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Abstract. Many interesting problems in computer vision can be formu-
lated as a minimization problem for an energy functional. If this func-
tional is given as an integral of a scalar-valued weight function over an
unknown hypersurface, then the minimal surface we are looking for can
be determined as a solution of the functional’s Euler-Lagrange equation.
This paper deals with a general class of weight functions that may de-
pend on the surface point and normal. By making use of a mathema-
tical tool called the method of the moving frame, we are able to derive
the Euler-Lagrange equation in arbitrary-dimensional space and without
the need for any surface parameterization. Our work generalizes existing
proofs, and we demonstrate that it yields the correct evolution equati-
ons for a variety of previous computer vision techniques which can be
expressed in terms of our theoretical framework. In addition, problems
involving minimal hypersurfaces in dimensions higher than three, which
were previously impossible to solve in practice, can now be introduced
and handled by generalized versions of existing algorithms. As one ex-
ample, we sketch a novel idea how to reconstruct temporally coherent
geometry from multiple video streams.

1 Introduction

A popular and successful way to treat many computer vision problems is to
formulate their solution as a hypersurface which minimizes an energy functional
given by a weighted area integral. In this paper, we want to expose, generalize
and solve the mathematical problem which lies at the very heart of all of these
methods. The aim is to find a k-dimensional regular hypersurface Σ ⊂ R

n which
minimizes the energy functional

A (Σ) :=
∫

Σ

Φ dA. (1)

We will only investigate the case of codimension one, so throughout this text,
k = n− 1. Such a surface is called a weighted minimal hypersurface with respect
to the weight function. This function shall be as general as required in practice,
so we allow it to depend on the surface point s as well as the surface normal n.
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In this paper, we derive a very elegant and short proof of the necessary
minimality condition:

Theorem. A k-dimensional surface Σ ⊂ R
k+1 which minimizes the functio-

nal A (Σ) :=
∫

Σ
Φ (s,n(s)) dA(s) satisfies the Euler-Lagrange equation

〈Φs,n〉 − Tr (S) Φ + divΣ(Φn) = 0, (2)

where S is the shape operator of the surface, also known as the Weingarten
map or second fundamental tensor. Using standard techniques, a local minimum
can be obtained as a stationary solution to a corresponding surface evolution
equation. Since this surface evolution can be implemented and solved in practice,
the Theorem yields a generic solution to all problems of the form (1) for practical
applications. In this work, we set aside the problems of convergence and local
minima, as they are far from being solved yet. See e.g. [1] for a detailed analysis.
This paper has thus two main contributions:

Unification: We unite a very general class of problems into a common ma-
thematical framework. This kind of minimization problem arises in numerous
contexts in computer vision, with dimension n ≤ 3 and various choices of Φ.
A few select examples are summarized in Sect. 5, among them the method of
geodesic snakes for segmentation as well as a very general multi-view 3D recon-
struction technique. Our theorem yields the correct surface evolution equations
for all of them.

Generalization: Our result is valid in arbitrary dimension. We are not aware of
a previously existing treatment in computer vision literature of this generality.
Until now, the theorem has been proved separately in dimensions k = 1 and
k = 2, using local coordinates on the surface [2]. The now freely selectable
number of surface dimensions opens up new possibilities for future applications.
As one example, we generalize the static 3D reconstruction of a surface towards
a space-time reconstruction of an evolving surface, which can be viewed as a 3D
volume in 4D space. The proposed method treats all frames of multiple video
sequences simultaneously in order to provide a temporally coherent result.

In the special case that Φ = 1 is constant, the problem of minimizing (1) is re-
duced to finding a standard minimal surface, which is defined to locally minimize
area. As we deal with a generalization, it seems reasonable to adopt the same
mathematical tools used in that context [3]. A brief review of this framework,
known as the method of the moving frame, is given in Sect. 2. However, we are
forced to assume that the reader has at least some familiarity with differential
geometry, preferably of frame bundles. For improved readability, we organized
the paper in such a way that Sect. 2 as well as Sect. 3, in which we prove our
Theorem (2), can be skipped. The transition from the Euler-Lagrange equation
to a surface and further to a level set evolution equation is reviewed in Sect. 4,
where we also discuss some necessary implementation details. Applications are
introduced in the last two sections. In Sect. 5, we summarize a few existing com-
puter vision techniques in order to demonstrate how they fit into our framework.
A novel idea for space-time consistent reconstruction is presented in Sect. 6.
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2 Mathematical Framework

Our goal is to give a general proof that surfaces minimizing (1) can be obtained
as a solution of the Euler-Lagrange equation (2) for the energy functional. The
mathematical tool of choice is called the method of the moving frame. This section
is intended to give a brief overview of this framework.

