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Abstract. We present an algorithm for shape matching and recognition
based on a generative model for how one shape can be generated by
the other. This generative model allows for a class of transformations,
such as affine and non-rigid transformations, and induces a similarity
measure between shapes. The matching process is formulated in the EM
algorithm. To have a fast algorithm and avoid local minima, we show how
the EM algorithm can be approximated by using informative features,
which have two key properties–invariant and representative. They are
also similar to the proposal probabilities used in DDMCMC [13]. The
formulation allows us to know when and why approximations can be
made and justifies the use of bottom-up features, which are used in a wide
range of vision problems. This integrates generative models and feature-
based approaches within the EM framework and helps clarifying the
relationships between different algorithms for this problem such as shape
contexts [3] and softassign [5]. We test the algorithm on a variety of data
sets including MPEG7 CE-Shape-1, Kimia silhouettes, and real images of
street scenes. We demonstrate very effective performance and compare
our results with existing algorithms. Finally, we briefly illustrate how
our approach can be generalized to a wider range of problems including
object detection.

1 Introduction

Shape matching has been a long standing problem in computer vision and it
is fundamental for many tasks such as image compression, image segmentation,
object recognition, image retrieval, and motion tracking. A great deal of effort
has been made to tackle this problem and numerous matching criteria and algo-
rithms have been proposed. For example, some typical criteria include Fourier
analysis, moments analysis, scale space analysis, and the Hausdorff distance. For
details of these methods see a recent survey paper [14].

The two methods most related to this paper are shape contexts [3] and
softassign [5]. Shape contexts method is a feature-based algorithm which has
demonstrated its ability to match certain types of shapes in a variety of appli-
cations. The softassign approach [5] formulates shape registration/matching as
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free energy minimization problem using the mean field approximation. Recent
improvements to these methods include the use of dynamic programming to im-
prove shape contexts[12] and the Bethe-Kikuchi free energy approximation [9]
which improves on the mean field theory approximation used in the softassign [5].

Our work builds on shape contexts [3] and softassign [5] to design a fast and
effective algorithm for shape matching. Our approach is also influnced by ideas
from the Data-Driven Markov Chain Monte Carlo (DDMCMC) paradigm [13]
which is a general inference framework. It uses data-driven proposals to activate
generative models and thereby guide a Markov Chain to rapid convergence.

First, we formulate the problem as Bayesian inference using generative mod-
els allowing for a class of shape transformations, see section (2). In section (3),
we relate this to the free energy function for the EM algorithm [8] and, thereby,
establish a connection to the free energy function used in softassign [5].

Secondly, we define a set of informative features, which observe two key
properties: invariant/semi-invariant and representative, to shape transforma-
tions such as scaling, rotation, and certain non-rigid transformations, see sec-
tions (4.1,4.2). Shape contexts [3] are examples of informative features.

Thirdly, the generative model and informative features are combined in the
EM free energy framework, see section (4.3,4.4). The informative features are
used as approximations, similar to the proposals in DDMCMC [13], which guide
the algorithm to activate the generative models and achieve rapid convergence.
Alternatively, one can think of the informative features as providing approx-
imations to the true probabilities distributions, similar to the mean field and
Bethe-Kikuchi approximations used by Rangarajan et al [5],[9].

We tested our algorithm on a variety of binary and real images and obtained
very good performance, see section (6). The algorithms was extensively tested on
binary datasets where its performance could be compared to existing algorithms.
But we also give results on real images for recognition and detection.

2 Problem Definition

2.1 Shape Representation

The task of shape matching is to match two arbitrary shapes, X and Y , and to
measure the similarity (metric) between them. Following Grenander’s pattern
theory [6], we can define shape similarity in terms of the transformation F that
takes one shape to the other, see Fig. 1. In this paper we allow two types of
transformation: (i) a global affine transformation, and (ii) a local small and
smooth non-rigid transformation.

We assume that each shape is represented by a set of points which are either
sparse or connected (the choice will depend on the form of the input data).

For the sparse point representation, we denote the target and source
shape respectively by:

X = {(xi) : i = 1, ...,M}, and Y = {(ya) : a = 1, ..., N}.
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(a) Target shape X (b) Transformation F (c) Source shape Y

Fig. 1. Illustration of a shape matching case in which a source shape Y is matched
with a target shape X through a transformation function F .

This representation will be used if we match a shape to the edge map of an
image.

