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Abstract. Volumetric structures are frequently used as shape descrip-
tors for 3D data. The capture of such data is being facilitated by devel-
opments in multi-view video and range scanning, extending to subjects
that are alive and moving. In this paper, we examine vision-based model-
ing and the related representation of moving articulated creatures using
spines. We define a spine as a branching axial structure representing
the shape and topology of a 3D object’s limbs, and capturing the limbs’
correspondence and motion over time.
Our spine concept builds on skeletal representations often used to de-
scribe the internal structure of an articulated object and the significant
protrusions. The algorithms for determining both 2D and 3D skeletons
generally use an objective function tuned to balance stability against the
responsiveness to detail. Our representation of a spine provides for en-
hancements over a 3D skeleton, afforded by temporal robustness and cor-
respondence. We also introduce a probabilistic framework that is needed
to compute the spine from a sequence of surface data.
We present a practical implementation that approximates the spine’s
joint probability function to reconstruct spines for synthetic and real
subjects that move.

1 Introduction

We are interested in the detection and tracking of features in volumetric images.
Volume images capture shape as a temporal sequence of boundary voxels or other
forms of 3D surfaces. Specifically, we wish to address situations where the subject
is known to have and is exercising an articulated structure. This assumption
grants us use of a specific class of geometric modeling solutions. The various
methods for skeletonizing 2D and 3D images share the objectives of identifying
extrema, features with some geometric significance, and capturing the spatial
relationships between them [9]. Skeletons, much like generalized cylinders [4,21],
serve the purpose of abstracting from raw volume or surface data to get higher
level structural information.

We propose that evaluating volumetric data of a subject over time can dis-
ambiguate real limbs from noisy protrusions. In a single image, knowledge of the
specific application alone would dictate the noise threshold to keep or cull small
branches of the skeleton. Many such algorithms exist. In the case of articulated
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Fig. 1. (A) Articulated subject, (B) reconstructed surface, (C) extracted skeleton, (D)
spine graph limbs encoding motion over time; nodes labeled for illustration only.

moving subjects, the volumetric images change but the underlying structure
stays the same. We hypothesize that the parts of the skeleton within each image
that are consistent over time more reliably capture the subject’s structure. To
this end, we introduce our notion of spines.

As defined in [4], a generalized cylinder is a surface obtained by sweeping a
planar cross section along an axis, or space curve. To represent a body made of
multiple generalized cylinders, we need to merge axes of the different limbs into
one branching axial structure. The branching structure can be represented by a
graph, G(LimbBoundaries, Limbs), where edges are limbs, leaf nodes are end
effectors, and the remaining nodes (all of degree > 2) are limb junctions (see
Figure 1D). So far, we have described the general formulation of a skeleton [5].
To parameterize the motion of a skeleton, we express the new spine graph as a
function over time:

Spinet = F (G, t). (1)

For a given time t, the limbs of G will be in a specific pose, captured by
F ’s mapping of G’s topology to axial curves in 3D – a single skeleton. When
estimating a data set’s spine in the subsequent sections, we will constrain F to
manipulate the limbs of a G that represents a series of topologically consistent
skeletons. These skeletons are determined as probable given the input data.

The implementation of our algorithm is a modular pipeline. It first reduces
the complexity of multi-view video data to voxels, further to polygons, and finally
to spines. The resulting model captures the original degrees of freedom needed
to play back the subject’s motions (see Figure 1).

2 Related and Motivating Work

The 2D analogue to our problem is the tracking of correspondence in medial
axes, which were first introduced by Blum [5]. Given any of the numerous 2D
skeletonizing techniques, including the classic grassfire models based on distance
and the more robust area-based techniques [3], the work of Sebastian et al. [23]
can determine correspondence by minimizing edit-distances of skeleton graphs
in 2D.

The medial axes of 3D surfaces are not directly applicable because they
generate 2D manifold “sheets” through a surface. While medial scaffolds can be
calculated fairly robustly [24,19], they require further processing [28] to estimate
good 1D axes.
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Several 3D skeletonization algorithms have been developed using 3D Voronoi
cells to partition the space within a mesh [2,13,25,12,16]. The cell-walls of these
convex polyhedra land at equal distances from their designated surface start-
points – some at or near the medial axis. This approach, with various extensions
of projection and pruning, can generally serve to synthesize axes. In contrast
to these, our approach and implementation are based on two sub-domains of
solutions: measuring of geodesic distance from geometric modeling, and principal
curves from statistics.

