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Abstract. While subsurface scattering is common in many real objects, almost
all separation algorithms focus on extracting specular and diffuse components
from real images. In this paper, we propose an appearance-based approach to
separate non-directional subsurface scattering reflectance from photometric ima-
ges, in addition to the separation of the off-specular and non-Lambertian diffuse
components. Our mathematical model sufficiently accounts for the photometric
response due to non-directional subsurface scattering, and allows for a practical
image acquisition system to capture its contribution. Relighting the scene is possi-
ble by employing the separated reflectances. We argue that it is sometimes neces-
sary to separate subsurface scattering component, which is essential to highlight
removal, when the object reflectance cannot be modeled by specular and diffuse
components alone.

1 Introduction

Photometric appearance of an object depends on surface geometry, material property,
illumination and viewing direction of the camera. The ubiquitous Lambertian assump-
tion used in computer vision algorithms is seldom satisfied, making them error prone
to specular highlight, off-specular reflection, and subsurface scattering. Almost all re-
flectance separation algorithms separate specular and Lambertian diffuse reflectances.
Lin and Lee [8] made use of the Lafortune model [5] to separate off-specular and non-
Lambertian diffuse components. The Lafortune model assumes the bidirectional reflec-
tance distribution function (BRDF), which describes the ratio of outgoing radiance to
incoming irradiance at the same surface point locally.

However, many real objects such as wax, paper, and objects with translucent pro-
tective coating do not belong to this category. Subsurface scattering is common, where
the outgoing radiance observed at a surface point may be due to the incoming irradi-
ances at different surface points. Fig. 1 illustrates a common phenomenon. To account
for subsurface scattering, the more general bi-directional surface scattering reflectance
distribution function (BSSRDF) should be used [4]. However, BSSRDF is very difficult
to capture without knowledge of object geometry and material property.

In this paper, we propose an appearance-based method, and derive the mathematical
model for reflectance separation that accounts for non-directional subsurface scattering,
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Fig. 1. Ideally, only the face visible to the directional light L can be seen (a), if the object reflectance
is explained by BRDF. In reality, due to subsurface scattering, significant radiance is observed on
other faces (b). In this paper, we model non-directional subsurface scattering (c), but not single
scattering (d) where a dominant outgoing radiance direction exists.

Fig. 1. We do not model single scattering [2], which has a dominant direction in the
outgoing radiance. Given images only, we decompose the input into three photometric
components: off-specular Is, non-Lambertian or local diffuse D, and non-directional
subsurface scattering Iscat. BSSRDF can describe Is, D and Iscat, but BRDF can
only describe the local Is and D. Our approach avoids the difficult problem of cap-
turing/recovering the BRSSDF. Yet, it is versatile enough to describe a wide range of
lighting conditions, re-light the scene and remove specular highlight. Transparency and
single scattering are the topics of our ongoing research.

2 Related Work

We review some representative reflectance models used in computer vision and com-
puter graphics. In computer vision, given images, reflectance models are often used in
parameter fitting for seperating specular and diffuse components. In computer graphics,
given parameters to the model, photorealistic images are rendered to simulate specular
and diffuse effects.

Forward approach: graphics rendering. Cook and Torrance [1] introduced a reflec-
tance model to describe the distribution of the reflected light and color shift as the reflec-
tance changes with incidence angle. Later, Poulin and Fournier [10] introduced another
model to handle anisotropic reflection. This model considers the micro-structure of mate-
rial surface as small cylinders. Oren and Nayar [9] proposed a model to describe complex
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geometry and radiometric phenomena to account for non-Lambertian diffuse reflection.
They assume or approximate light transport by bi-directional reflection distribution fun-
ction (BRDF). To account for reflectance due to subsurface scattering, Hanrahan and
Krueger [2] introduced a model that considers the subsurface reflectance due to back-
scattering in a layered medium, by using transport theory. However, this model cannot
capture the diffusion of light across shadow boundaries. Jensen et al. [4] introduced
another model to overcome this problem. This model approximates the bi-directional
surface scattering reflectance distribution function (BSSRDF), which does not restrict
the light ray to enter and exit the surface at the same location. In fact, BRDF is the special
case of BSSRDF.

