic
interpretation for the Sum of Squared Differences (SSD) metric known from the
field of Stereo Vision.

1 Introduction

We introduce a generative, top-down viewpoint for tracking and scene learning. We
assume that a scene is composed of a moving object in front of a background. The scene
model is shown in Figure 1(a). Within this paradigm, we can simultaneously learn the
appearance of the background and the object, while the object moves in 3 dimension
within the scene.

The algorithm is based on a probabilistic generative modelling approach. Such a
model describes the scene components and the process by which they generate the ob-
served data. Being probabilistic, the model can naturally describe the different sources
of variability in the data. This approach provides a framework for learning and tracking,
via the EM algorithm associated with the generative model. In the E-step, object posi-
tion is inferred and sufficient statistics are computed; in the M-step, model parameters,
including object and background appearances, are updated.

Sensor fusion is another important advantage of the probabilistic generative mod-
elling approach. Whereas a bottom-up approach would process the signal from each
camera separately, then combine them into an estimate of the object position, our ap-
proach processes the camera signals jointly and in a systematic fashion that derives from
the model.

The use of a stereo view of the scene turns out to be of significant value over the
use of a monocular view. It allows the algorithm to locate and track an object, even
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when the prior model of the object appearance is uninformative e.g. when initialized to
random values. As a consequence, only a small number of EM iterations are required
for convergence.

In section 2 we discuss prior work and relate it to the current work. In section 3, we
introduce the scene model. When the object moves within the scene, the connectivity of
the graphical model for the scene changes. The connectivity is dictated by the geometry
of the scene and is captured by the coordinate transformations that are discussed in sec-
tion 4. In section 5 we discuss the Generalized EM algorithm, emphasizing the intuitive
interpretation of the update equations of the E-step. Section 5.1 discusses the combi-
nation of EM and particle filtering for inferring the location and learning appearances.
Results for a video sequence are given in section 6.

2 Related Work

The work presented here can be viewed as drawing on and bridging the fields of 3D
tracking[1,2], stereo vision[3] and 2-D scene modelling[4]. We briefly review related
work in these fields and relate and contrast with the current work.

Tracking an object in tree dimensions is useful for a variety of applications [5,6]
ranging from robot navigation to human computer interfaces. Most tracking methods
rely on a model of the object to be tracked. Object models are usually constructed by
hand [7,1,2]. For example, Schodl et al. [2] use a textured 3D polygonal model and use
gradient descent in a cost function.

Our model is similar to these methods in that we use an appearance map of the object,
and track it in 3 dimensions. These methods rely on strong prior models in order to do
tracking from a monocular view. As we use a stereo view of the scene, our method does
not require prior hand construction of the model of the object, e.g. the face, and we are
able to learn a model. Once a model has been learned, one can track the object using
only a monocular view.

The objective of most stereo vision work has been to extract a depth map for an
image. The evidence is in the form disparity between pixels in two or more views of
the same scene [3,8,9]. Most stereo vision methods calculate a disparity cost based on
this evidence, such as Sum of Squared Differences (SSD)[10]. In section 5.3 we offer a
generative probabilistic interpretation for SSD.

Frey and Jojic [4,11], and Dellaert et al.[12] use generative top-down models.
They use layered 2D models, and learn 2D templates for objects that move across a
background[13]. When using a monocular view from a single camera, learning the ap-
pearance of objects that can occlude each other is a hard problem. By incorporate stereo
views of a scene, we can resolve the identifiability problem inherent with using a single
camera and can more easily track an object in 3 dimensions.

Recently, a great deal of attention has been paid to particle filtering in various guises.
Blake et al.[14,15] use models based on tracking spline outlines of objects[16]. Other
researchers have extended this to appearance based models [17]. As with the track-
ing methods discussed before, the models are usually constructed by hand rather than
learned.

We use Rao-Blackwellized[18] particle filtering to track the position and orientation
of an object within a scene. In Rao Blackwellized particle filtering, the model contains
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random variables represented by parametric distributions as well as sampled random
variables represented as particle sets. When performing inference over the sampled
random variable, one must integrate over the parametric random variables.

We extend the standard Particle Filtering[14] paradigm in two ways. First, we use
particle filtering in conjunction with stereo observations to track an object in 3 dimen-
sions. Secondly, unlike most tracking paradigms, we are also able to learn the appearance
of the objects in the scene, as they move in the scene [19,18]. We believe this is the first
demonstration of this algorithm for real data.