Geodesic Distance: In Section 4.1 we will discuss in greater detail how a
surface can be treated as a piecewise continuous distance field that separates
features from each other. Verroust and Lazarus [27] used such a technique to
determine axes of symmetry within limbs, and how to connect them to critical
points (special topological features) on the mesh surface. In an application not
requiring branching axes, Nain et al. [22] used geodesic distances on colon models
to determine center-lines for virtual colonoscopy navigation. Recently, a geodesic
distance based metric was used by Katz and Tal [17] to help assign patches as
members of explicit limbs, resulting in course animation control-skeletons. All
these approaches benefit from works such as [15] which identify extrema, or fea-
tures that protrude from or into a surface mesh. Our approach uses such extrema-
finding and a geodesic distance metric to better model skeleton branching.

Principal Curves: Hastie and Stuetzle [14] defined principal curves as pass-
ing through the middle of a multidimensional data set, as a representation of
self-consistency to generalize principal components. For fixed length curves in a
geometric setting, Kegl et al. [18] showed how to minimize the squared distance
between the curve and points sampled randomly from the encompassing shape.
Most recently, [7] and [8] extended this notion of principal curves to 3D, for-
malizing the problem as an optimization which also seeks to minimize the curve
length. Our extension is to incorporate branching and temporal correspondence.

3 Spine Formulation and Estimation

We build on the axial representation of generalized cylinders of [8,7] because
of their elegant mathematical formulation. They treat the regression problem
of finding a single curve for a surface as the minimization of a global energy
function. Much like the previous work on principal curves [14,18], they seek to
minimize the total distance from the axial curve to the surface. But in addition,
[7] incorporates a term which penalizes the curve’s length. This augmentation
helps force the shorter curve to smoothly follow the middle of a surface, instead
of, for example, spiraling through all the boundary points.

For our spine formulation, we seek to further incorporate: (a) skeletons S
that model branching curves of individual surfaces X and (b) data captured
over a period of time T . We propose a discriminative probabilistic approach to
computing spines by finding G, S, and limb end effectors E, which maximize:

P (G, S1:T , E1:T |X1:T ) = P (G|S1:T , E1:T , X1:T ) · P (S1:T , E1:T |X1:T ) (2)
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To compute and optimize the joint probability P (S1:T , E1:T |X1:T ) requires
searching over all skeletons over all time simultaneously. In order to make the
solution more computationally tractable, we make the assumption that St and
Et are independent of St′ and Et′ ∀(t′ �= t), given Xt:

P (G, S1:T , E1:T |X1:T ) ≈ P (G|S1:T , E1:T , X1:T ) ·
T∏

t=1

P (St, Et|Xt) (3)

This assumption can lead to temporal inconsistencies that can be resolved
once G is estimated (as shown in Section 4.2). We use a bottom-up approach
that individually approximates each St and Et individually, and then estimates
G. Ideally, we would like to estimate G, S, and E using an EM-like algorithm by
iterating back and forth between estimates of G and (St, Et). However, we have
found that the greedy estimate of S and E, while noisy, is sufficient to determine
a G consistent with the subject’s limb topology.

4 Temporally Constrained Branching Spines

In this section, we will start by describing our method for locating the set of end
effectors Et and extracting a branching skeleton graph from a single 3D surface
Xt. Using this or other techniques, we can generate an individual skeleton St

at each time t, 1 ≤ t ≤ T . These (St, Et) will be inherently noisy, as a result
of being calculated independently for each t. In Section 4.2, we describe how
we combine these individual and often overly complex graphs into a consistent,
representative spine for the entire time sequence.

The fairly significant attention given to the problem of building a single
branching 3D skeleton includes numerous approaches. After experimenting with
portions of several of these [20,15], we have developed our own extension to the
level-set method of [27]. In theory, any 3D skeleton-finding technique would be
suitable, if it meets the following requirements:

1. Is self-initializing by automatically finding extrema Et.
2. Generates a principal curve leading to each extremum.
3. Constructs internal junctions of curves only as necessary to make a connected

tree.

More precision might be achieved with more iterations or other techniques,
but these might only further improve the results of applying our general proba-
bilistic framework of (3). We proceed to explain our greedy method for obtaining
a 3D branching skeleton St from a surface, with just one iteration of maximizing
(3)’s second term followed by correspondence tracking.

4.1 Creating a Skeleton for a Single Surface

Once we have a 3D surface Xt for volumetric image (or frame) t, we want to
extract a skeleton from it. We accomplish this goal in two stages. First we find the
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tip of each extremity and grow a skeleton from it. Then we merge the resulting
skeletons to maximize the presence of the highest quality portions of each. In
terms of maximizing P (St, Et|Xt), we are first finding a set of candidates for the
end effectors of Et and the limbs of St. We then pick from these the combination
that is optimal with respect to our probability metric.