Although the rendering method by Jensen et al. [4] predicts the appearance of trans-
lucent materials very well, complete knowledge on the scene (the geometry of the scene,
object materials, lighting condition and camera configuration) should be known. Shape-
from-shading method may be used to estimate the surface geometry information. For
example, Ragheb and Hancock [11] used an iterated conditional modes algorithm to
estimate the Lambertian and specular reflectance components and recovering local sur-
face normals. Hertzmann and Seitz [3] introduced a method to recover the local surface
normals with a reference object whose geometry is known. However, current methods
use BRDF, but not the more general BSSRDF, which is capable of explaining subsurface
scattering.

Backward approach: reflectance separation. When accurate geometry and reflec-
tance information are not available, image-based methods are used. The camera position
is usually fixed. Shashua [12] proved that, if Lambertian diffusion is assumed, images
illuminated under any lighting direction can be produced by linear combination of three
photometric images captured under three linearly independent lighting vectors.

Lin and Lee [7] derived an approximate specular reflectance model based on the
Torrance-Sparrow model, where the local specular effect can be expressed by logarithms
of three intensity-normalized photometric images under certain illumination and surface
conditions. In [6], they introduced a method for representing diffuse and specular reflec-
tions for objects of uniform surface roughness using four photometric images. To relight
the image, only four images are needed without the knowledge of surface geometry. By
extending the same idea to the Lafortune model [5], Lin and Lee [8] introduced a method
capable of separating any number of reflectances into distinct, manageable components
such that the model parameters can be estimated readily. Any novel lighting condition
can be simulated to relight images, by non-linear combination of the photometric images
of the separated reflectances and the model parameters.

Our contribution. We show that by transforming light vectors in the set of equations,
Lin and Lee’s method can be generalized to include a non-directional subsurface scat-
tering term Iscat in the diffuse term. By ensuring invariance in the resulting appearance
and preserving outgoing radiance energy, the proposed transformation of light vectors
is legitimate.

In implementation, our key mathematical derivation is translated into the estimation
of point spread functions (PSF) to estimate the Iscat term. A new and practical image
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acquisition system is built to capture subsurface scattering reflectance from real objects
of unknown geometry.

Potential application is the removal of the specular highlight term Is in the presence
of subsurface scattering Iscat (e.g., paper, wax). Both are problematic to many compu-
ter vision algorithms. Alternatively, Is, D, and Iscat can be combined non-linearly to
simulate a novel image under a different lighting condition.

The rest of our paper is organized as follows. Section 3 discusses different choices of
reflectance models. In section 4, we derive our new reflectance representation for photo-
metric images. Section 5 discusses how the parameters of our reflectance representation
can be estimated. The new image acquisition method is introduced in Section 6. Section 7
presents the implementation and shows our results. We conclude our work in Section 8.

3 Reflectance Models

Except for mirror-like surface material such as metal, most material exhibits certain
extent of translucence which is resulted by subsurface scattering. This phenomenon is
described by BSSRDF. Mathematically, BSSRDF S is defined as:

dLo(xo,−→ωo) = S(xi,−→ωi;xo,−→ωo)dΦi(xi,−→ωi) (1)

where Lo(xo,−→ωo) is the outgoing radiance at point xo in direction −→ωo, Φi(xi,−→ωi) is
the incident flux at the point xi from direction ωi. When i = o, S becomes BRDF. By
integrating the incident irradiance over all incoming directions and areaA on the surface,
the total outgoing radiance at xo is:

Lo(xo,−→ωo) =
∫

A

∫
2π

S(xi,−→ωi;xo,−→ωo)Li(xi,−→ωi)(−→ni ·−→ωi)d−→ωidA(xi) (2)

Actually, Li(xi,−→ωi)(−→ni ·−→ωi)d−→ωi is the energy of the incident flux defined by Cook
and Torrance [1]. In other words, this equation describes how the incident flux (energy) is
distributed from locationxi toxo.With this equation, a good prediction on the appearance
of translucent objects is possible. However, S should be known a priori for all x and
ω. Recovering the BSSRDF S is difficult without special equipment. It is unknown if a
gonioreflectometer (used to capture BRDF) can be used to measure BSSRDF.