3 The Stereo Scene Model

The scene model is shown if Figure 1(a). The figure shows a background, a “cardboard
cutout” object in front of the background that occludes part of it and two cameras. Figure
1(b) shows the equivalent graphical model. We assume that the object will be seen at
different locations in the two cameras due to stereo disparity and that the cameras are
aligned such that the same background image is seen in both cameras.

Left
camera Right

camera

Object

Background

(a) Scene with stereo cameras.
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Location -
Orientation

Mask
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Left
camera
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camera

Object

(b) Generative model for stereo obser-
vations.

Fig. 1. (a)Schematic of scene with stereo cameras. (b) Generative model for stereo observations
of a scene with a single object that partially occludes and a background.

In this graph, V0 is the background image, V1 is the object, O1 is the transparency
mask of the object, x1 is a vector containing the position and orientation of the object,
Yl is the observed image in the left camera and Yr is the observed image in the right
camera.

The position variable x1 is a continuous random variable which contains at least 3
spacial coordinates of the object, allowing for 3D translation within the scene.
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We use multivariate Gaussians with diagonal covariance matrices to model all ap-
pearances. Hence, the appearance model of the background is

p(V0) =
∏

j

N(v0
j ; µ0

j , η
0
j ), (1)

where v0
j is the value of pixel j, µ0

j is the mean, and η0
j is the precision.

The model for the object contains three components: a template, a transparency
mask and a position. Again, the appearance is modelled by a multivariate Gaussian with
diagonal covariance matrix,

p(V1) =
∏

i

N(v1
i ; µ1

i , η
1
i ) (2)

where v1
i is the value of pixel i, µ1

i is the mean, and η1
i is the precision.

Pixels in the object model can be opaque or transparent. We use discrete mixing, i.e.
a pixel is either completely opaque or transparent. The prior distribution is

p(O1) =
∏

i

[αioi + (1 − αi)(1 − oi)] . (3)

where oi is the value of pixel i and αi is the probability that the pixel is opaque.
The distribution for the position/orientation random variable, is handled differently

from other variables in the model. It is represented by a particle set. A particle set is a
set of vectors {xs} where each vector (also called a particle) represents a position of the
object and each particle is associated with a weight {q(xs)}.

We use a Gaussian for the prior for the position of the object

p(x1) = N(x1; µx, ηx) (4)

where µx is the mean and ηx is the precision. This is used when generating the initial
set of particles and for recovering particles that land outside the a bounding volume.

When generating instances of the left and right camera images, we first sample
from the background model, then we choose a position for the object and sample from
the object appearance model. The appearance of the object is then overlayed on the
background, for pixels where the object is opaque. For example, the value of the j-th
pixel yl

j in in the left image Yl is

yl
j = o1

ξ(x,j) · v1
ξ(x,j) + (1 − o1

ξ(x,j)) · v0
j + εl (5)

In words, pixel yl
j takes the value of the object pixel v1

ξ(j) if it is opaque (i.e. o1
ξ(j) = 1)

or the value of the background v0
j if it is transparent. Finally we add Gaussian pixel noise

εl with precision λ. Pixels in the right image are of course found similarly. The function
ξ(x, j) maps coordinates depending in the position of the object, and will be discussed in
the next section. If we assume all variances are zero, the process of generating from this
model is analogous to rendering the scene using standard computer graphics methods.
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The prior distribution for a pixel in the left image yl
j is

p(yl
j |V0,V1,O1,x) =

{
N(yl

j ; v
1
ξ(x,j), λ) if o1

ξ(x,j) = 1
N(yl

j ; v
0
j , λ) if o1

ξ(x,j) = 0
(6)

The complete probability distribution for the sensor images is the product of the distri-
butions for the individual pixels,

p(Yl,Yr|V0,V1,O1,x) =
∏

j

p(yl
j |V0,V1,01,x) ·

∏

j

p(yr
j |V0,V1,O1,x). (7)

4 Coordinate Transformations

The object can be at various locations and orientations. Hence, the mapping from coor-
dinates on the object model to the image sensor will change. If the object is close to the
camera, then each pixel on the object may map onto many pixels on the camera sensor,
and if it is far away, many pixels map onto a single pixel in the camera sensor.

