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Abstract. A dynamic visual search framework based mainly on inner-
scene similarity is proposed. Algorithms as well as measures quantifying
the difficulty of search tasks are suggested. Given a number of candidates
(e.g. sub-images), our basic hypothesis is that more visually similar can-
didates are more likely to have the same identity. Both deterministic and
stochastic approaches, relying on this hypothesis, are used to quantify
this intuition. Under the deterministic approach, we suggest a measure
similar to Kolmogorov’s e-covering that quantifies the difficulty of a se-
arch task and bounds the performance of all search algorithms. We also
suggest a simple algorithm that meets this bound. Under the stochastic
approach, we model the identities of the candidates as correlated ran-
dom variables and characterize the task using its second order statistics.
We derive a search procedure based on minimum MSE linear estima-
tion. Simple extensions enable the algorithm to use top-down and/or
bottom-up information, when available.

1 Introduction

Visual search is required in situations where a person or a machine views a scene
with the goal of finding one or more familiar entities. The highly effective visual-
search (or more generally, attention) mechanisms in the human visual system
were extensively studied from psychophysics and physiology points of view. Yar-
bus [24] found that the eyes rest much longer on some elements of an image,
while other elements may receive little or no attention. Neisser [11] suggested
that the visual processing is divided into pre-attentive and attentive stages. The
first consists of parallel processes that simultaneously operate on large portions
of the visual field, and form the units to which attention may then be directed.
The second stage consists of limited-capacity processes that focus on a smal-
ler portion of the visual field. Triesman and Gelade (feature integration theory
[19]) formulate an hypothesis about how the human visual system performs pre-
attentive processing. They characterized (qualitatively) the difference between
search tasks requiring scan (serial) and those which do not (parallel, or pop-
out). While several aspects of the Feature Integration Theory were criticized,
the theory was dominant in visual search research and much work was carried
out based on its premises, e.g. to understand how feature integration occurs
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(some examples are [8123[21]). Duncan and Humphreys rejected the dichotomy
of parallel vs. serial search and proposed an alternative theory based on simi-
larity [B]. According to their theory, two types of similarities are involved in a
visual search task: between the objects in the scene, and between the objects
and prior knowledge. They suggest that when a scene contains several similar
structural units there is no need to treat every unit individually. Thus, if all
non-targets are homogeneous, they may be rejected together resulting in a fast
(pop-out like) detection, while if they are heterogeneous the search is slower.

Several search mechanisms were implemented, usually in the context of HVS
(human visual system) studies (e.g. [R2T[2315]). Other implementations focused
on computer vision applications (e.g. [JJT7/T]]), and sometimes used other sour-
ces of knowledge to direct visual search. For example, one approach is to search
first for a different object, easier to detect, which is likely to appear close to the
sought for target ([IH22]). Relatively little was done to quantitatively characte-
rize the inherent difficulty of search tasks. Tsotsos [20] considers the complexity
of visual search and proves, for example, that spatial boundedness of the target
is essential to make the search tractable. In [22], the efficiency of indirect search
is analyzed.

This work has two goals: to provide efficient search algorithms and to quanti-

tatively characterize the inherent difficulty of search tasks. We focus on the role
of inner-scene similarity. As suggested in [3], the HVS mechanism uses similarity
between objects of the same identity to accelerate the search. In this paper we
show that computerized visual search can also benefit from such information,
while most visual search application totally ignore this source of knowledge. We
take both deterministic and stochastic approaches. Under the deterministic ap-
proach, we characterize the difficulty of the search task using a metric-space cover
(similar to Kolmogorov’s e-covering [9]) and derive bounds on the performance
of all search algorithms. We also propose a simple algorithm that provably meets
these bounds. Under the stochastic approach, we model the identity of the can-
didates as a set of correlated random variables taking target/non-target values
and characterize the task using its second order statistics. We propose a linear
estimation based search algorithm which can handle both inner-scene similarity
and top-down information, when available.
Paper outline: The context for visual search and some basic intuitive assumptions
are described in Sect. Bl Sect. B develops bounds on the performance of search
algorithms, providing measures for search tasks’ difficulty. Sect. Bl describes the
VSLE algorithm based on stochastic considerations In Sect.[d we experimentally
demonstrate the validity of the bounds and the algorithms’ effectiveness.

