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Abstract. While there is a vast amount of literature considering PDE
based inpainting and inpainting by texture synthesis, only a few publica-
tions are concerned with combination of both approaches. We present a
novel algorithm which combines both approaches and treats each distinct
region of the image separately. Thus we are naturally lead to include a
segmentation pass as a new feature. This way the correct choice of tex-
ture samples for the texture synthesis is ensured. We propose a novel
concept of “local texture synthesis” which gives satisfactory results even
for large domains in a complex environment.

1 Introduction

The increase in computing power and disk space over the last few decades has
created new possibilities for image and movie postprocessing. Today, old photo-
graphs which are threatened by bleaching can be preserved digitally. Old cellu-
loid movies, taking more and more damage every time they are exhibited, can
be digitized and preserved. Unfortunately much material has already suffered.
Typical damages are scratches or stains in photographs, peeled of coatings, or
dust particles burned into celluloid. All these flaws create regions where the
original image information is lost. Manual restoration of images or single movie
frames is possible, but it is desirable to automate this process. Several inpainting
algorithms have been developed to achieve this goal. In this paper we focus on
single image inpainting algorithms (there exist more specialized algorithms for
movie inpainting). They may roughly be divided into two categories:

1. Usually PDE based algorithms are designed to connect edges (discontinuities
in boundary data) or to extend level lines in some adequate manner into the
inpainting domain, see [1,2,3,4,5,6,7,8,9,10,11]. They are targeted on extra-
polating geometric image features, especially edges. I.e. they create regions
inside the inpainting domain. Most of them produce disturbing artifacts if
the inpainting domain is surrounded by textured regions, see figure 1.
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2. Texture synthesis algorithms use a sample of the available image data and
aim to fill the inpainting domain such that the color relationship statistic
between neighbored pixels matches those of the sample, see [12,13,14,15,16,
17,18]. They aim for creating intra–region details. If the inpainting domain
is surrounded by differently textured regions, these algorithms can produce
disturbing artifacts, see figure 2.

Fig. 1. An example which is not well suited for PDE inpainting. The texture synthesis
algorithm achieves visually attractive results (right picture), PDE based inpainting
algorithms fail for large sized domains surrounded by strongly textured areas (middle
picture)

Fig. 2. Texture synthesis may run into problems, if the sampling domain is chosen
inappropriately. The balustrade in the left picture should be removed by resynthesizing
image contents, taking the rest of the picture as sample texture. The result can be seen
on the right: the ladder initiated spurious sampling of trees and leaves into the brick
wall

Until now there are only a few algorithms trying to treat geometric image
features and texture simultaneously:
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– An algorithm based on texture template spectrum matching has been pro-
posed in [19]. This algorithm does not fit into either one of the two categories
mentioned above.

– A special purpose algorithm was used in [20] for restoring missing blocks
in wireless transmitted compressed images. Common lossy compression al-
gorithms (like e.g. JPEG) divide an image into 8x8 pixel blocks that are
independently compressed. If a corrupted block is detected it is reconstruc-
ted rather than retransmitted to decrease latency and bandwidth usage.
Reconstruction occurs by classifying the contents of adjacent blocks into eit-
her structure or texture. Depending on this classification the missing block
is restored by invoking either a PDE inpainting or a texture synthesis algo-
rithm.

– Closely related to our inpainting technique are the algorithms proposed in
[21,22], which are most natural to compare with in the course of this paper.
They differ from our algorithm by the choice of the subalgorithms in each
step. Moreover, we propose to perform a segmentation step to determine
appropriate texture sample regions. This prevents artifacts arising in the
texture synthesis step, as exemplified in figure 2. This problem is not adressed
in [21,22].