We define a set of functions that map between coordinates in the various appearance
models we will be using. We assume that the cameras are pinhole cameras, looking
along the negative z axis. For example, if the distance between the two cameras is 10
cm, then left eye is located at [−5, 0, 0]T and the right camera is at [5, 0, 0]T . The map-
ping is defined in terms of transformations of homogeneous coordinates. Homogenous
coordinates allow us perform translations and perspective projections in a consistent
framework and are commonly used in computer graphics. A point in homogenous co-
ordinates includes a 4th component h, i.e. (x, y, z, h). Assuming a flat object V1, the
transformation from the matrix indices of the object into the matrix indices of the left
sensor Yl, is denoted as jl = ξv→yl(x, i). This mapping is defined as




indxi(Yl, jl)
indxj(Yl, jl)

0
1



 = SM · PRS(x) · EYE(l)·W(x) · MO ·





indxi(V1, i)
indxj(V1, i)

0
1



 (8)

where indxi(V1, i) denote the row index of pixel i in the object and indxj(V1, i)
denotes the column index. Similarly, indxi(Yl, jl) denotes the row index of pixel jl in
the left sensor image, and indxj(Yl, jl) denotes the column index.MO transforms from
matrix-coordinates to canonical position in physical coordinates, W(x) transforms from
canonical object position to the actual position x of the object in physical coordinates
(relative to the camera coordinate system). EYE(l) is the transformation due to the
position of the left eye. In our case, it is simply a shift of 5 for along x for the left camera,
and −5 for the right camera. PRS(x) is the perspective projective transformation, which
depends on the distance of the object from the camera. SM maps from physical sensor
coordinates to sensor matrix coordinates.

To transform an observed image into the object, we map the matrix indices of the
object through this transformation, round the result to the nearest integer, and then
retrieve the the values of in the image matrix at those indices.
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We will have a need for additional coordinate transformations: the inverse mapping
of Eqn. (8) is i = ξyl→v(x, jl) which maps left sensor coordinates into object model
coordinates. The function jr = ξv→yr(x, i) maps from the coordinates of the object
model into the left sensor matrix, and the inverse transformation is i = ξyr→v(x, jr)

An interesting consequence of using stereo cameras and working in world coordinates
is that coordinates have a physical meaning. For example, the matrix MO defines the
physical resolution of the object appearance model. In our experiments, the physical size
of one pixel on the surface of the object is about 1 cm×1 cm. If only a single camera is
used, it is not be possible to determine the scale at which an object should be modelled.

5 EM-PF Algorithm for Learning Stereo Scenes

Now we present an EM algorithm, that employs Rao Blackwellized particle filtering to
compute approximations to the model posteriors in an approximate E-step.

We employ two types of approximations to compute the model posteriors in the E
step of the algorithm. The first approximation comes from the factorization of the graph,
and the second from the approximation of the location posterior with a particle set.

5.1 The EM - Particle Filtering Hybrid Algorithm

The graph in Figure 1(b) hides the fact that the connectivity of the graph changes de-
pending on the position x1 of the object. Each pixel in the object V1 can be connected
to any pixel in Y, depending on the position x1. Another way of viewing this is that
every pixel in the object connects to every pixel in the image, and the position of the
object determines which edges are “turned on”. Thus the graph is hugely loopy. Once a
position has been chosen, the connectivity of the graph is dramatically reduced1.

Algorithm 1 EM - Particle filtering hybrid algorithm

Initialize model parameters µ0, η0, µ1, η1, α1.
for nGEM = 1 to num GEM iterations do

Approximate E step
Sample particle set {x}0 from location prior p(x).
for f = 1 to num frames do
{x}′f ← sample(p(xs,f |xs,f−1)) – send particles through dynamic distribution
Estimate parameters of approximate posteriors α1, η1, µ1, η0 and µ0
Calculate particle weights q(xs)
{x}f ← resample({x}′f , {q(xs)}) – re-sample particles based on weights

end for

M step
Update model parameters µ0, η0, µ1 η1 and α1

end for

1 The graph still has “horizontal” chains, which we will discuss in the next section.
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It is problematic to use a parametric distribution for the position variable x since we
need to integrate over it which entails integrating over discrete topologies of the graph.
This is the motivation for representing the location variable with a particle set, and using
particle filtering for inferring posteriors for the location variable x. Algorithm 1 shows
the hybrid EM - particle filtering algorithm, for stereo scene analysis.

When learning, we start by sampling from a location prior, and initializing the param-
eters of the background and object models to random values. In the E step, we compute
posterior distributions for the appearance models, and weights for each location particle.
When going to the next frame, we re-sample the particles based on those weights and
the particles are then passed through a dynamic distribution. The M step is performed
after going through the whole sequence of frames.