An alternative is to approximateS by fitting analytical functions. However, almost all
reflectance models approximate BRDF, except a few on BRSSDF [4]. Our appearance-
based model is capable of representing a class of BRSSDF, by generalizing the Lafortune
model [5]. Lin and Lee [8] investigated the Lafortune model, which considers each type
of reflectance as a non-linear parametric primitive function. The final object appearance
is the linear combination of these primitives. This model provides high flexibility. The
other possible choice is the Cook and Torrance model [1]. This model gives a good
prediction on specular effect and color shift at grazing angle. Although Lin and Lee [6]
showed that the parameters of Cook and Torrance model can be estimated under limited
viewing conditions, it is still too complex to use. As a result, we chose the Lafortune
model. The Lafortune model [5] is defined as

R(L,V) =
∑

i

[Cx,iLxVx +Cy,iLyVy +Cz,iLzVz]ni (3)
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where i is the index of primitives, L = (Lx,Ly,Lz)T is light direction, V = (Vx,Vy,Vz)T

is viewing direction, C is weighting coefficient and x,y and z index a local coordinate
system with the z-axis aligned with the surface normal, and the x-axis and y-axis aligned
with the principal directions of anisotropy [5], except for unusual type of anisotropy.
According to [8], since the z-axis is aligned with a surface normal, we have

LzVz = (N ·L)(N ·V) (4)

LxVx +LyVy = (L ·V)− (N ·L)(N ·V) (5)

With this relationship, Lin and Lee [8] showed that the non-Lambertian diffuse and
off-specular components, Id(x) and Is(x), at pixel x on image I can be expressed as:

Id(x) = ρ(x)
nd +2

2π
[(N(x) ·L)(N(x) ·V)]nd (6)

Is(x) = [C1(L ·V)+C2(N(x) ·L)(N(x) ·V)]ns (7)

where ρ(x) is surface albedo, N(x) is normal at x, nd and ns are the exponents for
non-Lambertian diffuse and off-specular components respectively, C1 = Cx and C2 =
Cz −Cx.

In [1], it is stated that the specular component is the result of reflection from the
surface of material, and the diffuse component is that of internal scattering or multiple
surface reflections. Internal scattering is due to the penetration of incident light beneath
the material surface. With this definition, we embed the effect of subsurface scattering
into the diffuse term in the equations.

4 Reflectance Representation

We assume directional light source in our derivation. The following notations are useful
in the discrete formulation for our implementation: a small surface patch on a 3D object
is represented by −→v . x is the (quantized) image point of −→v . L as the directional lighting
vector, which encapsulates both the direction and intensity, N is an overloaded function
that returns the normal direction at −→v , or the normal direction at x ( N(−→v ) = N(x) if the
image of −→v is x). m−→v0 (−→vi ) is the discrete representation for the BSSRDF S between
−→v0 and −→vi , which specifies how the energy of incoming ray distributes from −→vi to −→v0 .

Using the above notations, the discrete version of Eqn. (2) is re-written as:

energy(−→v0 ,L) =
n∑

i=0

m−→v0 (−→vi )N(−→vi ) ·L (8)

Without loss of generality, energy(−→v0 ,L) indicates the total outgoing radiance at −→v0 , n
is the total number of surface patch on the surface, and i is the index of the subsurface
patch. It is important to note that, for m, the only input parameter is a surface patch −→v ,
which is different from the BSSRDF S described in section 3 requiring both the position
and direction of incident and outgoing rays. The main reason is that we do not model the
effect of single scattering, which is our future work. It requires the knowledge of light
ray directions.
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From Eqn. (8), we can consider that m is a PSF which models the diffusion of
light due to local diffuse D and subsurface scattering Iscat. When a light ray enters
a highly scattering medium from an arbitrary direction at −→v , the light distribution is
non-directional, since the light is scattered and absorbed randomly inside the medium.
Since the PSF depends on surface geometry and material property of the object, the PSF
at each −→v is different in general. Therefore, the subscript of m−→v0 (−→vi ) reflects that it is
a local variable, and surface patch −→vi is the only input parameter.