Any minimal surface Σ of the functional A is a critical point of the functional,
i.e., in first order the value of the functional does not change under a small
variation of the surface. This restriction is known as the functional’s Euler-
Lagrange equation. We are now going to give a, necessarily brief, overview of the
mathematical framework in which this equation can be derived. For an excellent
and thorough introduction, the reader is referred to [3].

We have to investigate how the functional behaves with respect to first order
variations of the surface. To this end, let

X : Σ × (−ε, ε) → R
n

be a variation of Σ with compact support, then for each τ ∈ (−ε, ε) a regular
surface Στ ∈ R

n is given by X(Σ, τ). For each (s, τ) ∈ Σ × (−ε, ε), let

{e1(s, τ), . . . , en(s, τ) =: n(s, τ)}
be an orthonormal frame for the surface Στ at s with en = n normal to the
tangent plane TsΣτ . The restrictions ωi of the Maurer-Cartan forms of R

n to
this frame are defined by

dX = ei ωi. (3)

Throughout this text we use the Einstein convention for sums, which means that
we implicitly compute the sum from 1 to n over all indices appearing twice on
the same side of an equation. Because the frame is adapted to Στ in the above
sense, the forms ω1 to ωk are its usual dual forms on the surface. The connection
1-forms ωj

i are defined by

dei = ej ωj
i (4)

and satisfy the structure equations

dωi = −ωi
j ∧ ωj dωi

j = ωi
k ∧ ωk

j , (5)

which can be deduced by differentiating the definitions.
From the connection forms stems the true power of this method. They allow

us to express derivatives of the frame, in particular of the normal, in terms of
objects which are part of the frame bundle themselves. This is the one reason why
we will never need local coordinates, because all necessary information about the
embedding of the surface in space is encoded in the connection forms.

From the Euclidean structure on R
n it follows that the connection 1-forms

are skew-symmetric, ωj
i = −ωi

j . The connection forms ωn
i can be expressed in
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the base {ω1, . . . , ωk, dτ}, courtesy of Cartan’s Lemma [4]. To see this, first note
that because of definition (3)

ωn = 〈dX,n〉 =
∂X

∂τ
dτ =: f dτ. (6)

Differentiating this equation yields together with (5)

df ∧ dτ +
k∑

i=1

ωn
i ∧ ωi = 0,

therefore, by Cartan’s Lemma, there exist functions hij such that



ωn
1
...

ωn
k

df


 =




h11 . . . h1k f1
...

. . .
...

...
hk1 . . . hkk fk

f1 . . . fk fn







ω1

...
ωk

dτ


 . (7)

The top-left part S := (hij) of this matrix is called the shape operator, and is
closely related to the curvature of Στ . In the lower dimensional cases, its entries
are commonly known as follows:

– If k = 1, i.e. Στ is a curve in R
2, the sole coefficient h11 equals the scalar

valued curvature usually denoted by κ.
– If on the other hand k = 2, i.e. Σ is a regular surface in R

3, the entries of S
are the coefficients of the second fundamental form of Στ . More precisely,

II =
[
ω1 ω2

]
S

[
ω1

ω2

]
= h11(ω1)2 + 2h12ω

1ω2 + h22(ω2)2.

Thus H = 1
kTr (S) = 1

k

∑k
i=1 hii is the mean curvature of the surface.

The fi are just the directional derivatives of f in the directions of the ei. Using
the structure equations (5), we immediately deduce an important relation for
the area form dA on Στ :

dA =: ωA = ω1 ∧ . . . ∧ ωk =⇒ dωA = −Tr (S) ωA ∧ ωn, (8)

We introduce the notation ωA to remind the reader of the fact that the area
element dA indeed is a differential form of degree k. Note that area in our sense
does not imply “two-dimensional”.