Growing Skeletons: This part of our algorithm is based on the work of [27].
Starting at a seed point on an extremity of the mesh, they sweep through the sur-
face vertices, labelling each with its increasing geodesic distance. These distances
are treated as a gradient vector field, which is in turn examined for topological
critical points. The critical points are used as surface attachment sites for virtual
links (non-centered) between the axes when the mesh branches.

But for our purposes, we want a skeleton that always traverses through the
middle of the subject’s extremities. Locating meaningful extremal points is itself
an open problem, though the difficulties are generally application specific. Much
like the above algorithm which has one source, the vertices of a surface mesh can
be labelled with their average geodesic distance (AGD) to all other points. Sur-
face points thus evaluated to be local extrema of the AGD function correspond
to protrusions. Knowledge of the expected size of “interesting” protrusions can
be used as a threshold on which local maxima qualify as global extrema.

Hilaga et al. [15] address the significant computational cost of finding the
AGD by approximating it with uniformly distributed base seed-points. Applying
the simpler base-point initialization of [27,10] in a greedy manner located the
desired candidates for Et for our data sets.

Instead of the separate distance and length terms minimized by [7], we use
the isocontours of geodesic distance to build level sets that serve as our error
metric. The vertices of the mesh are clustered into those level-sets by quantizing
their distances from the seed point into a fixed number of discrete bins (usually
100). Figures 2C-D illustrate this process. Each skeleton node is constructed by
minimizing the distance between the vertices in the level set and the node, i.e.,
the centroid of the vertices.

By walking along edges of the surface graph from the seed point’s level set
toward the last one, skeleton-nodes are added and progressively connected to
each other. Figure 3A illustrates this process in 2D. This approach successfully
creates a tree graph of nodes, or skeleton, which represents the central axes and
internal branching points of genus zero meshes.

The skeleton-generation algorithm is repeated for each of the other limb-tips,
producing a total of five skeleton-graphs for the starfish example (see Figure 2).
These are our candidates for the best St for this Xt. Note that the most com-
pact level-sets usually appear as tidy cylindrical rings on the limb where that
respective skeleton was seeded.

Merging Skeletons: All of the constituent skeletons St serve as combined
estimates of the mesh’s underlying limb structure. The best representation of
that structure comes from unifying the most precise branches of those skeletons
– the ones with smallest error, or equivalently, maximum P (St, Et|Xt). A high
quality skeleton node best captures the shape of its “ring” of vertices when the
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Fig. 2. Example of generating a skeleton for a synthetic starfish mesh. (A) Capture
images of the starfish from a variety of vantage points (B) Extract a 3D surface using
generalized voxel carving and improved marching cubes (C) Starting at one extremity
tip, calculate geodesic distances for each vertex (D) Quantize distances and cluster
vertices into bins of the same distance (E) Create a skeleton by walking through the
progression of level set rings (F) Repeat C-E for each tip and merge into a single
representative skeleton.

ring is short and has small major and minor axes. With this metric, we calculate
a cost function C for each node in the constituent skeletons:

Ci =
σ2

1 + σ2
2 + σ2

3

# of points in ring i
. (4)

The σ quantities come from singular values of the decomposition P̄ = UP ΣP VT
P ,

where P̄ represents the mean-centered coordinates of the points pi in this ring.
Note that the resulting vi vectors in VT

P = {v1|v2|v3}T will usually represent
the ring’s major, minor, and central axes. Replacing v3 with v1 × v2 produces
a convenient local right-hand coordinate frame for each node.

Each chain of bi-connected nodes represents a limb. To assemble the single
representative graph of this frame, we copy the best version of each limb available
in the constituent skeletons. Limb quality QL is measured as:

QL = N −
N∑

1

Ci, (5)

where N is the total number of nodes in limb L. Since nodes from different skele-
tons are being compared through (5), the Ci’s must be normalized by dividing
them all by the max(Ci) of all the skeletons.

Figure 3B illustrates a novel algorithm that we developed to generate limb-
correspondences for topologically perturbed tree graphs of the same structure.
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Fig. 3. (A) 2D example of clustering connected vertices into bins of similar geodesic
distance and walking through the resulting level set rings. (B) In the right figure, the red
and green skeletons represent the same “creature,” possibly seeded from two different
places. Wishing to copy nodes from the best limbs each constituent skeleton has to
offer, we developed a leaf-node seeking topology matching algorithm that recognizes
that these pairs of three-way junctions should be a single four-way junction.