By rotating the local coordinate system of each surface patch −→vi with rotation matrix
ψi such that N(−→vi ) aligns with N(−→v0), Eqn. (8) becomes:

energy(−→v0 ,L) =
n∑

i=0

m−→v0 (−→vi )N(−→v0) · (ψiL)

= N(−→v0) · [
n∑

i=0

m−→v0 (−→vi )(ψiL)] (9)

= N(−→v0) ·Lfinal (10)

where Lfinal =
∑n

i=0m−→v0 (−→vi )(ψiL). From Eqn. (10), the total outgoing radiance at
−→v0 can be considered as resizing and jittering of the original L to produce Lfinal. By
putting Eqn. (10) into (6), we express Id(x) as:

ρ(x)
nd +2

2π
[(N(−→v0) ·Lfinal)(N(x) ·V)]nd

= ρ(x)
nd +2

2π
[(N(x) ·Lfinal)(N(x) ·V)]nd

= ρ(x)
nd +2

2π
{[m−→v0 (−→v0)N(x) · (ψ0L)+N(x) · [

n∑
i=1

m−→v0 (−→vi )(ψiL)]][N(x) ·V]}nd(11)

= ρ(x)
nd +2

2π
{[m−→v0 (−→v0)N(x) ·L+N(x) ·Lscat][N(x) ·V]}nd (12)

where ψ0 is defined to be an identity matrix, and Lscat =
∑n

i=1m−→v0 (−→vi )(ψiL). Then,
the nd-th root of Eqn. (12) is

Id(x)
1

nd = [ρ(x)
nd +2

2π
]

1
nd [m−→v0 (−→v0)N(x) ·L][N(x) ·V]

+ [ρ(x)
nd +2

2π
]

1
nd [N(x) ·Lscat][N(x) ·V]

= m−→v0 (−→v0)Ilocal(x)
1

nd + Iscat(x)
1

nd (13)

In Eqn. (13), Ilocal and Iscat have the same form as Eqn. (6), which contribute to
the diffuse component of the outgoing radiance Id. Ilocal accounts for the outgoing
radiance locally reflected at −→vi without any subsurface scattering (since ψ0 is an identity
matrix). Iscat accounts for the outgoing radiance resulting from incident irradiances at
different patches. Using the PSF m, it can be thought that appropriate portions of L are
“distributed” to Ilocal and Iscat. Putting together, a captured image I(x) = Id(x)+Is(x)
is given by:

I(x) = [m−→v0 (−→v0)Ilocal(x)
1

nd + Iscat(x)
1

nd ]nd + Is(x) (14)
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Since any lighting vector L could be written as the linear combination of three linear
independent lighting vectors L1,L2 and L3 such that

L = α1L1 +α2L2 +α3L3, (15)

it is possible to represent thend-th root of the diffuse component as expressed in Eqn. (13)
by combining three photometric images that are illuminated by L1,L2,L3. By putting
Eqn. (15) into (11) and taking the nd-th root in both sides,

Id(x)
1

nd = [ρ(x)
nd +2

2π
]

1
nd [m−→v0 (−→v0)N(x) · (α1L1 +α2L2 +α3L3)][N(x) ·V]

+ [ρ(x)
nd +2

2π
]

1
nd [N(x) · [

n∑
i=1

m−→v0 (−→vi )(ψi(α1L1 +α2L2 +α3L3))]][N(x) ·V]

= m−→v0 (−→v0)[α1Ilocal,1(x)
1

nd +α2Ilocal,2(x)
1

nd +α3Ilocal,3(x)
1

nd ]

+ [ρ(x)
nd +2

2π
]

1
nd [N(x) · (α1Lscat,1 +α2Lscat,2 +α3Lscat,3)][N(x) ·V]

= m−→v0 (−→v0)[α1Ilocal,1(x)
1

nd +α2Ilocal,2(x)
1

nd +α3Ilocal,3(x)
1

nd ]

+ [α1Iscat,1(x)
1

nd +α2Iscat,2(x)
1

nd +α3Iscat,3(x)
1

nd ] (16)

Similarly, by putting Eqn. (15) into (7) and taking the ns-th root, the specular com-
ponent can be represented by:

Is(x)
1

ns = α1Is,1(x)
1

ns +α2Is,2(x)
1

ns +α3Is,3(x)
1

ns (17)

Eqns (16) and (17) show that any photometric image can be represented by combining
three images captured at independent lighting directions L1,L2 and L3.