For the connected point representation, we denote the target and source
shape respectively by:

X = {(x(s)) : s ∈ [0, 1]}, and Y = {(y(t) : t ∈ [0, 1]},
where s and t are normalized arc-length distances. This model is used for match-
ing shapes to silhouettes. (The extension to multiple contours is straightforward.)

2.2 The Probability Models

We assume a shape X is generated by a shape Y by a transformation F = (A, f)
where A is an affine transformation, and f denotes an non-rigid local transfor-
mation (in thin-plate-splines (TPS) [4], the two transformations are combined,
but we separate them here for clarity). For any point ya on Y , let va ∈ {0..M}
be the correspondence variable to points in X. For example, va = 4 means that
point ya on Y corresponds to point x4 on X. If va = 0, then ya is unmatched.
We define V = (va, a = 1..N). The generative model is written as

p(X|Y, V, (A, f)) ∝ exp{−ED(X,Y, V, (A, f))},
where

ED(X,Y, V, (A, f)) =
∑
a

(1− δ(va))||xva −Aya − f(ya)||2/σ2. (1)

and (1 − δ(va)) is used to discount unmatched points (where va = 0). There is
a prior probability p(V ) on the matches which pays a penalty for unmatched
points. Therefore,

p(X,V |Y, V, (A, f)) ∝ exp{−ET (X,Y, V, (A, f))},
where ET (X,Y, V, (A, f)) = ED(X,Y, V, (A, f))− logp(V ).

The affine transformation A is decomposed [1] as

A =
(
Sx 0
0 Sy

) (
cosθ −sinθ
sinθ cosθ

) (
1 k
0 1

)
.
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where θ is the rotation angle, Sx and Sy denote scaling, and k is shearing. The
prior on A is given by p(A) ∝ exp{−EA(A)} where EA(A) = Erotation(θ) +
Escaling(Sx, Sy) + Eshearing(s).

The prior on the non-rigid transformation f is given by

p(f) ∝ exp{−Ef (f)}, and Ef (f) = λ
∫ ∞∑

m=0

cm(Dmf)2dy,

The {cm} are set to be σ2m/(m)2m (Yuille and Grzywacz [15]). This enforces
a probabilistic bias for the transformations to be small (the c0 = 1 term) and
smooth (the remaining terms {ci : i ≥ 1}. It can be shown [15], that f is of the
form f(x) =

∑
i αiG(x−xi) where G(x) is the Green’s function of the differential

operator. We use the Gaussian kernel for f in this paper (alternative kernels such
as TPS give similar results).

The generative model and the prior probabilities determine a similarity mea-
sure:

D(X||Y ) = − log p(X|Y ) = − log
∫ ∑

V

p(X,V, (A, f)|Y )dAdf . (2)

Unfortunately evaluating eqn. (2) requires integrating out (A, f) and sum-
ming out V . Both stages are computationally very expensive. Our strategy is
to approximate the sum over the V , by using the informative features described
in section (4). We then approximate the integral over (A, f) by the modes of
p(A, f |X,Y ) (similar to a saddle point approximation). Therefore we seek to
find the (A, f)∗ that best represent the distribution:

∫ ∑
V

p(X,V, (A, f)|Y )dAdf ∼ Par(p(X, (A, f)∗|Y )) (3)

where Par is a Parzen window. Our experiments show that the integral is almost
always dominated by (A, f)∗. Therefore, we approximate the similarity measure
by:

DAppox(X||Y ) = − log
∑
V

p(X,V, (A, f)∗|Y ), (4)

where

(A, f)∗ = argmax
(A,f)

∑
V

p(X,V, (A, f)|Y )

= arg min
(A,f)

− log
∑
V

p(X,V |Y, V, (A, f))p(A)p(f). (5)

In rare cases, we will require the sum over several models. For example, three
modes ((A, f)∗, (A, f)∗1, (A, f)

∗
2)) are required when matching two equal lateral

triangles, see Fig. (2).
Note that this similarity measure is not symmetric between X and Y . But

in practice, we found that it was approximately symmetric unless one shape was
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significantly larger than the other (because of how the A scales the measure).
To avoid this problem, we can compute D(X||Y ) + D(Y ||X). The recognition
aspect of the algorithm can be naturally extended from the similarity measure
for the two shapes.