Finally, we need a notion of an ’integration by parts’ for a surface integral.
First, we generalize the usual operators from vector analysis to vector fields v
and functions f on Σ:

divΣ(v) :=
k∑

i=1

∂vi

∂ei
with the expansion v = vi ei, and

∇Σf :=
k∑

i=1

∂f

∂ei
ei =

k∑
i=1

fiei.
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Using the definitions and the product rule, we derive a generalization of an
identity well-known from classical vector analysis,

divΣ(vf) = 〈v,∇Σf〉 + divΣ(v) f, (9)

which will be useful later as one possibility of shifting partial derivatives from one
object to another. A second possibility is given by Gauss’ Theorem for surfaces,
which in our context reads∫

Σ

divΣ(v) dA = −
∫

Σ

Tr (S) 〈v,n〉 dA. (10)

Note that v does not have to be tangential to Σ. Since we assume that all our
surfaces are closed, the boundary term usually contributing to the formula has
vanished.

We have now collected all the necessary tools to derive the Euler-Lagrange
equation of A, and do so in the next section. In Sect. 4, this will yield an evolution
equation for the level sets of a function on R

n.

3 Euler-Lagrange Equation

In this section we employ the mathematical framework to derive the Euler-
Lagrange equation of the functional A. The arguments can be followed just by
abstract manipulation of symbols, without the need to understand all of the
reasons which lead to the governing rules presented in Sect. 2.

The desired equation characterizes critical points of A, and is given by the
derivation of the functional with respect to τ at τ = 0. We assume that Φ =
Φ(s,n) is a function of the surface point s and the normal n(s) at this point.
Since Φ maps from R

n × S
n, Φn(s,n) is tangent to the unit sphere of R

n at n,
so we have the important relation

〈Φn(s,n),n〉 = 0. (11)

This fact was overlooked in previous publications, which is the reason why our
final equation is considerably simpler.

Let us now turn to the computation of the Euler-Lagrange equation. Using
the Lie-derivative

Lvω = v ⇀ dω + d(v ⇀ ω) (12)

of a differential form ω in the direction of v, we obtain

d

dτ

∣∣∣∣
τ=0

A (Στ )
(a)
=

∫
Σ

L ∂
∂τ

(Φ ωA)
(b)
=

∫
Σ

∂

∂τ
⇀ d (Φ ωA)

(c)
=

∫
Σ

∂

∂τ
⇀ (dΦ ∧ ωA + Φ dωA)

(d)
=

∫
Σ

∂

∂τ
⇀

(〈Φs, ei〉ωi ∧ ωA + Φn dn ∧ ωA − Tr (S) Φ ωA ∧ ωn
)

(e)
=

∫
Σ

[
(〈Φs,n〉 − Tr (S) Φ) f ωA +

∂

∂τ
⇀ (Φn dn ∧ ωA)

]
.

(13)

The five equalities above are justified by the following arguments:
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a. A generalization of the ’Differentiation under the integral’-rule in classic
calculus [3].

b. Cartan’s rule (12) for expressing the Lie derivative and using the fact that
ω1(n) = · · · = ωk(n) = 0. Note that ∂

∂τ is parallel to n, so this equation also
holds for ∂

∂τ .
c. Product rule for differential forms, note that Φ is a 0-form.
d. Expansion of dΦ = Φs dX + Φn dn = 〈Φs, ei〉ωi + Φn dn. Here we inserted

the definition (3) of the restrictions ωi. The last term is due to (8).
e. Linearity of the left hook and again ω1(n) = · · · = ωk(n) = 0. From (6), it

follows that ωn( ∂
∂τ ) = fdτ( ∂

∂τ ) = f .

We now turn our attention to the second term of the last integral. Inserting
the definition (4) of the connection 1-forms and afterwards the expansion of the
connection forms (7) due to Cartan’s Lemma, we get

∂

∂τ
⇀ (Φn dn ∧ ωA) =

∂

∂τ
⇀

(〈Φn, ej〉 ωj
n ∧ ωA

)

=
∂

∂τ
⇀ (− 〈Φn,∇Σf〉 dτ ∧ ωA) = − 〈Φn,∇Σf〉 ωA

= divΣ(Φn) f ωA − divΣ (Φn f) ωA.

