Evaluation of Robust Fitting Based Detection

Sio-Song Ieng!, Jean-Philippe Tarel?, and Pierre Charbonnier3

! LIVIC (LCPC-INRETS), 14, route de la miniere, Bat 824,
F-78000 Versailles-Satory, France
ieng@inrets.fr
2 ESE (LCPC), 58,boulevard Lefebvre,

F-75732 Paris Cedex 15 France
tarel@lcpc.fr
3 LRPC de Strasbourg,

11, Rue Jean Mentelin, BP 9,

F-67200 Strasbourg, France
Pierre.Charbonnier@equipement.gouv.fr

Abstract. Low-level image processing algorithms generally provide
noisy features that are far from being Gaussian. Medium-level tasks such
as object detection must therefore be robust to outliers. This can be
achieved by means of the well-known M-estimators. However, higher-
level systems do not only need robust detection, but also a confidence
value associated to the detection. When the detection is cast into the
fitting framework, the inverse of the covariance matrix of the fit provides
a valuable confidence matrix.

Since there is no closed-form expression of the covariance matrix in the
robust case, one must resort to some approximation. Unfortunately, the
experimental evaluation reported in this paper on real data shows that,
among the different approximations proposed in literature that can be ef-
ficiently computed, none provides reliable results. This leads us to study
the robustness of the covariance matrix of the fit with respect to noise
model parameters. We introduce a new non-asymptotic approximate co-
variance matriz that experimentally outperforms the existing ones in
terms of reliability.

1 Introduction

In modern applications, such as intelligent transportation systems, cameras and
their associated detection algorithms are increasingly considered as specialized
sensors. As for every sensor, the vision measure must be accompanied with a
confidence value in order to be integrated into a higher level system. This is
especially important when safety aspects are involved. But then the point is:
how can this evaluation be performed?

Many image analysis algorithms, such as image segmentation or curve de-
tection, can be at least partially formalized as fitting problems. Least-squares
fitting, the well known technique based on the assumption of Gaussian noise, is
widely used, and it provides the exact covariance matrix of the obtained fit. The
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inverse of this matrix can be used as a confidence matriz. However, it is com-
mon knowledge that, in real applications, the noise is seldom Gaussian, making
the fitting task more difficult. Alternatively, using the robust framework, it is
possible to deal with heavy tailed noise models, but this leads to non-linear equa-
tions and iterative algorithms such as reweighted least-squares, in the context of
M-estimators [1].

Although robust fitting algorithms have been extensively investigated, the
problem of deriving a confidence matrix has seldomly been considered in image
analysis. Indeed, due to non-linearities, an exact derivation of the covariance
matrix is believed to be intractable in the robust framework and approximations
are required. One way to tackle the problem is to study the asymptotic behavior
of robust estimators: Huber proposes several such approximate covariance
matrices. The evaluation of these matrices was only performed on synthetic data.
In a different context, namely robust Kalman filtering, where the question of the
predicted covariance matrix becomes of major importance, other approximations
were proposed in [2] and in [3], but without justification. Again, the evaluation
of these matrices was performed only on synthetic data.

We started our study by an experimental comparison of the approximate
covariance matrices already proposed in the literature. The results of this com-
parison on real and simulated data showed that none of them gives sufficiently
reliable results when noise is far from being Gaussian, which led us to derive a
new approximate covariance matrix. Unlike those proposed by Huber, it is not
an asymptotic covariance matrix. However, its experimental performances are
much more satisfactory.

Robust fitting using M-estimators is summarized in Section 2] where the
choice of the noise model and its parameters is also discussed. Then in Section B]
a new approximation is derived and the experimental comparison of approximate
covariance matrices is described.

2 Fitting Based Detection

We focus, as an application, on lane-markings detection in images [3]. For each
image the detection algorithm consists of a feature extraction step followed by
a robust curve fitting. The feature extractor scans each row x of the image and
provides a series of coordinates (z;,y;), ¢ = 1,--+,n that should correspond to
the center of each lane-marking. The detection can then be seen as a fitting
problem, using explicit curves along one axis of the image. The assumed link
between a couple of coordinates (x;,y;) is

yi = X'A+ b, 1)

In this model, the measurement noise, b is assumed to be centered, independent
and identically distributed (iid). The vector X; = (x¥), k =0, ---,d is the vector
of monomials. While a straight line is sufficient as a lane-marking model for
near-field cameras, other basis functions could be used to model more complex
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lane-marking curves, provided the relationship remains linear with respect to
the curve parameters, A = (ag), k =0,---,d.