3 The EM Free Energy

Computing (A, f)∗ in equation (5) requires us to sum out the hidden variable V .
This fits the framework of the EM algorithm. It can be shown [8] that estimating
(A, f)∗ in eqn. (5) is equivalent to minimizing the EM free energy function:

E(p̂, (A, f)) = −
∑
V

p̂(V ) log p(X,V |Y, (A, f))− log p(A, f) +
∑
V

p̂(V ) log p̂(V )

=
∑
V

p̂(V )ET (X,Y, V, (A, f)) + EA(A) + Ef (f) +
∑
V

p̂(V ) log p̂(V ).

(6)

The EM free energy is minimized when p̂(V ) = p(V |X,Y,A, f). The EM al-
gorithm consists of two steps: (I) The E-step minimizes E(p̂, (A, f)) with respect
to p̂(V ) keeping (A, f) fixed, (II) The M-step minimizes E(p̂, (A, f)) with respect
to (A, f) with p̂(V ) fixed. But an advantage of the EM free energy is that any
algorithm which decreases the free energy is guaranteed to converge to, at worst,
a local minima [8]. Therefore we do not need to restrict ourselves to the standard
E-step and M-step.

Chui and Rangarajan’s free energy [5],

E(M,f)=
N∑
i=1

N∑
a=1

mai||xi−f(va)||2+λ||Lf ||2+T
N∑
i=1

K∑
a=1

mai logmai−ζ
N∑
i=1

K∑
a=1

mai

(7)
can be obtained as a mean field approximation to the EM free energy. This
requires assuming that p̂(V ) can be approximated by a factorizable distribution∏

a P (va). The soft-assign variables mai ∈ [0, 1] are related to p̂(V ) by mai =
P̂ (va = i). An alternative approximation to the EM free energy can be done by
using the Bethe-Kikuchi free energy [9].

Like Rangarajan et al [5,9] we will need to approximate p̂(V ) in order to
make the EM algorithm tractible. Our approximations will be motivated by
informative features, see section (4), which will give a link to shape contexts [3]
and feature-based algorithms.

4 Implementing the EM Algorithm

In this section, we introduce informative features and describe the implementa-
tion of the algorithm.



200 Z. Tu and A.L. Yuille

p(  |X,Y)

9�: 9�: 9
: 9�: 9�: 9
:

Fig. 2. The distribution p(θ|X, Y ), shown in (f), has three modes for a target shape
X, shown in (a), and a source shape Y , shown in (b). (c), (d), and (e) respectively
display the three possible values for the θ.

4.1 Computing the Initial State

The EM algorithm is only guaranteed to converge to a local minima of the
free energy. Thus, it is critical for the EM algorithm to start with the “right”
initial state. Our preliminary experiments in shape matching suggested that the
probability distribution for (A, f) is strongly peaked and the probability mass is
concentrated in small areas around {(A, f)∗, (A, f)∗2, (A, f)∗3, ...}. Hence if we can
make good initial estimates of (A, f), then EM has a good chance of converging
to the global optimum.

The rotation angle θ is usually the most important part of (A, f) to be esti-
mated. (See Fig.2 for an example where there are three equally likely choices for
θ.) It would be best to get the initial estimate of θ from p(θ|X,Y ), but this re-
quires integrating out variables which is computationally too expensive. Instead,
we seek to approximate p(θ|X,Y ) (similar to the Hough Transform [2]) by an
informative feature distribution pIF (θ|X,Y ):

p(θ|X,Y ) ≈ pIF (θ|X,Y ) =
∑
i

∑
a

q(φ(xi), φ(ya))δ(θ − θ(a, i,X, Y )), (8)

where φ(xi) and φ(ya) are informative features for point xi and ya respectively,
q(xi,ya) is a similarity measure between the features, and θ(X,Y, a, i) is the
angle if the ith point on X is matched with ath point on Y .

Next, we describe how to design the informative features φ(xi) and the sim-
ilarity measures q(φ(xi), φ(ya)).

4.2 Designing the Informative Features

The informative features are used to make computationally feasible approxima-
tions to the true probability distributions. They should observe two key proper-
ties to have∫

p(θ|X,Y, (A θ, f))p(A θ)p(f)dA θdf ≈ p(θ|φ(X), φ(Y ))

(I) They should be “invariant” as possible to the transformations. Ideally
p(θ|φ(X), φ(Y ), (A θ, f)) = p(θ|φ(X), φ(Y )).
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(a) Local and global features for connected points.