(14)

In the last equality, we have shifted derivatives using the product rule (9). We
can finally compute the integral over the left term using Gauss’ Theorem (10):

∫
Σ

− divΣ (Φn f) dA =
∫

Σ

Tr (S) 〈Φn,n〉 f dA = 0.

It vanishes due to (11). When we thus put equations (13) and (14) together, we
see that we have derived

d

dτ

∣∣∣∣
τ=0

A (Στ ) =
∫

Σ

(〈Φs,n〉 − Tr (S) Φ + divΣ(Φn)) f dA.

Since for a critical point this expression must be zero for any variation and hence
for any f , we have arrived at the Euler-Lagrange equation of the functional

〈Φs,n〉 − Tr (S) Φ + divΣ(Φn) = 0, (15)

and thus proved our Theorem (2).

4 Corresponding Level Set Equation

Level sets represent an efficient way to implement a surface evolution [5,6], and
are by now a well-established technique with a wide area of applications [7].
We will briefly review the transition from (15) to a surface evolution equation
followed by one for a level set in this section. For the remainder of the text, let

Ψ := 〈Φs,n〉 − Tr (S) Φ + divΣ(Φn).
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A surface Σ̂ which is a solution to the Euler-Lagrange equation Ψ = 0 is likewise
a stationary solution to a surface evolution equation, where Ψ describes a force
in the normal direction:

∂

∂τ
Στ = Ψn. (16)

If we start with an initial surface Σ0 and let the surface evolve using this equa-
tion, it will eventually converge to a local minimum of A. Instead of implementing
a surface evolution directly, we can make use of the level set idea. We express
the surfaces Στ for each parameter value τ ≥ 0 as the zero level sets of a regular
function u : R

n × R
≥0 → R, u(s, τ) = 0 ⇔ s ∈ Στ .

We require u(·, τ) to be positive in the volume enclosed by Στ , thus if ∇ is
the gradient operator for the spatial coordinates of u, we can compute the outer
normal using

n = − ∇u

|∇u| =⇒ |∇u| = − 〈∇u,n〉 .

Taking the derivative of u(s, τ) = 0 with respect to τ and inserting (16), we
deduce the evolution equation for u to be

∂

∂τ
u = −

〈
∇u,

∂

∂τ
Στ

〉
= − 〈∇u,n〉Ψ = Ψ |∇u| . (17)

Using the identity

Tr (S) = div
( ∇u

|∇u|
)

for the curvature of the level sets of u and the definition of Ψ , we arrive at the
final reformulation of (16) in terms of a level set evolution:

∂

∂τ
u =

[
− div

(
Φ · ∇u

|∇u|
)

+ divΣ(Φn)
]

|∇u| .

Note that the derivatives of Φ can be computed numerically. Thus, it is not
necessary to compute an explicit expression for them manually, which would be
very cumbersome for more difficult functionals. Instead, in an existing imple-
mentation of the evolution for a general function Φ, essentially any functional
can be plugged in.

5 Known Applications in Computer Vision

Among the first variational methods which were successfully utilized for compu-
ter vision problems was the one now widely known as Geodesic Active Contours
[8]. While originally designed for segmentation in 2D, it quickly became clear
that it could be generalized to 3D [9], and also applied to other tasks. It is
particularly attractive for modeling surfaces from point clouds [10,11]. Geodesic
contours were also employed for 2D detection and tracking of moving objects [12].
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Also well analyzed in theory is how to employ minimal surfaces for 3D recon-
struction of static objects from multiple views [13]. This technique was recently
extended to simultaneously estimate the radiance of surfaces, and demonstrated
to give good results in practice [14].

We will briefly review the above methods to demonstrate that all of them fit
into our framework. In particular, our theorem applies to all of them and yields
the correct surface evolution equations.

5.1 Segmentation via Geodesic Active Contours

Caselles, Kimmel and Sapiro realized that the energy which is minimized in the
classical snakes approach [15] can be rewritten in terms of a geodesic compu-
tation in a Riemannian space by means of Maupertuis’ Principle. The goal is
to compute a contour curve C in an image I which is attracted by edges in the
image while remaining reasonably smooth. Their final energy functional took
the form

A (C) :=
∫

C
g ◦ |∇I| ds,

where g : R
+ → R

+ is strictly decreasing with lim
r→0

g(r) = 0.