2 Framework

2.1 The Context — Candidate Selection and Classification

The task of looking for object/s of certain identity in a visual scene is often divi-
ded into two subtasks. One is to select sub-images which serve as candidates. The

! A preliminary version of the VSLE algorithm was presented in [I].
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other, the object recognition task, is to decide whether a candidate is a sought
for object or not. The candidate selection task can be performed by a segmenta-
tion process or even by a simple division of the image into small rectangles. The
candidates may be of different size, bounded or unbounded [20], and can also
overlap. The object recognizer is usually computationally expensive, as the ob-
ject appearance may vary due to changes in shape, color, pose, illumination etc.
The recognizer may need to recognize a category of objects (and not a specific
model), which usually makes it even more complex.

The object recognition process gets the candidates, one by one, after some
ordering. An efficient ordering, which is more likely to put the real objects first,
is the key to high efficiency of the full task. This ordering is the attentional
mechanism on which we focus here.

2.2 Sources of Information for Directing the Search

Several information sources enabling more efficient search are possible:
Bottom-up saliency of candidates - In modelling HVS attention, it is often
claimed that a saliency measure, quantifying how every candidate is different
from the other candidates in the scene, is calculated. ([L9I8I7]). Saliency is im-
portant in directing attention, but it can sometimes mislead or not be applicable
when, say, the scene contains several similar targets.

Top-down approach - When prior knowledge is available, the candidates may
be ranked by their degree of consistency with the target description ([23l6]). In
many cases, however, it is hard to characterize the objects of interest in a way
which is effective and inexpensive to evaluate.

Mutual similarity of candidates - Usually, a higher inner-scene visual simi-
larity implies a higher likelihood for similar (or equal) identity ([3]). Under this
assumption, after revealing the identity of one (or a few) candidates, it can effect
the likelihood of the remaining candidates to have the same/different identity.

In this paper we focus on (the less studied) mutual similarity between can-
didates, and assume that no other information is given. Nevertheless, we show
how to handle top-down information and saliency, when available.

To quantify similarity, we embed the candidates as points in a metric space
with distances reflecting dissimilarities. We shall either assume that the distance
between two objects of different identities is larger than a threshold (determi-
nistic approach), or that the identity correlation is a monotonically descending
function of this distance (stochastic approach).

2.3 Algorithms Framework

The algorithms we propose share a common framework. They begin from an
initial priority map, indicating the prior likelihood of each candidate to be a
target. Iteratively, the candidate with the highest priority receives the attention.
The relevant sub-image is examined by a high-level recognizer, which we denote
the recognition oracle. Based on the oracle’s response and the previous priority
map, a new priority map is calculated, taking into account the similarities.
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Usually, systems based on bottom-up or top-down approaches suggest calcu-
lating a saliency map before the search starts, pre-specifying the scan order. This
static map may change only to inhibit the return to already attended locations
[8]. The search algorithms proposed here, however, are dynamic as they change
the priority map based on the results of the object recognizer.

2.4 Measures of Performance

For quantifying the search performance, we take a simplified approach and as-
sume that only the costs associated with calling the recognition oracle are sub-
stantial. Therefore, we measure (and predict) the number of queries required to
find a target.

3 Deterministic Bounds of Visual Search Performance

In this section we analyze formally the difficulty of search tasks. Readers inte-
rested only in the more efficient algorithms based on a stochastic approach can
skip this section and continue reading from section E1].