In the remainder of the section, the robust fitting procedure is reviewed and
its performances and limitations are discussed.

2.1 Feature Noise Model

An experimentally convenient way of modeling observed noise distribution is to
use the so-called Smooth Exponential Family F, ,(b) of functions introduced

in [3):

1 2
Fo(b) o e~ 792 (2)
S
where ) )
b 1 b
w(=)==((1+=)*=1).
ba(5) = ~(1+ )" = 1)

The two parameters of this family are s and the power . The former is the scale
parameter, while the latter specifies the shape of the noise distribution. Indeed,
« allows a continuous transition between well-known statistical laws such as
Gauss (o« = 1), and Geman & McClure [4] (o« = —1). Another advantage of this
family is that it only contains differentiable functions allowing robust fitting, as
proved in [3]. Moreover, F, s can always be normalized on a bounded support,
so it can still be seen as a probability distribution function (pdf). In this family,
when « decreases, the probability of observing large errors (outliers) increases.

2.2 Robust Fitting

Following the MLE approach and assuming the noise model (), the problem is
equivalent to minimizing, with respect to A, the error:

o) = 53 oul (KAL)

S

A local minimum is achieved by the classical alternate minimisation scheme:

Initialize Ag, and set j = 1.

. . . . XPA; _1—vy;
For all indexes i (1 <14 <n), compute weights /\” = ¢, ((=11)2),

Solve the linear system Zi’f N X XEA; =570 N s Xy,
If |A; — A;_1|| > €, increment j, and go to 2, else a local minimum is
achieved.

R

This algorithm was first introduced for M-estimators by Huber [I]. A proof of the
local convergence of the previous algorithm, using Kuhn and Tucker’s theorem
is described in [3]. When « = 0, it is easy to show that generalized T-Student [5]
pdfs are used as noise model.
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Fig.1. Variations of weight A with respect to the value b of the noise, for different
values of a. Outliers effect is strongly reduced by this weight during the fitting.

2.3 Influence of o and s on Fits

The choices of the parameters of the noise model, « and s, are now discussed.

Fig.[T shows that the weight A becomes less sharply peaked when « is decrea-
sing. The same kind of figure is obtained with increasing s. As a consequence,
the lower « or s is, the lower the effect of outliers on the result is.

But one must be careful not decrease o or s too much. Indeed, with too small
an « or s, the number of local minima increases and the curve fitting algorithm
has a higher chance of being trapped in a local minimum located far from the
global one. In practice, this implies that the estimated curve parameters are
frozen at their current values during the alternate minimization [6]. So, how can
the scale and power parameters be correctly estimated?

When the pdf support is unbounded (o > 0) and other noise parameters
are known, by deriving the negative log-likelihood with respect to s, we get the
following implicit equation in §:

2= 13 (A a2 3)
=1

This equation means that the MLE estimate § of s is a fixed point. When o < 0,
a similar expression, accounting for bounded support pdf’s can be also derived.
Other scale estimators such as MAD [7] have been proposed.

The MLE estimator of the scale must be used with care. Surprisingly, when
data has little noise, we observed that the MLE estimate of s is clearly under-
estimated. This is a general problem, due to the finite precision of feature de-
tectors (in our case, it provides discrete image positions). In Fig. 2] we simulate
this effect by generating a Cauchy noise (o ﬁ or a = 0) with a fixed scale s,
and rounding it. Then, the MLE scale § is estimated from this data, assuming a
Cauchy noise with unknown scale. Fig. [2] confirms our observations on real data:
when the true scale s is lower that one pixel, § is clearly under-estimated.

This suggests that during its estimation, the scale must not been allowed to
take small values (i.e. lower than one pixel). This also implies that it is better
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Fig. 2. The estimated scale § versus the true scale s for Cauchy noise. We can notice
that § is under-estimated by the MLE estimator when s < 1, due to rounding the data.

not to estimate the scale between each step of the robust fitting, contrary to
what was suggested in [1]. Indeed, an under-estimated scale can freeze the fit in
its current state, while it has not yet converged.