Various extensions of the basic particle filtering algorithm are possible, e.g. that
use proposal distributions[15] or iterative updates within each frame[16] to get a more
representative particle set for the location.
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(a) Portion of epipolar graph.
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Fig. 2. (a) Portion of graphical model corresponding to an epipolar line. Notice that once the
observation nodes have been set, the posterior of the random variable o1

i is dependent on the
directly observed pixels yl

ξl
and yr

ξr
and on yl

m and yr
n (and so on), which are not directly

observed. The dependence comes from their influence on the background nodes v0
ξl

and v0
ξr

. In
Section 5.2 we describe how the chain is factored.(b) Geometric interpretation of graph in (a).

5.2 Graph Factorization

For a particular setting of the position variable x, the original graph factors into chains
along the epipolar lines. In other words, the posterior distribution of a pixel in the object
is not only dependent on the directly observed pixels it impinges on, but also depends
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indirectly on a large number of other pixels along the same epipolar line. Part of such a
graph is shown in Figure 2. In order to make inference efficient we would like to factor
the model and omit the dependence on pixels that are not directly observed2. This can be
accomplished by assuming that only the directly observed pixels in the camera sensors
are observed and all other pixels are unobserved. This has the effect of decoupling the
graph and leads to an approximation for the true posterior. From the perspective of
inference, assuming that neighboring pixels are unobserved is equivalent to allowing
those pixels to take on any values, including the values actually observed.

5.3 Posterior Distributions of E-Step

We now turn our attention to the posterior distributions for the object model V1 and the
position x. These distributions are required in the E step of the learning algorithm. We
omit discussion for the posterior distributions for the background and mask due to space
constraints as they are intuitively analogous.

The manifestation of stereo in the equations below is one of the more important and
pleasing result of this paper. Terms that can be interpreted as “appearance” terms as
well, as “stereo” terms, fall out naturally from the generative model without any ad-hoc
combination of these concepts.

Posterior for Object V1. By assuming only the directly observable pixels in the sensors
are observed, the posterior associated with pixel i in the object becomes

p(v1
i , o1

i ,v
0
ξl , v

0
ξr |x, yl

ξl , y
r
ξr ) (9)

∝p(v1
i , o1

i , v
0
ξl , v

0
ξr , x, yl

ξl , y
r
ξr ) (10)

=

{
p(o1

i = 1)p(yl
ξl |v1

i , x)p(yr
ξr |v1

i , x)p(v0
ξl)p(v0

ξr )p(v1
i )p(x) if o1

i = 1
p(o1

i = 0)p(yl
ξl |v0

ξl , x)p(yr
ξr |v0

ξr , x)p(v0
ξl)p(v0

ξr )p(v1
i )p(x) if o1

i = 0
(11)

To get the posteriors over the pixels of the object, we marginalize out o1
i , v0

ξl and
v0

ξr . The posterior for v1
i , given a location and the sensor images is a mixture of two

Gaussians

p(v1
i |x, yl

ξl , y
r
ξr ) = cα1

i w1N(v1
i , µobserved, ηobserved) (12)

+c(1 − α1
i )w0N(v1

i , µnot observed, ηnot observed) (13)

where c is a normalizing constant. α1
i is the prior for the mask variable, and w1 and w0

are the mixture weights.
This is a very intuitive result. The first mixture is for the case that the mask is opaque

for that pixel, and the second mixture is for the case that it is transparent. The mode of

2 We also experimented with variational inference. Using variational inference, we were unable
to learn the parameters of the occlusion variables. We believe this is due to the omission of
important dependence structure, which the mean field approximation ignores.
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the “opaque” component is

µobserved =
1

η1
i + λl + λr

[
η1

i µ1
i + λlyl

ξl + λryr
ξr

]
(14)

which is a weighted average of what is observed, and the prior mode η1
i . The weight w1

for this component is composed of two Gaussian factors

w1 = N(yl
ξl − yr

ξr ; 0,
λlλr

λl + λr
) · N(

1
λl + λr

[
λlyl

ξl + λryr
ξr

]
; µ1

i ,
(λl + λr)η1

i

λl + λr + η1
i

).

(15)

The first factor is the “stereo” factor, which is maximized when there is a close corre-
spondence between what is seen in the left and right images i.e. yl

ξl = yr
ξr , and the second

factor, the “appearance” factor, is maximized when the prior for the object appearance
µ1

i matches the (weighted) mean observation. Hence the weight will be large for cases
when there is good stereo correspondence and the observation matches the prior.