Notations. We consider an abstract description of a search task as a pair (X, 1),
where X = {xy,29,...,2,} is a set of partial descriptions associated with the
set of candidates, and | : X — {T, D} is a function assigning identity labels
to the candidates. I(x;) = T if the candidate z; is a target, and I(z;) = D if
x; is a non-target (or a distractor). An attention, or search algorithm, A, is
provided with the set X, but not with the labels {. It requires cost; (4, X,1)
calls to the recognizer oracle, until the first target is found. We refer to the set
of partial descriptions X = {x1,29,...,2,} as points in a metric space (5, d),
d: S xS — Rt being the metric distance function. The partial description can
be, for example, a feature vector, and the distance may be the Euclidian metric.

A Difficulty Measure Combining Targets’ Isolation and Candidates’
Scattering. We would like to develop a search task characteristic which quanti-
fies the search task difficulty. To be effective, this characteristic should combine
two main factors:

1. The feature-space-distance between target and non-target candidates.
2. The distribution of the candidates in the feature space.

Intuitively, the search is easier when the targets are more distant from non-
targets. However, if the non-targets are also different from each other, the search
again becomes difficult. A useful quantification for expressing a distribution of
points in a metric space uses the notion of a metric cover [9].

Definition 1. Let X C S be a set of points in a metric space (S,d). Let 2° be
the set of all possible subsets of S. C C 25 is ‘a cover’ of X if Vo € X3C € C
st.anNC#0.
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Definition 2. C C 2° is a ‘dy-cover’ of a set X if C is a cover of X and if
VC € C diameter(C) < do, where diameter(C') is max., ¢,ec d(cl, c2).

Definition 3. A ‘minimum-dy-cover’ is a dy-cover with a minimal number of
elements. We shall denote a minimum-dy-cover and its size by Cq,(X) and
cdo (X)), respectively.

If, for example, X is a set of feature vectors in a Euclidian space, ¢q4, (X) is
the minimum number of m-spheres with diameter dg required to cover all points
in X.

Definition 4. Given a search task (X, 1), let the ‘maz-min-target-distance’, de-
noted dr, be the largest distance of a target to its nearest non-target neighbor.

Theorem 1. Let Xy, . denote all the family of search tasks (X,l) for which
dp,the maz-min-target-distance, is bounded from below by some dy (dr > dy) and
for which the minimum-dy-cover size is ¢ (cq,(X) = ¢). The value ¢ quantitatively
describes the difficulty of Xy, . in the sense that:

1. Any search algorithm A needs to query the oracle for at least ¢ candidates in
the worst case before finding a target. (VA (X, 1) € Xy, .c; costi (A, X, 1) > ¢)

2. There is an algorithm that, for all tasks in this family, needs no more than
¢ queries for finding the first target.(JAY(X,1) € Xy, . cost1(A, X,1) <c)

Proof: 1. We first provide such a ‘worst case’ X, and then choose the labels
| depending on the algorithm A. Choose ¢ points in the metric space, so that
all the inner-point distances are at least dy. Choose the n candidates to be
divided equally among these locations. Until a search algorithm finds the first
target, it receives only no answers from the recognition oracle. Therefore, given a
specific algorithm A and the set X, the sequence of attended candidates may be
simulated under the assumption that the oracle returns only no answers. Choose
an assignment of labels [ that assigns 7" only to the group of candidates located
in the point whose first appearance in that sequence is last. A will query the
oracle at least ¢ times before finding a target.

2. We suggest the following simple algorithm, which suffices for the proof:
FLINN- Farthest Labeled Nearest Neighbor: Given a set of candidates X =
{z1,...,2,}, randomly choose the first candidate, query the oracle and label
this candidate. Repeat iteratively, until a target is detected: for each unlabeled
candidate x;, compute the distance dL; to the nearest labelled neighbor. Choose
the candidate x; for which dL; is maximum. Query the oracle to get its label.
Let us show that FLNN finds the first target after at most ¢ queries for all
search tasks (X,!) from the family Xy, .: Take an arbitrary minimum-dy-cover
of X, Cyq,(X). Let z; be a target so that d(z;,z;) > dy for every distractor z;
(such a x; exists since dr > dp). Let C be a covering element(C' € Cg4,(X)) so
that z; € C. Note that all candidates in C' are targets. Excluding C, there are
(¢ — 1) other covering elements in Cg, (X ) with diameter < dy. Since C' contains
a candidate whose distance from all distractors > dy, FLNN will not query two
distractor-candidates in one covering element (whose distance < dy), before it
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queries at least one candidate in C'. Therefore, a target will be located after at
most ¢ queries. (It is possible that a target that is not in C' will be found earlier,
and then the algorithm stops even earlier.) [ ]