The MLE approach, when applied to the estimation of «, assuming s is
known, does not seem to lead to closed-form estimators. Nevertheless, this esti-
mation may always be performed by minimizing numerically the likelihood with
respect to «, using a minimizer such as a Gradient Descent algorithm. In our
experiments, we have obtained & = 0.05 on the residual noise collected on 150
images after fitting.

2.4 Robustness with Respect to a and s

By nature, robust fitting algorithms are not very sensitive to outliers. However,
another question of importance is their robustness to an inappropriate choice
of the noise model parameters. In order to evaluate the effect of this kind of
modeling error on the fitting, we run the following experiment:

Fig. 3. Six images from the set of 150 images used in the experiments. The black
straight line is the reference fit.

1. Collect a set of 150 images showing the same lane-marking in the same
position but with different perturbation (Several images are shown in Fig. [3)).
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2. The reference lane-marking is accurately measured by hand. In this experi-
ment fits are straight lines.

3. For each image of the set, fits are estimated for pairs of («, s) ranging on a
grid. The initial curve parameters, Ay, are set to random values.

4. The relative error between the fits and the reference is averaged on the image
set for each pair («, s). Fig. l shows the obtained error surface.

Parameters Fitiing relative error

B IIllllllllllllllIllIlllll'llllllllllllllllllllll "

| llIllllllllllllllllllllll!llllllllllllllllllllll ”

Fig. 4. Errors between the fit and the reference for different o and s. Notice the very
broad ranges of a and s that lead to a flat valley.

Observe how the valley along an « cross section is very large compared to
a s cross section. In general, it appears that « and s can be chosen in a large
range. Moreover, when « is set in the range of correct values, s can vary within
a very large range without really modifying the resulting fits. This robustness to
the choice of parameters probably explains why robust fitting can be used with
success in many practical applications.

3 Evaluation of the Detection

It is common knowledge that in practical applications, an estimate must be
accompanied with some measure of confidence in order to be correctly used by
higher level systems (e.g. Kalman filters in tracking applications [3]). In the
statistical estimation framework, this confidence measure is naturally given by
(the inverse of ) the covariance matrix. This is why we have formulated detection
as a fitting problem in the previous section. With Gaussian noise, computing
the covariance matrix is straightforward. In the robust framework, however, a
correct covariance matrix estimate is more difficult to obtain. There are two
main reasons for that. First, there is no known closed-form solution, but only
approximations. In this section, we focus on approximations that can efficiently
be computed from the data in hand during the fitting. Second, it turns out that
an accurate choice of the noise model parameters is much more critical for the
covariance matrix estimation than for the fitting, as demonstrated below.
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3.1 Confidence Matrices

A complete review of the many different approaches for approximating covari-
ance matrices is out of the scope of this paper. Thus, we present a selection of
five matrices that can be efficiently computed. Then, we propose a new appro-
ximation whose performances in terms of quality we will evaluate.

The simplest approximate covariance matrix Ccjprq, named Cipra’s covari-
ance matrix in [3], is:

-1

i=n
CCipra = 32 (Z )\zXle> )
=1

where \; are the weights when robust fitting converged. Another fast-to-compute
approximation is proposed in [3]:

Csimple = 32 (Z )\3X1X;5>
=1

Notice that in these two estimates s> appears as a factor. As a consequence,
incorrect values of the scale parameter lead to poor quality estimates.

In chapter 7 of [1], Huber derives an asymptotic covariance matrix and pro-
poses three other approximate covariance matrices:

-1

-1

CHuberl K2 - (dl %:;np( (ZXX ) )

n i=1

CHuber2 = K= dl 1Z¥n E/( ()>) <i p”(bl>X’Lth> ’

1 i=n i=n
CHuberS = K_lm Z(pl(bz))gw_l (ZXlX’Lt> W_l
i=1 i=1

with Huber’s notation p(t) = ¢(t?) and W = 21 L p" (b)) X; X} nis the number
of data points and d + 1 is the dimension of vectors A and X;. The correction
factor, K, is given by:

K=1+(d+ 1)222@//(@'2 — w2 P(0))

iz p"(8:))?