2 The Algorithm

The proposed inpainting algorithm consists of five steps:

1. Filtering the image data and decomposing it into geometry and texture
2. PDE inpainting of the geometry part
3. Postprocessing of the geometry inpainting
4. Segmentation of the inpainted geometry image
5. Synthesizing texture for each segment

We will describe each step in detail in the following subsections. The image,
denoted by a function u : D → R (or R

3 for color images), is defined on the
image domain D ⊂ R

2. A user specified mask function m : D → [0, 1] marks the
inpainting domain Ω = supp(m). A value of 1 in the mask function highlights
the flawed region. The mask is designated to continuously drop to zero in a small
neighborhood (i.e., a few pixels) outside of the flawed region. This “drop down”
zone will later be used to smoothly blend the inpainting into the original image.

2.1 Filtering and Decomposition

A nonlinear diffusion filter of Perona–Malik type [23] is applied to the image u,
i.e. it is evolved according the partial differential equation

∂u

∂τ
= ∇ · (d(‖∇u(x, y)‖) · ∇u) (1)

where the diffusivity d(s) is chosen to be

d(s) =
1

1 + s2

λ2

(2)
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with a suitably chosen parameter λ. The filtered image g is the solution of (1)
at a specified time τ0, characterizing the strength of filtering. The effect of the
filter is that g reveals piecewise constant intensities and contains little texture
and noise. Thus we call g the geometry part. We set u = g + t and refer to t as
the texture part. All along this paper we consider noise as a texture pattern.

Recently several advanced techniques for image decomposition have been
proposed, see [24,25,26]. In [21] decomposition is done by using the model from
[24], i.e. by jointly minimizing the BV seminorm of the function g and Meyers G-
norm (see [27]) of the function t. Using this model allows one to extract texture
without noise, which leads to an approximative decomposition u ≈ g + t, with
geometry part g and texture t. For inpainting this seems not to be optimal, since
a noisefree inpainting in a noisy image may look inadequate.

In [22] a lowpass/highpass filter is applied to the image to attain g resp. t.
The decomposition is thus not into geometry and texture but rather into high
and low frequencies.

2.2 PDE Inpainting

For the inpainting of the geometry part we use the Ginzburg–Landau algorithm
proposed in [11]. Here we give a short overview:

We calculate a complex valued function g̃, whose real part is the geometry
image g scaled to a range of values between -1 and 1. Further we demand that
‖g̃(x, y)‖max = 1 for all (x, y), and the imaginary part be nonnegative, �g̃ ≥ 0.
The function g̃ is evolved using the complex Ginzburg–Landau equation

∂g̃

∂τ
= ∆g̃ +

1
ε2

(
1− ‖g̃(x, y)‖2max

)
g̃ (3)

inside Ω, where the available data g̃|∂Ω is specified as Dirichlet boundary
condition. Here ε ∈ R is a length parameter specifying the width of edges
in the inpainting. ‖ · ‖max denotes the maximum norm of the components of
g̃(x, y), which is just the absolute value |g̃(x, y)| if g is a grayscale image, and
max{|g̃red|, |g̃green|, |g̃blue|} for RGB images. The real part 	g̃ of the evolved
image at some time τ0 (i.e., if g̃ is “close enough” to steady state) is rescaled to
the intensity range of g and constitutes the inpainting.

For a more detailed description we refer to our presentation in [11]. Theoreti-
cal results about the Ginzburg–Landau equation and similar reaction–diffusion
equations can be found in [28,29].

In [21] the PDE inpainting method from [4] is used. In comparison with
(3) this algorithm (judging from the examples given in [4]) creates smoother
and better aligned edges, but the Ginzburg–Landau algorithm reveals higher
contrast and less color smearing.

In [22] the inpainting technique from [10] is utilized. This algorithm is not
designed to create edges in the inpainting domain. For the particular application
to inpaint a low pass filtered image this is no problem.
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2.3 Postprocessing

The Ginzburg–Landau algorithm sometimes produces kinks and corners in ed-
ges. A detailed discussion of this phenomenon has been given in [11]. This is
the price for high contrast edges in the inpainting domain. To straighten the
kinks we apply a coherence enhancing anisotropic diffusion filter to the image
g on the inpainting domain Ω. This filter is described in [30]. We implemented
this diffusion filter using the multi–grid algorithm outlined in [31]. Since diffu-
sion happens mostly along edges and not across, the contrast does not suffer
significantly.