The second component in the posterior in Eqn.(12) is for the case when the mask is
transparent. In this case the mixture component is just equal to the prior. The weight w0
for this component contains two factors that can be thought of as measuring the evidence
that the observed pixel came from the background.

w0 = N(yl
ξl , µ

0
ξl ,

η0
ξlλ

l

η0
ξl + λl

) · N(yr
ξr , µ0

ξr ,
η0

ξrλr

η0
ξr + λr

) (16)

The first term is maximized when the observation matches the left background pixel, and
the second term is maximized the right background pixel matches the observed pixel in
the right camera

Notice that Equation (12) is for a particular position of the the object. The approx-
imate posterior for the object appearance, can now be written as a Gaussian mixture
model with a large number of mixtures. In fact it will have 2 · nsamp mixtures, where
nsamp is the number of particles in {xs}. The weight of each mixtures is the particle
weight q(xs). Hence, the posterior of the object appearance is

q(v1
i |yl

ξl , y
r
ξr ) =

∑

xs

q(xs)p(v1
i |xs, y

l
ξl , y

r
ξr ). (17)

5.4 Posterior for x

The posterior for the position variable x is represented by the particle set {xs} and asso-
ciated weights {q(xs)}. The posterior distribution for the position x can be approximated
at the position of the particles xs as

p(xs|Yl,Yr) ≈ q(xs) =
p(xs,Yl,Yr)∑
k p(xk,Yl,Yr)

. (18)

To arrive at an expression for the weight of a particle, we need to integrate over all
parametric distributions (Rao-Blackwellization). By doing so, p(xs,Yl,Yr) can be
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shown to be

p(xs,Yl,Yr) =
∏

i

∫
p(xs,Yl,Yr, v1

i ,V0,O1)dv1
i dV0dO1

=
∏

i

[
α1

i w1(i) + (1 − α1
i )w0(i)

]
(19)

where α1
i , w0(i) and w1(i) were defined above.

5.5 Generative Probabilistic Interpretation of SSD

The Sum of Squared Differences (SSD) metric is commonly used in stereo vision [3,
10] to measure how well a patch in one image matches a patch from another image, as
a function of disparity. It is interesting to note that SSD can be seen as a component or
special case of Equation (18).

Equation (18) gives the posterior distribution p(xs|Yl,Yr) for the location of the
object and can be interpreted as measuring the “fit” of the hypothesized position to the
observed data. Recall that Equation (18) contains both “appearance” related terms and
“stereo” related terms.

To see the relationship of Equation (18) to the SSD metric, we assume that the
appearance model is completely uninformative (ηi = 0), that the object is completely
opaque (α1

i = 1 for all i), and take the log to arrive at the form

log(p(x|Yl,Yr)) ∝ log

(
∏

i

[
α1

i w1(i) + (1 − α1
i )w0(i)

]
)

=
∑

i

log w1(i). (20)

Recall that the first term in the weight w1 is N(yl
ξl(x,i) − yr

ξr(x,i); 0, λlλr

λl+λr ). Hence, for
this special case

log(p(x|Yl,Yr)) ∝
∑

i

(yl
ξl(x,i) − yr

ξr(x,i))
2 (21)

which is exactly equivalent to the SSD over the whole image.

Frame 1 Frame 3 Frame 5 Frame 7 Frame 9

Fig. 3. Training data consists of a short sequence of 10 stereo video frames. The frames were down
sampled to 64x48 pixels. The figure shows the frames from the left camera. Notice that the person
approaches the camera from the the right and then recedes to the left. The trajectory is shown in
Figure 6.
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6 Experiments

A short video was recorded using a stereo video camera. The frame rate was 2 frames
per second. A subset of the 10 frame sequence used to train the model is shown in Figure
3. Notice that the person approaches the camera from the the right and then recedes to
the left.

Figures 4. and 5. shows the models that were found as a result of running the algorithm
on the 10 frames shown in Figure 3. In these experiments, 500 particles were used.As can
be seen in Figure 4., the background image is learned precisely in most areas. However,
in areas where the background is never seen, the background has not been learned, and
the variance is high.