Note that no specific metric is considered in the above claim and proof.
However, the cover size and the implied search difficulty depend on the partial
description (features), which may be chosen depending on the application.

Note also that FLNN does not need to know dy and performs optimally (in
the worst case) relative to the (unknown) difficulty of the task.

Note that cg,.(X) is the tightest suggested upper-bound on the performance
of FLNN for a task (X,!) for which its max-min-target-distance is dp. Given a
search task, naturally, we do not know who the targets are in advance and do
not know dp. Nevertheless, we might know that the task belongs to a family of
search tasks for which dp is greater than some dy. In this case we can compute
¢d,(X), and predict an upper-bound on the queries required for FLNN.

The problem of finding the minimum cover is NP-hard. Gonzalez [4] proposes
a 2-approximation algorithm for the problem of clustering a data set minimizing
the maximum inner-cluster distance, and proves it is the best approximation
possible if P £ N P. In our experiments we used a heuristic algorithm that pro-
vided tighter upper bounds on the minimum cover size. Note also that according
to the theorem, FLNN’s worst cases’ results may serve as a lower bound on the
minimum cover size as well.

Since computing the cover is hard, we also suggest a more simple measure for
search difficulty. Given a bounded metric-space containing the candidates, cover
all the space with covering elements with diameter dy. (For the m-dimensional
bounded Euclidean metric space [0, 1]™, there are [dﬁgﬂm such elements.) The
number of non-empty such covering elements is an upper-bound on the minimal
cover size. See [2] for more results and a more detailed discussion.

4 Dynamic Search Algorithm Based on a Stochastic
Model

The FLNN algorithm suffers from several drawbacks. It relates only to the nea-
rest neighbor, which makes it non-robust. A single attended distractor close to
an undetected target, reduces the priority of this target and slows the search.
Moreover, it does not extend naturally to finding more than one target, and to
incorporating bottom-up and top-down information, when available. The alter-
native algorithm suggested below addresses these problems.

4.1 Statistic Dependencies Modelling

Taking a stochastic approach, we model the object identities as binary random
variables with possible values 0 (for non-target) or 1 (for target).

Recall that objects associated with similar identities tend to be more visually
similar than objects which are of different identities. To quantify this intuition,
we set the covariance between two labels to be a monotonic descending function
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v of the feature-space-distance between them: cov(l(x;),l(x;)) = y(d(x;, x;)),
where X = {x1,z2,...,2,} is a set of partial descriptions (feature vectors) as-
sociated with the set of candidates, I(x;) is the identity label of the candidate
xi, and d is a metric distance function. In our experiments we use an exponen-
tially descending function (e‘d(““‘”f )/dmaz where dmax is the greatest distance
between feature-vectors), which seems to be a good approximation to the actual
dependency (see Sect. [5.2)).

4.2 Dynamic Search Framework

We propose a greedy approach to a dynamic search. At each iteration, estimate
the probability of each unlabelled candidate to be a target using all the know-
ledge available. Choose the candidate for which the estimated probability is the
highest and apply the object recognition oracle on the corresponding sub-image.

After the m—th iteration, m candidates, x1, x2, ..., Z,,, were already handled
and m labels, [(x1),l(z2),...,l(xy,) are known. We use these labels to estimate
the conditional probability of the label I(z)) of each unlabelled candidate xy, to
be 1.

pr = p(l(zk) = 1] U(z1),- .. U(wm))- (1)

4.3 Minimum Mean Square Error Linear Estimation

Now, note that the random variable [ is binary and, therefore, its expected va-
lue is equal to its probability to take the value 1. Estimating the expected value,
conditioned on the known data, is generally a complex problem and requires kno-
wledge about the labels’ joint distribution. We use a linear estimator minimizing
the mean square error criterion, which needs only second order statistics.