5 Issues in Parameter Estimation

After deriving our reflectance separation, next we need to estimate the associated pa-
rameters. The desired method is to estimate the parameters directly from images. To
achieve this, the method suggested by Lin and Lee [8] is a possible choice. First, the
diffuse and specular components are related. Second, six images, acquired with different
lighting vectors, are divided into two sets with three images each. Images in one set are
described by the combination of the other set. Finally, the parameters of their repre-
sentation are estimated by optimizing an objective function. Here, we need to find the
relationship between the specular and our diffuse component that includes a subsurface
scattering term.

If an object does not exhibit any light scattering effect, the term Iscat(x) is zero for
all the pixels on an captured image. Then, our derivation will be the same as [8]. Thus,
the formulation of Lin and Lee [8] is a special case of ours. From [8], the relationship
between local diffuse Ilocal,k and specular component Is,k is:

Is,k(x)
1

nd = ak + b(x)Ilocal,k(x)
1

nd (18)

where k= 1,2,3 are the indices of images,ak =C1Lk ·V and b(x) =C2/[ρ(x)
nd+2
2π ]

1
nd .

With this relationship, the image Ik acquired can be expressed as:
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Ik(x) = [m−→v0 (−→v0)Ilocal,k(x)
1

nd +Iscat,k(x)
1

nd ]nd +[ak +b(x)Ilocal,k(x)
1

nd ]ns (19)

In order to simplify Eqn. (19), we define Dk(x) =m−→v0 (−→v0)ndIlocal,k(x) and B(x)

= C2/[m−→v0 (−→v0)ndρ(x)nd+2
2π ]

1
nd . Eqn. (19) becomes:

Ik(x) = [Dk(x)
1

nd + Iscat,k(x)
1

nd ]nd +[ak +B(x)Dk(x)
1

nd ]ns (20)

Similarly, adding the powers of nd and ns of Eqns (16) and (17) respectively:

Ik(x) = [(α1,kD1(x)
1

nd +α2,kD2(x)
1

nd +α3,kD3(x)
1

nd )

+ (α1,kIscat,1(x)
1

nd +α2,kIscat,2(x)
1

nd +α3,kIscat,3(x)
1

nd )]nd

+ {α1,k[a1 +B(x)D1(x)
1

nd ]

+ α2,k[a2 +B(x)D2(x)
1

nd ]

+ α3,k[a3 +B(x)D3(x)
1

nd ]}ns (21)

From the above two equations, we can see that the parameters needed to be esti-
mated consist of five global parameters {a1,a2,a3,nd,ns} and seven local parameters
{B(x),D1(x), D2(x),D3(x), Iscat,1(x), Iscat,2(x), Iscat,3}. By using the framework
of Lin and Lee [8], we have to capture n images that are illuminated by n different
lighting vectors. Three of them (k = 1,2,3) are represented by Eqn. (20), and the others
(k ≥ 4) are represented by Eqn (21). Since we have 7p+5 unknowns, where p is the
total number of pixels in image I , n≥ 8 images are needed.

The values αi,k for each of the image k≥ 4 may be approximated from pixels whose
intensity does not exceed a threshold by the method suggested in [12]. In order to estimate
the global and local parameters, we minimize the following error function:

Err =
∑

x

[λ1

3∑
k=1

e(k,x)2 +λ2

n∑
k=4

e(k,x)2] (22)

where e(k,x) is an error function for Ik(x) and λ1 = 1 and λ2 = 2 are weighting
coefficients (as in [8]). In our implementation, e(k,x) is image difference. The function
Err is then minimized by some optimization algorithm such as Levenberg-Marquardt
algorithm. It is suggested that the global parameters are estimated first before the local
parameters are estimated pixel-by-pixel in order to reduce the computation load. The
former can be done by selecting p≥ �(n−7)p+5� pixels from the image and perform
optimization with Eqn. (22).