∇I acts as an edge detector, while g controls how image gradients are interpreted
as energies. The main purpose of g is to act as a stopping function: The flow
of the curve should cease when it arrives at object boundaries. Because the
integral is minimized, the contour will move towards regions of high gradient.
The smoothness requirement is enforced by the curvature term in equation (2).
Note that g ◦ |∇I| depends only on the surface point and not on the normal, so
the rightmost term in the Euler-Lagrange equation vanishes.

Essentially the same functional can be applied to 3D segmentation [9], where
the source image I is replaced by a volumetric set of data, and the unknown
curve C by an unknown 2D surface. Based on another derivation of the conformal
length minimizing flow by Kichenassamy et al. [16], Zhao et al. [11,17] chose an
Euclidean distance function instead of an edge-based stopping potential for Φ to
model surfaces from unstructured data sets.

5.2 Tracking

Paragios and Deriche combine geodesic active contours and a motion detection
term in a single energy functional to track moving objects in a sequence of images
[12]:

A (C) :=
∫

C
γ GσD

◦ ID︸ ︷︷ ︸
Motion

+ (1 − γ) GσT
◦ |∇I|︸ ︷︷ ︸

Contours

ds,

where Gσ is a Gaussian with variance σ. The user-defined parameter γ weights
the influence of the motion detection term against the boundary localization.
The Gaussians play the same role as g in geodesic contours, their variances
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σT and σD are derived from the image statistics. The image ID is designed to
detect boundaries of moving regions in the current image I of the sequence, and
constructed using a Bayesian model which takes into account the pixel differences
to the previous frame.

5.3 3D Reconstruction

As a first step, Faugeras and Keriven [13] give a simple functional in dimension
n = 3 for static 3D scene reconstruction which does not depend on the surface
normal. It can be viewed as a space-carving approach [18] generalized from
discrete voxels to a continuous surface model.

Let C1, . . . , Cl be a number of cameras which project a scene in R
3 onto

images Ik via projections πk : R
3 → R

2. For each point s ∈ R
3, let νk(s) denote

whether or not s is visible in camera k in the presence of a surface Σ. νk(s) is
defined to be one if s is visible, and zero otherwise. A measure of how good a
surface Σ as a model of the scene geometry really is in accordance with a given
set of images can be obtained as follows: Each surface point is projected into the
set of images where it is visible, and the differences between the pixel colors for
each pair of images are computed and summed up to get an error measure for
the surface point. This error is integrated over the surface to get the total error.
In mathematical notation,

A (Σ) :=
∫

Σ

ΦSdA, where

ΦS(s) :=
1

Vs(Vs − 1)

l∑
i,j=1

νi(s)νj(s) · ‖Ii ◦ πi(s) − Ij ◦ πj(s)‖∞ .

The number Vs of cameras able to see a point s is used to normalize the function.
Clearly, the above model is too simple to be of much use in multi-view re-

construction, since only single pixels with no regard to their neighborhoods are
compared. A better functional was therefore suggested by Faugeras and Keriven,
and can be applied using the results on how the evolution depends on the current
normals. We present a slight modification of their original approach here. Our
functional only depends on invariant surface properties and does not make use
of geometric objects in the source camera views.

To each surface point s, we associate a small rectangle �s,n in the tangent
plane TsΣ. In order to invariantly determine its orientation within the plane,
we align the sides with the principal curvature directions. This rectangle is then
projected into the images, and the normalized cross-correlation over the projec-
ted areas is computed. We choose the length of the rectangle sides to be inversely
proportional to the curvature in the corresponding direction, up to a certain ma-
ximum, because the first order approximation of the surface by its tangent plane
is valid over a larger region if the curvature is low. The corresponding functional
can be written as



Weighted Minimal Hypersurfaces and Their Applications 375

A (Σ) :=
∫

Σ

ΦCdA, where

ΦC(s,n) := − 1
Vs(Vs − 1)

l∑
i,j=1

νi(s)νj(s) · χi,j(s,n) and

χi,j(s,n) :=
1

A (�s,n)

∫
�s,n

(
Ii ◦ πi − I

s,n
i

)
·
(
Ij ◦ πj − I

s,n
j

)
dA.