(b) Similarity measure on the features

Fig. 3. Features and the similarity measure of the features. a) Illustrates how the local
and global features are measured for connected points. In b)., the features of two points
in shape X and Y are displayed. The top figure in the middle of b). shows similarities
between point a in Y w.r.t. all points in X using the shape context feature. The other
two figures in the middle of b). are the similarities between points a and b in Y w.r.t.
all points in X respectively. As we can see, similarities by features defined in this paper
for connected points have lower entropy than those by shape contexts.

(II) They should be “representative”. For example, we would ideally have

∫
p(θ|X,Y, (A θ, f))p(A θ)p(f)dA θdf =

∫
p(θ|φ(X), φ(Y ), (A θ, f))p(A θ)p(f)dA θdf

where A θ is the components of A except for θ and φ(X), φ(Y ) are the feature
vectors for all points in both images.

The two properties for imformative features are also used to approxi-
mate distribution of other variables, for example, p(V |X,Y ), which requires
us to integrate out (A, f) and can be approximated by pIF (V |φ(X), φ(Y )) =∏

a q(φ(xva
), φ(ya)).

In this paper we select the features φ(.) and measures q(., .) so as to obtain
PIF with low-entropy. This is a natural choice because it implies that the features
have low matching ambiguity. We can evaluate this low-entropy criteria over our
dataset for different choices of features and measures, see figure (3).

A better criteria, though harder to implement, is to select the features and
measures which maximize the conditional Kullback-Leibler divergence evaluated
over the distribution p(X,Y ) of problem instances:
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∑
X,Y

p(X,Y )
∑
(A,f)

p(V, (A, f)|X,Y ) log p(V, (A, f)|X,Y )
pIF (V, (A, f)|φ(X), φ(Y )) , (9)

but full evaluation of this criterion is a task for future work.
We used the low-entropy criterion to devise different sets of features for the

two cases, shapes of connected points representation and shapes of sparse points
representation.

Case I: The Connected Point Representation
We use local and global features illustrated by Fig.3. The local features at a
point x(si) with tangent ψi are defined as follows. Choose six points on the curve
by (x(si−3ds),x(si−2ds),x(si−ds),x(si+ds),x(si+2ds),x(si+3ds)), where ds
is a (small) constant. The angles of these positions w.r.t. point xi are ψi+ωj , j =
1..6). The local features are hl(xi) = (ωj , j = 1..6). The global features are
selected in a similar way. We choose six points near x(si), with tangent ψi, to be
(x(si−3∆s),x(si−2∆s),x(si−∆s),x(si+∆s),x(si+2∆s),x(si+3∆s)), where
∆s is a (large) constant, with angles ψi+ϕj : j = 1, ..., 6. The global features are
hg(xi) = (ϕj , j = 1..6). Observe that the features φ = (hl, hg) are invariant to
rotations in the image plabe and also, to some extent, to local transformations.

In Fig. (3).b., for display purposes we plot sinusoids (sin(hl), sin(hg)) for
two points on the X and two points on the Y . Observe the similarity between
these features on the corresponding points.

The similarity measure between the two points is defined to be:

qc(φ(xi), φ(ya)) = 1− c1(
6∑

j=1

Dangle(ωj(xi)− ωj(ya)) +
6∑

j=1

Dangle(ϕj(xi)− ϕj(ya))),

where Dangle(ωj(xi) − ωj(ya)) is the minimal angle from ωj(xi) to ωj(ya), and
c1 is a normalization constant. The second and the third row in the middle of
Fig. (3).b. respectively plot the vector qc(y) = [qc(φ(xi), φ(y)), i = 1..M ] as a
function of i for points ya and yb on Y .

Case II: The Sparse Point Representation
In this case, we also use local and global features. To obtain the local feature
for point xi, we draw a circle with a (small) radius r and collect all the points
that fall into the circle. The relative angles of these points w.r.t. xi and xi’s
tangent angle are computed. The histogram of these angles is then used as the
local feature, Hl.

The global feature for the sparse points is computed by shape contexts [3].
We denote it by Hg and the features become φ = (Hl, Hg).

The feature similarity between two points xi and ya is measured by the χ2

distance:

qs(φ(xi), φ(ya)) = 1− c2(χ2(Hl(xi), Hl(ya)) + χ2(Hg(xi), Hg(ya))).