For easier notations, we set O; = Y ._ N, X; X! and Oy = > =7 M2 X, X!,
The inverse of a covariance matrix will be called a confidence matriz in the
sequel.

In our experiments with real data, the previously proposed covariance ma-
trices did not provide reliable estimations of the detected lane-markings. This is

~
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experimentally shown in the next section. We propose the following new appro-
ximate covariance matrix which is justified in the Appendix:

>t b
ZZ? A\i — Trace(0207h)

CNew = 070,07 (4)

This approximation is not an asymptotic covariance matrix, unlike Huber’s ap-
proximations. The advantage is thus that Cne, does not require a high number
n of data points to be applied. It relies on assuming non random weights \;. If
the weights were considered as random variables, deriving the covariance matrix
would become too involved.

3.2 Experimental Covariance Matrix Comparison

The six previous covariance matrix estimates are compared on average on 150
real images (partially shown in Fig.[B]). The experimental comparison process is
the same as in Sec. [2Z4] with two additional steps:

5. The six approximate covariance matrices presented are computed for each
image.

6. The reference matrix is computed as the covariance matrix of the fits. The
relative errors between the reference and the six approximate covariance
matrices are averaged on the image set for each («, s).
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Fig.5. These curves represent the variation of the three components of the 2 x 2
symmetric matrix Cnew versus the index of the image. The first and the last figures
are associated to the diagonal components.

Fig. [ illustrates the fact that the three components of a same matrix vary
in the same way. Thus, without loss of generality, the analysis can be performed
on only the first diagonal component.

Fig. [0 shows the value of the first component of the six confidence approxi-
mations for & = 0.2 and s = 2. These variations are relatively similar, but the
orders of magnitude can vary greatly from one approximation to another.

In Tab. [0, the relative errors with respect to the reference matrix for the
different approximate covariance matrices are compared with (o, s) = (0.2,2).
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Fig. 6. These curves represent the first component of the different confidence matrices:
CSimple (a)y CCipra (b)7 CNew (C), CHuberl (d)7 CHuberQ (e) and CHuberS (f) We notice
that the values are of different orders of magnitude, but they vary in a similar way.
This estimation is performed for « = 0.2 and s = 2.

Similar results are obtained for other (a,s) in the valley of Fig. ll where fits

are accurate. The relative error is calculated with 2'5@%61’;71]' Thus, 200%
corresponds to the worst case where the value of Cj; is far éway from the reference
value Cyey ;5. This table shows that only Cyew achieves a usable estimation of
the confidence matrix. This is also illustrated by Fig. 6l where o = 0.2 and s = 2
and where only Cye, has the correct order of magnitude. As a consequence,
C'New appears to be more robust than the other approximations.

In Fig. [ the relative error between the first component of the confidence
matrix Cye, and the reference is displayed for different values of o and s. For
the other components, similar relative error maps are obtained. This relative
error map shows that a relative error of 20% in the vicinity of s = 2.5 for a < 0

Table 1. Relative errors in percentage on components Ci1, C22 and Ci2 of the confi-
dence matrix with respect to the reference, for the six covariance matrix estimates, for
(a,s) =(0.2,2).

Type |C11 rel.err.|Cag rel.err.|Ch2 rel.err.
Cipra 195% 198% 196%
Huberl 156% 183% 192%
Huber2| 200% 200% 200%
Huber3| 200% 200% 200%
Simple 98% 99% 101%

New 64% 41% 43%
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Relative error between estimated matrix and reference matrix
ar

Fig. 7. Relative error of Cyew versus (a, s) with respect to reference covariance. With
the new approximate covariance matrix, a relative error of 20% is achieved contrary to
the others.

can be achieved. This was not obtained for the other approximations. This is
due to the fact that Cyey 18 more robust to the choice of . Nevertheless, in
contrast to parameter fitting, a correct estimate of s remains important for a
correct Cnew.

In Sec. 23] the average power parameter « was estimated on the residual
noise collected from 150 images as & = 0.05. Since the noise scale s is not the
same from one image to another, it is better to estimate the average scale as the
average of the scales estimated on each image with « fixed to 0.05. The average
model noise parameters obtained are (&, §) = (0.05,2.02), which is in the valley
observed in Fig. [l Therefore, our experiments are consistent.