2.4 Segmentation

As a preparation for the texture synthesizing step the inpainted and postproces-
sed geometry image (which for the sake of simplicity is again denoted by g) is
segmented. We employ a gradient controlled region growing algorithm, inspired
by the scalar Ginzburg–Landau equation:

Let (Si ⊆ D)i=0..N be the (a–priori unknown) segmentation of D, i.e.
⋂

i

Si =

∅ and
⋃

i

Si ⊇ Ω. We assume that every pixel in Ω belongs to exactly one segment

Si. We do not need to segment the whole image domain D since segments which
have no intersection with Ω do not affect the final result. We derive the sets Si

from a set of auxiliary functions (Si : D → R)i=0..N :

1. Set i = 0.
2. Choose an arbitrary pixel (j, k) ∈ Ω \ ⋃

0≤n<i

Sn. Set Si = −1, except for

Si(j, k) = +1.
3. Evolve Si according to the equation

∂Si

∂t
= ∆Si − P ′(Si)− α‖∇g(x, y)‖ (4)

where P ′(x) is the derivative of the polynomial potential

P (x) =
9
4
x4 +

19
8

x3 − 9
2
x2 − 57

8
x (5)

until a steady state is reached.
4. Set Si = supp

(
max

(
0, Sf

i

))
, where Sf

i is the steady state solution from
the previous step.

5. If
⋃

0≤n≤i

Sn ⊇ Ω terminate the algorithm, else set i ← i + 1 and continue

with step 2.

Explanation of equation (4): like in the scalar Ginzburg–Landau equation P ′(x)
is the derivative of a bistable polynomial potential P (x), forcing Si(x) to take
on values close to +1 or −1. Here P (x) is chosen to be nonsymmetric, having a
shallow minimum at x = −1 and a deep minimum at x = +1. Assume α = 0.
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P (x) is constructed such that the diffusion caused by the Laplacian is strong
enough to move Si in the surrounding of the seeding pixel from the negative
to the positive minimum. Thus under continued evolution the +1 domain will
spread out all over D. If α > 0 the term depending on ∇g is a forcing term acting
against diffusion and thus eventually stops propagation at edges of g. Eventually
further terms could be added, e.g. penalizing curvature of Si to prevent the
segments from crossing small narrow gaps. This turned out not to be required
by our application.

Large changes in Si occur only in a small region between the +1 and the −1
domain, so this algorithm can be efficiently implemented using a front tracking
method. Therefore only a small fraction of all pixels has to be processed at each
iteration.

2.5 Texture Synthesis

For the texture synthesis step we employed the algorithm from [13]. In [22] the
same algorithm with a different implementation has been used. In [21] the tex-
ture synthesis algorithm from [18] was used, which should give similar synthesis
results as [13]. In both [21,22] all of the available image data t|D\Ω is taken as
sample to synthesize texture in all of t|Ω . Since the texture synthesis proceeds
from the border on inwards into the inpainting domain it is evident that tex-
ture can be continued without artifacts. A few “perturbing pixels” might suffice
though to make the algorithm use texture sample data from unsuitable image
locations, see figure 2.

To circumvent the shortcomings of this “global sampling texture synthesis”
we introduce “texture synthesis by local sampling”: for every segment Si we take
Ωsample

i = Si \ Ω and Ωsynth
i = Si ∩ Ω to be the texture sample region, resp.

the texture synthesizing region. Then the texture synthesis algorithm from [13]
is applied to each pair (Ωsample

i , Ωsynth
i ) individually. Here we tacitly assume

that differently textured regions belong to different segments. Two neighboring
regions with different textures belong to the same segment if they have similar
intensities, due to the initial diffusion filtering. However, our experiments have
shown that the impact of a few wrong texture samples is not significant.