The first row in the middle of Fig. (3).b. plots the vector

qs(ya) = [qs(φ(xi), φ(ya)), i = 1..M ]

as a function of i for a point ya on Y .
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The advantage of the sparse point representation is that it is very general
and does not require a procedure to group points into contours. But for this very
reason, the features and measures have higher entropy than those for the con-
nected point representation. In particular, the global nature of the shape context
features [3] means that these features and measures tend to have high entropy,
see the Fig. (3)b., particularly shape context features are also of unnecessarily
high dimension – consisting of 2D histograms with 60 bins – and better results,
in terms of entropy, can be obtained with lower dimensional features.

4.3 The E Step: Approximating p̂(V )

We can obtain an approximation pIF (θ|X,Y ) to p(θ|X,Y ), see equation (8),
using the informative features and similarity measures described in the previous
section. We select each peak in pIF (θ|X,Y ) as an initial condition θinitial for
θ. The same approach is used to estimate the other variables in A and f from
p(V |X,Y, θinitial). We use similar informative features to those described in the
previous section except that we replace ψ by θinitial

h′
l = (ω′

j , j = 1..6) = (αj − θinitial, j = 1..6),

and
h′
g = (ϕ′

j , j = 1..6) = (βj − θinitial, j = 1..6). (10)

We also augment the similarity measure by including the scaled relative po-
sition of point xi to the center of the shape x̄ = 1

M

∑
i xi:

q′c(φ(xi), φ(ya)) = 1− c′1
6∑

j=1

[Dangle(ω′
j(xi)− ω′

j(ya)) +Dangle(ϕ′
j(xi)− ϕ′

j(ya)))]

− c′2||xi − x̄,ya − ȳ||2.
Thus, we have the following approximation:

p(V |X,Y, θ) ≈ pIF (V |X,Y, θ) =
∏
a

pif (va|ya, X, Y, θ). (11)

where

pif (va = i|ya, X, Y, θ) ≈ q′c(φ(xi), φ(ya))∑M
j=0 q

′
c(φ(xj), φ(ya))

.

After the first iteration, we update the features and feature similarity measure
by q′c(φ(xi), φ((A + f)(ya))) and use them to approximate p(V |X,Y, (A, f)) as
in eqn (11).

4.4 The M Step: Estimating A and f

Once we have an approximation to p̂(V ), we then need to estimate (A, f) ac-
cording to eqn. (6). We expand E(p̂, (A, f)) as a Taylor series in A, f keeping the
second order terms and then estimate (A, f) by least squares.
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5 Summary of the Algorithm

Our algorithm is performed by an approximation to the EM algorithm and it
proceeds as follows:

1. Given a target shape X and a source shape Y , it computes their informative
features described in section 4.2 and uses PIF (θ|X,Y ) (equation (8)) to
obtain several possible rotation angles θinitials.

2. For each rotation angle θinitial, we obtain a new shape Y ′ by rotating it for
θinitial.

3. Update features for shape Y ′ and estimate p(V |X,Y, θ) by PIF (V |XY, θ) as
eqn. (11).

4. Estimate (A, f) from the EM equation by least-squares method.
5. Obtain the new shape Y ′ by the transformation function Ay+ f(Y ). Repeat

step 3 for 4 iterations.
6. Compute the similarity measure and keep the best (A, f)∗, among all the

initial θinitials and compute the metric according to eqns. (3) and (2). (We
can also combine the results from several starting points to approximate eqn.
2. In practice, we found there is not much difference except for special cases
like the equal lateral triangle.)

The algorithm runs at 0.2 seconds for matching X and Y of around 100
points. Note that our method does not need the target shape X and the source
shape Y to have the same or nearly the same number of points, which is a key
requirement for many matching algorithms.

6 Experiments

We tested our algorithm on a variety of data sets and some results are reported
in this section. Fig.4 shows the running example where the source shape Y in
(d) is matched with the target shape X. Fig.4.e and .f show the transformation
A∗ and f∗ estimated.

6.1 MPEG7 Shape Database

We first tested our algorithm on the MPEG7 CE-Shape-1 [7] which consists of
70 types of objects each of which has 20 different silhouette images (i.e. a total of
1400 silhouettes). Since the input images are binarized, we can extract contours
and use the connected point representation. Fig.5.a displays 2 images for each
type. The task is to do retrieval and the recognition rate is measured by “Bull’s
eye” [7]. For every image in the database, we match it with every other image and
keep the 40 best matched candidates. For each one of the other 19 of the same
type, if it is in the selected 40 best matches, it is considered as a success. Observe
that the silhouettes also include mirror transformations which our algorithm
can take into account because the informative features are computed based on
relative angles. The recognition rates for different algorithms are shown in table
1 [10] which shows that our algorithms outperforms the alternatives. The speed
is in the same range as those of shape contexts [3] and curve edit distance [10].
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(a) Target shape X (b)(A + f)(Y ) at step 1 (c) (A + f)(Y ) at step 4

(d) Source shape Y (e) A∗ (f) f∗

Fig. 4. Shape matching of the running example.