V1 mean

20 40 60
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60

V1 variance

20 40 60

20
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O1 transparancy

20 40 60
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Generated from model

20 40 60
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Fig. 4. Model learned for object. The model is comprised of an Gaussian appearance model V1

and a discrete transparency model O1. The leftmost figure shows the mean of V1, the second
figure shows the variance of V1 (notice higher variance on the forehead). The third plot shows
the probability of each pixel being opaque. The rightmost plot shows an object generated from
the model. Notice that patches of the background where there is no detail, have been associated
with the object.

V0 mean
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Fig. 5. Model learned for background. The model V0 is a multivariate gaussian. The left images
shows the means, and the right image shows the variances of V0. Notice that the areas where the
background was never observed remain the color of the object and have high variance

The transparency mask has been learned well, except in areas where there is no
texture in the background which would allow the model to disambiguate these pixels.
Notice that the appearance model has been learned quite well. As can be seen in Figure



Stereo Based 3D Tracking and Scene Learning 557

3., highlights and specularity of the forehead, nose and shirt vary between frames. The
consequence of this is the large variance in these areas. A second factor that introduces
variance is that the model assumes the object is flat. Hence, there will be distortion due
to the different perspectives of the two cameras. The model allows for this discrepancy
by assigning larger variance to the object appearance model along the edges of the face.
A third source of variability comes from the inference algorithm itself. The sampling
resolution can be too coarse, which prevents the algorithm from accurately finding the
mode of the location posterior. This does not seem to be a problem here. This effect can
be reduced in a number of ways, including increasing the number of particles and using
higher order dynamics in the temporal distribution.

Fig. 6. The mode of the location distribution in iteration 9 of the EM algorithm. The units are
approximately centimeters. Notice that there is considerable variation in both depth and horizontal
location.

Figure 6. shows the trajectory of the mode of the distribution for the location variable
x. The figure clearly shows a right to left trajectory of the person that starts in the right
hand side of the frame, moves closer and to the center and then recedes to the left.

7 Discussion

The algorithm requires a large number of coordinate transformations as well as eval-
uations of posteriors for the transformed images. The complexity of the algorithm is
O((m + n) · it · nsamp · fr) where m is the number of pixels in the background, n is
the number of pixels in the object model, it is the number of iterations of GEM, nsamp
is the number of samples and fr is the number of frames3.

The transformations required for inference and learning resemble those used in com-
puter graphics. Commodity 3-D graphics accelerators are capable of performing the
required computations at high speeds and we anticipate that a fast implementations can
be achieved.

3 Each frame takes about 15 seconds on a 2.8GHz Pentium running Matlab code.
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In some cases, it is a poor assumption that the background is at a relatively large
distance and can be modelled as a planar surface. This can happen when there are
stationary objects in the scene at a similar distance as the object we wish to model and
track. For this case it may be advantageous to use separate background models for the
two cameras.

Particle Filtering and other Markov Chain Monte Carlo methods are considered slow
techniques. In addition, when a generative top-down model is used, exact inference will
theoretically require the search over a huge space of possible configurations of the hidden
model. With continuous location variable, this space is in fact infinite. Despite this, we
are able to both track and learn the appearance of the objects in a scene. This is partly
due to the advantageous prior structure imposed by the top-down model, partly due to
the strong disambiguating information provided by stereo views of the scene and partly
due to an inference algorithm that is able to search only over the regions of the hidden
variable space that are likely to contain the best explanation for the visible scene.

Stereo information allows the algorithm to latch on to the correct position of the object
immediately, even when the appearance model is of no help e.g. when it is initialized
to random values. Hence, stereo information allows the algorithm to track and learn
appearance without any prior knowledge of the appearance of an object.

When we applied an equivalent monocular algorithm using a single camera to the
above data, the algorithm did not track the object, did not learn the object model and
consistently fell into local minima. However, once an appearance model has been learned
(using stereo) one can switch to using a single camera to track the object.

A strength of generative probabilistic modes is the consistent fusion of multiple
types of information where noise and uncertainty are correctly taken into account. In
the current paper, we fuse appearance, stereo views and views through time to learn a
single underlying representation that explains a scene. Information from multiple frames
is automatically used to fill in portions the model that are only observed in a subset of
frames.

The framework uses a (simple) generative 3D model of a scene and we show that we
can successfully perform inference in such a top-down model. In contrast, the majority of
methods in computer vision are bottom up methods. Aggregation of multiple sub models
into larger models is a challenge for such approaches. Hence, we believe the extension of
the current paradigm to be a very fruitful direction of further research, especially when
it is desirable to construct consistent 3D representations of the world.
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