Given the measured random variables I(x1),l[(z2), ..., (2, ), we seek a linear
estimate [}, of the unknown random variable l(xg), I, = ap+ > ail(x;), which
minimizes the minimum mean square error e = E((I(z)) — I;)?). Solving a set
of (Yule-Walker) equations provides the following estimation:

Iy = Ell(zx)] + a' (L — E[l)), 2)

where I = (I(z1),1(x2),...,l(zy)) and a = R~ -r. Ry, i,j = 1,...,m and r;,

i=1,...,m are given by R;; = cov(l(x;),l(x;)) and r; = cov(l(xy),(z;)).
E(ly) is the expected value of the label I, which is the prior probability for

xy, to be a target. If there is no such knowledge, F(l;) can be set to be uniform,

ie., % (where n is the number of candidates). If there is prior knowledge on

the number of targets in the scene, E(l) should be set to 2 (where m is the
expected number of targets).

The estimated label [}, is the conditional mean of a label I(xy) of an unclassi-
fied candidate x, and, therefore, may be interpreted as the probability of (xy)
to be 1

pr = pl(ar) =T [ 1(x1), ..., l(zm)) ~ L.



Dynamic Visual Search Using Inner-Scene Similarity 65

4.4 The Algorithm: Visual Search Using Linear Estimation — VSLE

— Given a scene image, choose n sub-images to be candidates.

Eztract the set of feature vectors X = {x1,22,...x,}.

— Calculate pairwise feature space distances and the implied covariances.

— Select the first candidate/s randomly (or based on some prior knowledge).
In iteration m + 1:

e For each candidate xy out of the n —m remaining candidates, estimate
I, € [0,1] based on the known labels I(x1), ..., 1(x,,) using equation[d.

e Query the oracle on the candidate xy for which I, is mazimum.

o [f enough targets were found - abort.

Our goal is to minimize the expected search time, and the proposed algo-
rithm, being greedy, cannot achieve an optimal solution. It is, however, optimal
with respect to all other greedy methods (based on second order statistics), as
it uses all the information collected in the search to make the decision.

Note that clustered non-targets accelerate the search and even let the target
pop-out when there is only a single non-target cluster. Clustered targets are
found immediately after the first target is detected.

As the covariance decreases with distance, estimating the labels only from
their nearest (classified) neighbors is a valid approximation which accelerates
the search.

4.5 Combining Prior Information

Bottom-up and top-down information may be naturally integrated by specifying
the prior probabilities (or the prior means) according to either the saliency or the
similarity to known models. Moreover, if the top-down information is available as
k model images (one or more), we can simply add them as additional candidates
that were examined before the actual search. Continuing the search from this
point is naturally faster; see end of Sect[5.2l

5 Experiments

In order to test the ideas described so far, we conducted many experiments using
images of different types, using different methods for candidates selection, and
different features to partially describe the candidates. Below, we describe a few
examples that demonstrate the relation between the algorithms’ performance
and the tasks’ difficulty.

5.1 FLNN and Minimum-Cover-Size

The first set of experiments considers several search tasks and focus on their
characterization using the proposed metric cover. Because calculating the mi-
nimal cover size is computationally hard, we suggest several ways to bound it
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from above and from below and show that combining these methods yields a
very good approximation. In this context we also test the FLNN algorithm and
demonstrate its guaranteed performance. Finally we provide the intuition ex-
plaining why indeed harder search tasks are characterized by larger covers.

The first three search tasks are built around the 100 images corresponding to
the 100 objects in the COIL-100 database [12] in a single pose. We think of these
images as candidates extracted from some larger image. The extracted features
are first, second, and third Gaussian derivatives in five scales [14] resulting in
feature vectors of length 45. A Euclidian metric is used as the feature space
distance. The tasks differ in the choice of the target which was cups (10 targets),
toy cars (10 targets) and toy animals (7 targets) in the three search tasks.