(a) Some typical images in MPEG7 (b) The four types with the lowest rates
CE-Shape-1

Fig. 5. Matching as image retrieval for the MPEG7 CE-Shape-1.

Table 1. The retrieval rates of different algorithms for the MPEG7 CE-Shape-1. Re-
sults by the other algorithms are from Sebastian et al. [10].

Algorithm CSS Visual Parts Shape Contexts Curve Edit Distance Our Method
Recognition Rate 75.44% 76.45% 76.51%[3] 78.17% [10] 80.03%

6.2 The Kimia Data Set

We then tested the identical algorithm (i.e. connected point representation and
same algorithm parameters) on the Kimia data set of 99 shapes [11], which are
shown in Fig.6.a. For each shape, the 10 best matches are picked since there
are 10 other images in the same category. Table 2 shows the numbers of correct
matches. Our method performs similarly to Shock Edit [11] for the top 7 matches,
but is worse for the top 8 to 10. Shape context performs less well than both
algorithms on this task. Fig.6.b. displays the fifteen top matches for some shapes.
Our relative failure, compared with Shock Edit, is due to the transformations
which occur in the dataste, see the 8-10th examples for each object in figure (6),
and which require more sophisticated representations and transformations than
those used in this paper.
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(a) The 99 silhouette images of the Kimia data set.

(b) Some matching results by our method (c) Some matching results by Shock Edit

Fig. 6. The Kimia data set of 99 shapes and some matching results.

Table 2. Numbers of matched shapes by different algorithms. Results by the other
algorithms are due to Sebastian et al. [11].

Algorithm Top 1 Top 2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Top 10
Shock Edit 99 99 99 98 98 97 96 95 93 82
Our Method 99 97 99 98 96 96 94 83 75 48

Shape Contexts 97 91 88 85 84 77 75 66 56 37

(a) Some typical text images.

9�: �� 9
: �� 9�: 9�: 9
: �� 9�: �� 9�: 9�:

Fig. 7. Results on some text images. (e) and (i) display the matching. We purposely
put two shapes together and find that the algorithm is robust in this case.

6.3 Text Image Matching

The algorithm was also tested on real images of text in which binarization was
performed followed by boundary extraction. Some examples are shown in Fig.7.
Similar results can be obtained by matching the model to edges in the image.
Further tests on this dataset are ongoing.
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Fig. 8. Some results on Chui and Rangarajan data set.
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Fig. 9. Result on a hand image.

6.4 Chui and Rangarajan

To test our algorithm as a shape registration method, we also tried the data set
used by Chui and Rangarajan [5]. We used the sparse point representation in
this case. The algorithm runs for 10 steps and some results are shown in Fig.8.
The quality of our results are similar to those reported in [5]. But our algorithm
runs an estimated 20 times faster.
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6.5 A Detection Task

Our algorithm can also be used for object detection where, unlike recognition,
we do not know where the object is in the image. To illustrate this, we tested
our algorithm on a hand image used in [14]. Edge points were extracted to act as
the target shape and the source image was a hand represented by sparse points.
The result is shown in Fig.9.

7 Discussion

This paper introduced a criterion for shape similarity and an algorithm for com-
puting it. Our approach helps show relations between softassign [5] and shape
contexts [3]. We formulated shape similarity by a generative model and used a
modified variant of the EM algorithm for inference. A key element is the use of
informative features to guide the algorithm to rapid and correct solutions. We
illustrated our approach on datasets of binary and real images, and gave com-
parison to other methods. Our algorithm runs at speeds which are comparable
to alternatives and is faster than others by orders of magnitude.

Our work is currently limited by the types of representations we used and
the transformations we allow. For example, it would give poor results for shape
composed of parts that can deform independently (e.g. human figures). For such
objects, we would need representations based on symmetry axes such as skele-
tons [10] and parts [16]. Our current research is to extend our method to deal
with such objects and to enable the algorithm to use input features other than
edge maps and binary segmentations.
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