The correlation integral has to be normalized using the area A (�s,n) of the
square. The mean values are computed using

I
s,n
i :=

1
A (�s,n)

∫
�s,n

Ii ◦ πi dA.

When this functional is minimized, not only the position, but also the surface
normal is adjusted to best match the images. This approach can also be employed
to improve the normals for a known geometry approximation, i.e., the visual hull.
When a segmentation of the images into background and foreground objects can
be obtained, the visual hull also constitutes a good initial surface Σ0 for the
evolution equation (16), since it is by construction a conservative estimate of
the object regions.

5.4 Reflectance Estimation

Jin, Soatto and Yezzi combine the reconstruction framework with a simultaneous
reflectance estimation [14]. They use the functional

A (Σ) :=
∫

Σ

∥∥∥R̃ − R
∥∥∥2

F
dA,

where the Frobenius norm ‖·‖F is employed to compute the difference of the
measured radiance tensor field R̃ to an idealized R obtained from a reflection
model, which depends on the surface Σ.

As claimed previously, all of the problems reviewed in this section are of
the form required by the main theorem, and can thus be subsumed under the
unifying framework presented in this paper.

6 A Novel Technique: Space-Time 3D Reconstruction

In this section and for the first time, we are going to exploit the fact that we can
now handle variational problems posed in higher-dimensional space. We present
only one of many new applications one can think of. For instance, the additional
degrees of freedom could also be used to optimize parameters defined in each sur-
face point. We employ them to introduce a temporal dimension, which allows us
to compute temporally coherent estimates for the scene geometry reconstruction
from multiple video streams.
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Since our equation is valid in arbitrary dimension, we can interpret it in
dimension n = 4 as an evolution equation for a hypersurface in space-time. Its
cross sections with planes of constant time {t = t0} yield the scene geometry at
the time instant t0. That way, a global optimum for the scene geometry, including
the normals, and its change over time can be found which takes into account
every frame at every time instant simultaneously. Moreover, the minimization
problem is formulated and can be solved in an elegant mathematical context.

In order to distinguish normal surfaces in R
3 from hypersurfaces, we will

denote the latter by H. Points in space-time R
4 are written as x = (s, t) ∈ R

3×R.
A hypersurface H gives rise to a family (Σt) of regular surfaces

Σt := H ∩ (R3, t) ⊂ R
3

for each time instant t. We also have to deal with time-dependent visibilities
νt(s) depending on point s and the surface Σt at time-instant t, as well as
time-dependent images It from each camera.

The resulting functional looks almost identical to the one in Sect. 5.3:

A (H) :=
∫
H

ΦGdV, where

ΦG(x,n) := − 1
Vs,t(Vs,t − 1)

l∑
i,j=1

νt
i (s)ν

t
j(s) · χt

i,j(s,n
t).

χt
i,j(s,n

t) :=
1

A (�s,nt)

∫
�s,nt

(
It
i ◦ πi − I

x,n
i

)
·
(
Ij ◦ πj − I

x,n
j

)
dA.

The normal nt to the surface Σt is the projection of the normal to the hyper-
surface H onto the tangent space of Σt, which is a subspace of the tangent space
of H. Note that the square �s,nt lies inside the tangent plane of Σt. The mean
values I

x,n
i are of course also computed using the images at time t.

When this functional is minimized, two constraints are optimized simulta-
neously. First, each surface Σt together with its normals is selected to best match
the images at that time instant. Second, a smooth change of the surfaces Σt with
time is encouraged because of the curvature term in the Euler-Lagrange equa-
tion. Our experiments with real-world data using a parallel implementation of
this scheme gave very promising results, which we are going to present in a future
publication.

7 Conclusion

Using the mathematical tool of the method of the moving frame, we have derived
the Euler-Lagrange equations for weighted minimal surfaces in arbitrary dimen-
sions. We allowed for weight functions general enough to cover the variational
problems encountered in computer vision research. Previously, existing proofs
used local coordinates and were restricted to dimensions two or three, so our ap-
proach is more general. As demonstrated by several examples, weighted minimal
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surfaces lie at the heart of several well-established computer vision techniques.
Our result for arbitrarily high dimensions paves the way for new, future research.
In particular, we sketched a technique designed to achieve temporal coherence in
3D reconstruction from multiple video streams. In the near future, we are going
to experimentally investigate its possibilities.
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