The texture synthesis is the most time consuming part of our inpainting
algorithm: for every (j, k) ∈ Ωsynth set tj,k ← tm,n, where (m, n) ∈ Ωsample is
chosen such that t in a neighborhood of (m, n) most closely resembles t in a
neighborhood of (j, k). Finding the most similar neighborhood for every pixel
in Ωsynth leads to a considerable amount of nearest neighbor searches in a high
dimensional vector space. In most of our examples the number of test vectors
(i.e. the number of pixels in Ωsample) was too small – resp. the dimension of the
vector space was too high – for a binary search tree to be effective. The runtime
of the texture synthesis using a search tree could not be improved compared
to an exhaustive search. See [32] for a efficiency discussion of nearest neighbor
search algorithms and the presentation of the algorithm that we used.
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2.6 Assembling

In a last step the synthesized textures are added to the geometry inpainting.
The final inpainting is blended onto the initial (flawed) image, i.e. ufinal =
m · (g + t) + (1−m) ·uinitial where m is the mask function. This is to soften the
impact of discontinuities which could arise from texture synthesis.

3 Results and Discussion

The results presented in this section are chosen to highlight various situations
an inpainting algorithm has to tackle:

1. In figure 3 the inpainting domain consists of thin and long structures, as
occurring in scratch and text removal. This is easier to inpaint than equally
sized compact shaped areas, since edges have to be established over short
distances only. Additionally, if the size of typical texture features is com-
parable to the “width” of the inpainting domain, then even inappropriately
synthesized texture does not necessarily produce an artifact.

2. In figure 4 inpainting is easy because Ω is surrounded by a single homoge-
neous region. The PDE inpainting only needs to adapt the appropriate color.
An appropriate texture sampling region is easily found.

3. Inpainting is difficult if the object to be removed covers a variety of different
regions containing complex textures, which happens mainly in airbrushing
applications, see figure 5.

One difficult example is shown in figure 5: the balustrade to be removed covers
three adjacent regions with two different textures. The brick wall is considered
as two distinct regions, because of the noticeable difference in brightness. Com-
pared to the plain texture synthesis result from figure 2 no improper texture is
synthesized into the wall, due to the local sampling. Unfortunately the corners
of the building are found to be another segment and the brick pattern on the
corners is not synthesized satisfactorily (neither is it in figure 2). More examples
can be found in [33].

3.1 Choice of Parameters

Our proposed algorithm contains several numeric parameters that may be tuned:
the edge sensitivity λ in the pre–filtering, the edge width ε in the PDE inpainting,
an edge sensitivity and a regularization parameter for the post–processing (which
have not been explicitly mentioned) and the strength α of the forcing term in
the segmentation. Further, for the diffusion equations in the pre– and post–
filtering stopping times (resp. stopping cireteria) have to be specified (not for the
inpainting and the segmentation, which are evolved to steady state). Moreover,
the size and the shapes of the neighbourhood regions in the texture synthesis
phase could also be adjusted.

The examples in this paper have been created with a fixed parameter setting
that has been tuned on an appropriate training set. We found that the quality of
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Fig. 3. This example is easy since the inpainting domain consists of long thin structures
only

Fig. 4. This example is easy because the object to be removed is surrounded by a single
weakly textured region

the inpainting was increased only marginally if the parameters were fine–tuned
for each image separately. Automatic content based parameter determination
resulted in better quality only in a few cases but produced serious artifacts
more often. Besides, not all parameters may be chosen independently, i.e., if ε
is increased then so should be α.

3.2 Future Work

As already pointed out in [21] each separate step of the inpainting algorithm
could be performed with several different subalgorithms. Since it is unlikely that
one combination performs optimally, it would be desirable to have a criterion for
automatically choosing the appropriate algorithms. This criterion would have to
include the form of the inpainting domain, image contents, amount of texture
and probably more.
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Fig. 5. The airbrushed image during each step of the algorithm. First row: the ori-
ginal image and the mask, with the inpainting domain being white. Second row:
the filtered image and the difference image (i.e. the texture part). Third row: the
inpainted geometry part before (left) and after (right) postprocessing. Fourth row:
result of the segmentation and final result of the complete inpainting algorithm. Note
that compared to figure 2 textures are synthesized using only appropriate information
from the surrounding region. Unfortunately the salient brick pattern on the edge of
the building was not correctly recognized by the segmentation
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