There appears to be no previously established graph theoretic solution for this
problem, and our approach is simply:

1. Tag all limb-tips that we are confident of as Supernodes; i.e. nodes on both
color graphs located at [A, B, C, D] correspond to each other.

2. Traversing inward, the next encountered branch-node in each graph also cor-
responds to that of the other color: walking from supernode A, the skeleton-
nodes at the square-symbols should be grouped into a supernode of their
own. From C, the circles will form a supernode. Iterating this process from
the outside inward will reveal that the circle and square supernodes should
be merged into a four-way metanode, which would serve as the point of
unification when merging limbs from the red and green skeletons.

4.2 Correspondence Tracking

Now that we can estimate a single skeleton that represents one volumetric image,
we adapt the process to handle a sequence of volumes. All the measurements from
the sequence of X1:T are now abstracted as (S1:T , E1:T ), simplifying the first
term in (3) to P (G|S1:T , E1:T ). Finding the G that maximizes this probability
eliminates extraneous limbs which might have resulted from overfitting. The
danger of overfitting exists because skeleton elements may be created in support
of surface-mesh elements that looked like protrusions in that frame only.

Our 3D correspondence problem of finding the best G is significantly easier
to automate than trying to perform surface-vertex matching between two dense
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meshes of the sequence. Assuming the subject grows no new appendages and
with no other priors, we can safely choose the appropriate number of tips to be
the most frequently observed number of limb tips. This number of tips, or leaf
nodes in G, is K = the mode of |Et|, 1 ≤ t ≤ T (see Figure 7).

Knowing how many appendages to look for, we spatially align each ex-
ploratory skeleton from the sequence with respect to its temporal neighbors
to reveal the |Et| − K superfluous tips that should be culled. We start with all
the subsequences of frames that already have the correct number of tips K, and
tag the frame from the middle of the largest such cluster as the reference frame;
allowing that longer sequences may need to automatically select multiple refer-
ence frames. Each frame is then processed in turn, constructing a combinatorial
list of possible tip-correspondences between the reference tips A and the tips in
the current frame B. Each possible mapping of B → A is evaluated using the
point-cluster alignment algorithm of [1]. Their technique aligns point clouds as
much as possible using only translation and rotation. The combination with the
smallest error, Emin, is kept as the correct assignment, where

E =
K∑

k=1

‖Bk − R̂Ak − T̂‖2. (6)

Here R̂ and T̂ are the least-squares optimal rotation and translation. T̂ sim-
ply comes from the alignment of the point clouds’ centroids. R̂ is calculated
by maximizing the Trace(R̂H), where H is the accumulated point correlation
matrix:

H =
K∑

k=1

AkBT
k . (7)

By decomposing H = URΣRVT
R, the optimal rotation is:

R̂ = VRUT
R. (8)

After assigning the tips of all these frames, we apply the same error metric
to try out the combinations of tip-assignments with frames having alternate
numbers of tips. However, these frames are compared to both the reference
frame and the frame nearest in time with K tips. This brute-force exploration of
correspondence is computationally tractable and robust for creatures that exhibit
some asymmetry and have a reasonable number of limbs (typically < 10).

4.3 Imposing a Single Graph on the Spine

With the known trajectories of corresponding limb tips throughout the sequence,
we can re-apply the skeleton merging technique from Section 4.1. This time
however, we do not keep all the limbs as we did in the exploratory phase, only
those that correspond to the K limb-tips. The results of this portion of the
algorithm are pictured in Figure 4 and discussed further in Section 5.
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A: Without refinement B: With temporal constraint

Fig. 4. Refinement through imposing of correspondence into the sequence.

Except for the frames of the sequence where the subject’s limbs were hid-
den or tucked too close to the body, we can expect the topology of skeletons
throughout the sequence to be identical. The most frequently occurring topol-
ogy is established as G, and corresponds to the first term in 3. This correspon-
dence and trajectory information allows us to construct a single character spine
for playback of the whole sequence of poses by parameterizing on each limb’s
length. Each topologically consistent limb of the skeleton sequence is resampled
at the same interval producing a single spine.

5 Experiments and Results

We tried our algorithm on a variety of small creatures after building a data-
capture stage that would both be comfortable for our subjects and minimize
the need for video segmentation beyond chromakeying. Twenty video cameras
were attached to an aluminum exoskeleton shaped roughly like a cylinder 3
meters in diameter. Their viewing angles were chosen heuristically to maximize
viewing coverage and to minimize instances of cameras seeing each other’s lenses.
The capture volume itself is (75cm)3, and can accommodate creatures that stay
within the space (Figure 5). Our subjects often required human proximity and
were too heavy for our transparent flooring, so we were only able to leverage a
subset of the cameras present.