The minimal cover size for every task is bounded as follows: First the minimal
target-distractor distance, dr, is calculated. We developed a greedy heuristic
algorithm which prefers sparse regions and provide a possibly non-tight but
always valid dp- cover ; see [2] for details. For the cups search task the cover size
was, for example, 24. For all tasks, this algorithm provided smaller (and tighter)
covers than those obtained with the 2-approximation algorithm suggested by
Gonzalez [4], which for the cups task gave a cover of size 42. Both algorithms
provide upper bounds on the size of the minimal cover. See table [[[for cover sizes.
Being a rigorous 2-approximation, half of the latter upper bound value (42/2=21
for the cups) is also a rigorous lower bound on the minimal cover size. Another
lower bound may be found by running the FLNN algorithm itself, which, by
theorem [, needs no more than ¢4, (X) queries to the oracle. By running the
algorithm 100 times, starting from a different candidate each run and taking the
largest number of queries required (18 for the cups task), we get the tightest
lower bound; see table [[l where the average number of queries required by the
FLNN is given as well.

Note that the search for cars was the hardest. While the car targets are
very similar to each other (which should ease the search), finding the first car
is hard due to the presence of distractors which are very similar to the cars
(dr is small). The cups are also similar to each other, but are dissimilar to
the distractors, implying an easier search. On the other hand, the different toy
animals are dissimilar, but as one of them is very dissimilar from all candidates,
the task is easier as well. Note that the minimal cover size captures the variety
of reasons characterizing search difficulty in a single scalar measure.

We also experimented with images from the Berkeley hand segmented da-
tabase [I0] and used the segments as candidates; see Fig[ll. Small segments are
ignored, leaving us with 24 candidates in the elephants image and 30 candidates
in the parasols image. The targets are the segments containing elephants and
parasols, respectively. For those colored images we use color histograms as fea-
ture vectors. In each segment (candidate), we extract the values of ﬁ and
ﬁ from each pixel, where 7, g, and b are values from the RGB representation.
Each of these two dimensions is divided into 8 bins, resulting a feature vector
of length 64. Again, we use Euclidean metric for distance measure. (Using other

histogram comparison methods, such as the ones suggested in [I6] the results
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Fig. 1. The elephants and parasols images taken from the Berkeley hand segmented
database and the segmentations we used in our experiments. (colored images)

Table 1. Experiment results for FLNN and cover size. The real value of minimal cover
size is bounded from below by ‘FLNN worst’ and the half of ‘2-Approx. cover size’, and
bounded from above by ‘Heuristic cover size’ and ‘2-Approx. cover size’. The rightmost
column shows that VSLE improves the results of FLNN for finding the first target.

Search | # of # of |[FLNN FLNN|Heuristic 2-Approx.| Real |VSLE
task cand. targets| worst mean |cover size cover size|cover size| worst
cups 100 10 18 8.97 24 42 21-24 15
cars 100 10 73 33.02 79 88 73-79 39

toy animals| 100 7 22 9.06 25 42 22-25 13
elephants | 24 4 9 5.67 9 11 9 8
parasols 30 6 6 3.17 8 13 7-8 4

were similar.) See the results in Table I Although the mean results are usually
not better than the mean results of a random search, the worst results are much
better.

5.2 VSLE and Covariance Characteristics

The VSLE algorithm described in SectH] was implemented and applied to the
same five visual search tasks described in Sect[BIl See FigBl for part of the
results. Unlike FLNN which deals only with finding the first target, VSLE con-
tinues and aims also to find the other targets. Moreover, in almost all the expe-
riments we performed, VSLE was faster in finding the first target (both in the
worst and the mean results). See the rightmost column in table [

VSLE relies on the covariance between candidates’ labels. We use a covariance
function that depends only on feature-space-distance, and argue that for many
search tasks this function is monotonic descending in this distance. To check
this assumption we estimate the covariance of labels vs. feature-space-distance
of search tasks and confirmed for its validity; see Fig2and [2].