Although everything above seems to be fine so far, there are some reasons that the
above framework cannot be used directly for solving our reflectance Eqns (20) and (21).
One problem is that there are too many local parameters, leading to a lot of local minima.
Besides, too many images (n− 3, where n ≥ 8) are required for the approximation of
αi,k. Both problems complicate the optimization process and make it less stable. Worst,
the local variable Iscat,k(x) is independent of Dk(x) and Is(x) in Eqn. (20). Given
a pixel x, during the optimization, if specular component does not exist, the value of
diffuse term Id(x) can be “distributed” to Dk(x) and Iscat,k(x) arbitrarily to produce
(local) minima.
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To solve these problems, some parameters should preferably be estimated first. Fixing
them before the optimization process will make it more stable. Suppose that the value of
Iscat,k(x), where k = 1,2,3, can be found before the optimization stage, we shall have
five global and four local parameters to estimate, and the number of images required
becomes n≥ 6. Then, the number of parameters and the number of required images are
the same as in [8].

In the following section, a new image acquisition system is built to estimate
Iscat,k(x).

6 Image Acquisition for Estimating Iscat

Except at the end of this section, we drop the subscript k since the same image acquisition
method is used for estimating all Iscat,k. Recall from Eqn. (13) that the PSF term m is
included into the subsurface scattering term Iscat.

If there is a single light ray incident at a surface patch at −→v0 , we can warp the PSF
on the object surface centered at −→v0 . Refer to Eqn. (20), the scattering term Iscat is
completely independent of the D and Is terms. Therefore, given a single ray incident
at −→v0 , except at −→v0 , the outgoing radiance at other surface patches −→vi , i �= 0, is due to
subsurface scattering only. For these patches at −→vi , the corresponding images D and Is
are zero. Therefore, if we could produce such a single light ray incident at each −→v on
the object surface, it would be possible to recover Iscat. However, it is difficult to build
high precision equipment capable of shooting a single ray of light. A light slab produced
by a ray box used in optics experiments covers more than one surface patches, as shown
in Fig. 2(a). Following, we show how we deploy a light slab to estimate Iscat.

Analysis. Consider Iscat(x) in Eqn. (13). By expanding Lscat, which is the linear
combination of rotated and resized L from n surface patches, the relationship between
energy contribution from each of the surface patch and Iscat(x) can be written as:

Iscat(x)
1

nd = Iv,1(x)
1

nd + Iv,2(x)
1

nd + ...+ Iv,n(x)
1

nd (23)

where each Iv,i(x) represents the images of light diffusion resulting from surface patch
i. It shows that Iscat(x)1/nd is just the linear combination of Iv,i(x)1/nd . Consider that
a light slab of width q is incident to more than one surface patches. Due to subsurface
scattering, other surface patches that are not directly illuminated also produces non-zero
reflectance. Suppose we sweep the light slab by translation so that it covers all visible
patches on the surface. Let us assume for now that the effect of local diffuse D and
specular Is are absent, the summation of the nd-th root of all captured images is:

qIv,1(x)
1

nd + qIv,2(x)
1

nd + ...+ qIv,n(x)
1

nd = qIscat(x)
1

nd (24)

which means that the image sum resulting by the sweeping light slab is simply a scaled-
up version of the original Iscat(x) of the images. Thus, as long as we can remove the
contribution ofD and Is, Eqn. (24) allows us to use a light slab to estimate Iscat, which
is easier to produce in practice.
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Steps. Our image acquisition procedure consists of the following steps.

1. First, we capture an image I(x), which is illuminated by L.
2. Then, we sweep a slab of rays parallel to L in constant speed, and capture a sequence

of images Iseq,i(x). I(x) and Iseq,i(x) are captured by the same digital video camera,
using the same, fixed viewpoint.