With this setup, we are able to obtain video from a dome of inward facing,
calibrated and synchronized cameras [29,6]. This allowed us to employ the Gen-
eralized Voxel Carving (GVC) algorithm of [11]. Their system functions as a hy-
brid form of wide-baseline stereo and voxel-carving, enabling the resulting voxel
model to reflect concavities found on parts of the subject’s surface. Each second
of multi-view footage produces 30 voxel models similar to the system of [26].

5.1 Real Subjects

Baby: The baby data is the result of filming an 11-month old infant using nine
cameras. The sequence is 45 frames long because that was the speed with which
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Fig. 5. Our Capture Setup: Twenty video cameras were attached to an aluminum
exoskeleton shaped roughly like a cylinder 3 meters in diameter. Their viewing angles
were chosen heuristically to maximize viewing coverage of subjects raised in the middle,
and to minimize instances of cameras seeing each other’s lenses. The capture volume
itself is (75cm)3.

(A)

(B)

(C)

Fig. 6. (A) Baby dataset: From left to right, one of the views, voxels, polygonal
model, level sets, and skeleton with distance function. (B) Dog dataset: subject,
polygonal model, distance function, level sets, and resulting spine. (C) Camel Puppet

dataset: one view, wireframe, distance function, level sets, and resulting spine.

she crawled down the length of the stage. Her progress forward is mostly due to
her arms and right leg, while she tends to drag her left leg which causes frequent
merging of her voxel-model from the waist down. The spine generation models
her head and arms very consistently, but the correspondence tracker cannot
resolve her legs and mis-assigns one leg or the other for the majority of frames.

Dog: The dog was the most challenging of our test-subjects simply because
we had only seven cameras that could operate without also filming the dog’s
handlers. The volume reconstructions are all close to their average of 1.04M
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voxels. Examination of the polygonal-mesh sequence reveals that much of this
bulk comes from the ghost-voxels under his stomach that were carved successfully
in the previous and subsequent test subjects when more cameras were running.

Camel Puppet: The camel marionette, pictured in Figure 6C, is 26 cm long
and stretches to a height of 42 cm. While the subject didn’t change in volume
throughout shooting, its representation varied throughout the sequence between
600k and 800k voxels, largely due to self-occlusions. The polygonal representa-
tions averaged 200k polygons. The sequence has 495 frames, and was filmed using
12 color cameras. The camel’s motion changes in the sequence from leg-jostling
at the start to vigorous kicking and raising of the neck by the end. Our system
was only hindered by the occasional “merging” of legs as they tucked underneath
or appeared close enough to each other to be joined in the voxel stage. With
mostly good frames, the exploratory skeleton-generation fed the correspondence
tracker, which in turn determined that there were five limbs. The resulting crea-
ture spine is pictured in Figure 4B. As illustrated,the correspondence tracking
balances out the greedy limb inclusion of the exploratory skeletons. The online
video also demonstrates this.

The average processing times for skeleton-generation using our unoptimized
implementation of the algorithms were consistently under four minutes per mesh
on a Pentium 4 PC with one or more GB of memory. The correspondence-
tracking portion of our algorithm (Section 4.2) took ten minutes on our 495
frame camel sequence, and less than three minutes on all our other sequences.
The preprocessing stage leading to input meshes is an implementation of GVC
that adds approximately 12 minutes to each frame, with 3-8 seconds for Marching
Cubes. GVC is not part of our contribution, and can be exchanged for other dense
stereo or silhouette-carving algorithms, some of which may, though we have not
yet tested this, have superior run-time performance without impacting quality.
We have data of other example subjects that will be posted on our website, and
the volumetric data has already been shared with other researchers.
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Fig. 7. Number of skeleton tips found per-frame during greedy search.
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6 Conclusion and Future Work

We have proposed spines as a novel 3D spatio-temporal representation for se-
quences of volume images. This shape and motion descriptor introduces a method
for imposing temporal correspondence on limb topologies when dealing with ar-
ticulated subjects. We also present an algorithm for efficiently extracting branch-
ing spines from surface data. Finally, we have presented example data where the
temporally integrated canonical graph improves the quality of individual skele-
tons.

Where the current fully bottom-up work leaves off, extensions are planned
that will allow a prior skeleton estimate to be forced on the data. This will
especially apply to meshes where the limbs tuck in or become genus 1+. While
the current results reflect that fairly noisy data, without priors, still reveals the
real end effectors and underlying structure, further work is needed to track pose
even in very poor data.
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