We experimented with a preliminary version of integrated segmentation and
search. An input image (see FigB) was segmented using k means clustering in
the RGB color space (using 6 clusters). All (146) connected components larger
than 100 pixels served as candidates. The VSLE algorithm searched for the (7)
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faces in the image, using a feature vector of length 4: each segment is represented
by the mean values of red green and blue and the segment size.

No prior information on size, shape color or location was used. Note that
this search task is hard due to the presence of similarly colored objects in the
background, and due to the presence of hands which share the same color but
are not classified as targets. Note that in most runs six of the seven faces are
detected after about one-sixth of the segments are examined. We deliberately
chose a very crude segmentation, demonstrating that very good segmentation is
not required for the proposed search mechanism.

Using the method suggested in Sect .5, we incorporate top-down information
and demonstrate it on the toy cars case: 3 toy cars which do not belong to the
COIL-100 database are used as model targets. The search time was significantly
reduced as expected; see Fig[l.

6 Discussion

In this paper we considered the usage of inner-scene similarity for visual se-
arch, and provided both measures for the difficulty of the search, and algorithms
for implementing it. We took a quantitative approach, allowing us not only to
optimize the search but also to quantitatively predict its performance.

Interestingly, while we did not aim at modelling the HVS attention system,
it turns out that it shares many of its properties, and in particular, is similar to
Duncan and Humphreys’s model [3]. As such, our work can be considered as a
quantification of their observations. Not surprisingly, our results also show that
there is a continuity between the two poles of ‘pop-out’ and ‘sequential’ searches.

While many search tasks rely only on top down or bottom up knowledge,
inner scene similarities always help and may become the dominant source of
knowledge when less is known about the target. Consider, for example the pa-
rasols search task (Sect.[H). First, note that the targets take a significant image
fraction, and cannot be salient. Then, the parasols are similar and different from
the non-targets in their color, but if this color is unknown, they cannot be sear-
ched using top-down information. More generally, considering a scene containing
several objects of the same category, we argue that their sub-images are more
similar than images of such objects taken in different times and places. This
happens because the imaging conditions are more uniform and because the va-
riability of objects is smaller in one place. (e.g, two randomly chosen trees are
more likely to be of the same type if they are taken from the same area.)

We are now working on building an overall automatic system that will com-
bine the suggested algorithms (extended to use bottom-up and top-down in-
formation) with grouping and object recognition methods. We also intend to
continue analyzing search performance. We would like to be able to predict se-
arch time for the VSLE algorithm, for instance, in a manner similar to that we
have achieved for FLNN. While the measure of minimal cover size as a lower
bound for the worst cases holds, we aim to suggest a tighter bound for cases
that are statistically more common.
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Fig. 2. VSLE and covariance vs. distance results. (a) VSLE results for the cups search
task.The solid lines describe one typical run. Other runs, starting each time from a
different candidate, are described by the size of the gray spots as a distribution in the
(time, number of targets found) space. It is easy to find the first cup since most cups
are different from non-targets. Most cups resemble and follow pretty fast, but there are
three cups (two without a handle and one with a special pattern) that are different from
the rest of the cups, and are found rather late. (b) Estimate of labels covariance vs.
feature-space-distance for the cups search task. (¢) VSLE results for the parasols search
task. All the parasols are detected very fast, since their color is similar and differs from
that of all other candidates. (d) Estimate of labels covariance vs. feature-space-distance
for the parasols search task.
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Fig. 3. VSLE applied on an automatic-color-segmented image to detect faces. (a) The
input image (colored image) (b) Results of an automatic crude color-based segmenta-
tion (c) VSLE results (see caption of figure & for what is shown in this graph).
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Fig. 4. VSLE using top-down information for the toy cars search task. (a) The three
model images. (b) VSLE results without using the models, (c)results of extended VSLE
using the model images.
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