After that, we set up the following equation:

CI(x)
1

nd =D(x)
1

nd + Iseq,1(x)
1

nd + Iseq,2(x)
1

nd + ...+ Iseq,p(x)
1

nd (25)

where p is total number of frames and C = q× g. Variable g is the velocity of the
sweeping plane of rays. We have to consider this term because the speed of the plane
may not be one patch per frame. Since Eqn. (25) only contains two unknowns, nd and
C, we can choose p ≥ 2 pixels x from a region where specular effect is not significant
to solve it, by using some standard optimization algorithm.

Then, we use simple thresholding to remove the contributions of D and Is for each
Iseq,i since, by observation, the local diffuse and specular terms in the illuminated area are
often much larger than the non-local subsurface scattering term in other area (Fig. 2(a)).
The resulting hole after thresholding is shown in Fig. 2(b).

However, for q > 1, thresholding removes not only D(x) and Is(x), but also some
Iv,i(x). Therefore, the missing Iv,i(x) should be found. Since the response of the PSF
for each Iseq,i is small, quantization must produce some error. One suggestion to fill
the hole is to treat each Iseq,i as a 3D surface point with color values as z-coordinates.
Then, the holes are filled by interpolation. Another suggestion is simple. If the width of
light slab is small, the holes are just filled by the maximum color value surround the
hole after thresholding. It still produces reasonable results. Alternatively, we can sweep
another slab of rays in a direction orthogonal to the first sweeping slab. To recover the
missing Iv,i, the following relation is used: A∪B = A+B−A∩B, where A is the
contribution to Iscat from the first sweeping slab, andB is the contribution to Iscat from
the second sweeping slab. The holes produced in the images from the first sweep can be
filled in by the corresponding pixels in the images obtained after the second sweep. We
call the resulting image an PSF image (Fig 2(c)).

Finally, we produce the Iscat(x)1/nd by summing up the nd-th root of the PSF
images, and then scale the image sum by the C we found earlier.

By using our proposed image acquisition method, not only Iscat,k(x) can be ro-
bustly recovered for k = 1,2,3, but also nd. These parameters are fed into the algo-
rithm described in section 5, thus reducing the number of local and global parameters
to four respectively: four global parameters {a1,a2,a3,ns}, and four local paramters
{B(x),D1(x),D2(x),D3(x)}. This makes our parameter estimation even more stable.
Besides, the image acquisition step 1 and 2 mentioned above can be used to capture all
the images Ik(x).

7 Implementation and Results

We experiment our reflectance separation on real images, and use the separated com-
ponents to perform novel view synthesis and highlight removal. Fig. 3 shows the image
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(a) (b) (c)

Fig. 2. (a) The response of a mango pudding upon illumination by a light slab. This is Iseq,i.
(b) Thresholded Iseq,i to remove local diffuse and specular response. (c) The PSF image.

acquisition system we built. The video camera we used is Sony PC-100 Handycam. A
thin light slab is produced by using a cardboard with a vertical slit set in the middle.
Constant speed is maintained by moving the cardboard on a track, using a stepper motor
with adjustable speed. During the capturing of Iseq,i, since the slab of rays is thin, the
global radiance from the object is very small. Therefore, if we use normal exposure
setting for regular image capture, the resulting PSF images will be very dark, and noise
may dominate the image. Therefore, we use a different exposure setting for capturing
Iseq,i.

Cardboard
Moving
Direction

Track

Camera Light Source

Slit
Vertical

Motor
StepperObject

Cardboard

Fig. 3. Experimental setup.

When all the global and local parameters have been estimated using our method in
section 5 and 6, we can reconstruct a novel image illuminated by any lighting vector, by
setting the corresponding values of α1,α2,α3 and using Eqn. (21). We have conducted
two experiments on our derived model with two different real objects: mango pudding
and wax.

The mango pudding is located about 3 feet from the camera. The ray box can be
placed very close to the object since it is set to approximate directional light source. The
mango pudding is inside a thin and transparent plastic container which is hexagonal in
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shape. The outer surface of the container is very rough so the effect of specular reflection
is very small. There is a white paper label with the “ECCV04” logo on the front face.
This label is cut up from a piece of white paper, which is translucent under illumination.
The label has a different level of translucency compared with that of the pudding. The
separated reflectance components for k = 1 are shown in Fig. 4(a-d)

The local diffuse component is very dark because the pudding is a highly scattering
medium, almost all the energy has contributed to the non-directional subsurface scat-
tering component. Since the paper label is a less scattering media, it is darker than the
pudding in the separated Iscat. Although the container surface exhibits very little off-
specular effect, this experiment shows that our method can still separate it out robustly.