Similar synthetic experiments were performed for higher degree curves. Hig-
her degree requires to introduce fitting regularisation. 10000 perturbed data sets
with Cauchy noise were generated and fitted by a 2nd degree curve (3 parame-
ters) assuming the true noise model. We obtained an average error of —5% for
Chews +9% for Cyimpre, —16% for Ceiprq. Huber approximates are not of the
same order of magnitude. This extends to higher degree results obtained on real
data.

4 Conclusion

In this paper, we considered object detection as a statistical estimation pro-
blem. Then, the inverse covariance matrix naturally provides a measure of the
confidence that can be associated to the detection result, and the non—Gaussian
nature of the noise distributions that can be encountered in practice can be dealt
with using robust fitting.

In this context, the important question which we have addressed is the choice
of the noise distribution model parameters. We have experimentally shown that
estimated fits remain relatively reliable even with a slightly incorrect noise mo-
del. On the contrary, correct covariance matrix estimates generally need fine
tuning of the noise model parameters, which is difficult to achieve in practice.
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We thus derived a new approximate covariance matrix (@) which is more robust
to incorrect noise model parameters. This new approximate covariance matrix
can be used to great advantage in many applications, including detection.
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Appendix: Cpne, Covariance Matrix Derivation

Let us justify Cnew. The covariance matrix of the estimated parameter vec-
tor A is defined as the expectation E[(A — A)(A — A)], where A is the true
parameter vector. We rewrite step 3 of the robust algorithm as 0.A = B
with B = Sy ):iy}Xi. For the true parameters, we have the similar equa-
tion O4A = B where B = Y '_1 \;y; X;. In the following, we remove the
constraint that ):z is a random variable and thus ):Z = );. This has three
main consequences. First, it implies 01 = (0. Second, since b; is assumed
centered, from g; = X!A + b; we deduce y; = X'A, and thus B — B =
Z;jf Aib; X;. Since the b;’s are independent random variables, this last equa-
tion implies E[(B — B)(B — B)Y] = 727 X E[B2)X;X! = E[b?]O,. Third,
using the previous equations, the covariance matrix can be approximated by
O7'E[(B — B)(B — B)! 07" or

CNew = E[B?]O710,07 7, (5)

after substitution of the covariance matrix of B. The point is now how to appro-
ximate the variance of the noise E[b?]. The simplest idea is to compute it from
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the noise model, but this leads to bad estimates when the noise model is not
correctly chosen. A better idea, leading to estimates more robust to errors in the
choice of the noise model, is to derive E[b?] from the data residuals b; using (3]).

We can now derive the equation between E[b?] and E[3%]. ([B) is rewritten
as §2 = L3 TN (G — X!A)2. By introducing the true parameter vector A,
inside the sum, we get §2 = 15770\ (b; + XH(A — A))2. To calculate E[$?]
as a function of E[b?], we expand the squared term in the previous equation.
Using (B), we deduce

i=n

E[3%] = 1 Z(E[bmi + E[D* )\ XE0T 0,07 X + 20 XEE[(A — A)by]).  (6)
i=1

Since b; is centered, thus E[(A—A)b;] = —E[Ab;] in (B). The estimated parameter
vector obtained by fitting is A = o;t ZZ:; Mo X = O Zf;” M Xp(XFA+
ug). Therefore E[Ab;] can be expanded as E[Ab;] = O S5=0 M Xy Eugby).
The independence of b; allows us to simplify the last equation in E[/lbi] =
O7 ' \iX;E[b?]. As a consequence (@) is now:

E[b2] i=n 1=n 1=n
B =—"-0 X\ NXIOTTO,07' X —2) NXIOT'Xy). (7
[S] n (; +; i1 2V ; i1 ) ()
Using the property Trace(AB) = Trace(BA), we can rewrite the se-
cond and third terms in (@) as Y .Z7NX[0;7'0:07'X; = Y TUN
X!O7'X;, = Trace(O:07%). This implies the simple result E[8?] =

Ep? (Zi? i — Trace(OgOfl)). Using (B) as an approximate value of F[5?],

n

we deduce the following estimate of E[b%]:

STV N — Trace(0,071)

The substitution of [B) in (B)), results in the proposed approximate covariance
matrix ().
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