Compared with the result produced by using the model of Lin and Lee [8], as shown
in Fig. 4(e) and (f), where only BRDF is assumed, our result is much more reasonable.
The off-specular component produced by their model covers the whole pudding because
subsurface scattering is not modelled there.

Fig. 5 shows the same pudding re-lit by a novel lighting direction and intensity.
Compared with the actual image, the synthesized image looks reasonable. Since the
actual image is captured as regular images while our images Ik, k = 1,2,3, are captured
by our new image acquisition method, they exhibit different intensity ranges. Therefore,
some artifact can be noticed. It is suggested that all six images should be captured by our
new image acquisition method, instead of the essential three images only, to improve
the result.

Another object is a piece of wax. The surface of the wax is smooth, therefore the
perfect mirror specular effect is very strong, which is not modelled in our reflectance
representation. However, we want to test the robustness of our model. The separated
reflectance components for k = 1 are shown in Fig. 6(a-d). The results produced using
our model are similar to that of mango pudding. The local diffuse component D is
dark and the subsurface scattering component Iscat is bright. Although our reflectance
model does not model mirror specular component explicitly, the off-specular component
approximates mirror specular effect very well.

In addition, Fig. 7 shows a novel image constructed by our method. Compared with
the actual, ground truth image, the difference of the diffuse components (local and sub-
surface) is undistinguisable. The image difference is also shown. However, the specular
components look quite different when compared with the specular components of the
ground truth, which looks much brighter. It is due to mirror specular reflection. Besides,
the edge of the wax shows some artifacts. This is because during image acquisition, we
have to change the exposure setting of the camera by hand. The remote control of the
camera does not provide this function. Some camera movement is unavoidable.

Although we use grey level images to separate reflectance, our separation method can
be readily extended to color images. The color results are shown in the supplementary
material.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Reflectance separation of a scattering medium mango pudding : (a) original image Ik, (b)
non-directional subsurface scattering component Iscat,k, (c) local diffuse component Ilocal,k ,
(d) off-specular component Is,k, (e) diffuse component produced by using [8], (f) off-specular
component produced by using [8]. We only show the case k = 1. See supplementary material of
larger images, and for k = 2,3.

(a) (b) (c)

Fig. 5. Novel image synthesis: (a) Real image, (b) synthetic image, (c) image difference between
the real and the synthetic image. See supplementary material for larger images.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Reflectance separation of a scattering medium wax : (a) original image Ik, (b) non-
directional subsurface scattering component Iscat,k, (c) local diffuse component Ilocal,k , (d) off-
specular component Is,k, (e) diffuse component produced by using [8], (f) off-specular component
produced by using [8]. We only show the case k= 1. See supplementary material of larger images,
and for k = 2,3.

(a) (b) (c)

Fig. 7. Novel image: (a) Real image, (b) synthetic image, (c) image difference between the real
and the synthetic image. See supplementary material for larger images.
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8 Conclusion and Future Work

In this paper, we present an appearance-based model that allows for the separation of
off-specular, non-Lambertian local diffuse and non-directional of subsurface scattering
reflectance for real world objects. The BSSRDF model is necessary to capture subsurface
scattering. A point spread function is estimated. Based on our mathematical derivation,
a new and practical image acquisition method is proposed to capture non-directional
subsurface scattering component, which complements and improves our parameter esti-
mation process. Some successful reflectance separation experiments were conducted.
Faithful novel images under different lighting condition can be generated by using our
appearance model. We have also demonstrated improved result on hightlight removel
in highly scattering medium, which is traditionally difficult for approaches based on
BRDF. Since we do not model the effect of single scattering, our future work focuses on
incorporating this component in order to support a wider range of translucent materials.
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