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Abstract. In this paper, a new camera calibration algorithm is pro-
posed, which is from the quasi-affine invariance of two parallel circles.
Two parallel circles here mean two circles in one plane, or in two parallel
planes. They are quite common in our life.
Between two parallel circles and their images under a perspective pro-
jection, we set up a quasi-affine invariance. Especially, if their images
under a perspective projection are separate, we find out an interesting
distribution of the images and the virtual intersections of the images,
and prove that it is a quasi-affine invariance.
The quasi-affine invariance is very useful which is applied to identify the
images of circular points. After the images of the circular points are iden-
tified, linear equations on the intrinsic parameters are established, from
which a camera calibration algorithm is proposed. We perform both sim-
ulated and real experiments to verify it. The results validate this method
and show its accuracy and robustness. Compared with the methods in
the past literatures, the advantages of this calibration method are: it is
from parallel circles with minimal number; it is simple by virtue of the
proposed quasi-affine invariance; it does not need any matching.
Excepting its application on camera calibration, the proposed quasi-
affine invariance can also be used to remove the ambiguity of recovering
the geometry of single axis motions by conic fitting method in [8] and
[9]. In the two literatures, three conics are needed to remove the ambi-
guity of their method. While, two conics are enough to remove it if the
two conics are separate and the quasi-affine invariance proposed by us is
taken into account.

1 Introduction

Camera calibration is an important task in computer vision whose aim is to esti-
mate the camera parameters. Usually, camera self-calibration techniques without
prior knowledge on camera parameters are nonlinear [4], [13], [15]. It can be lin-
earized if some scene information is taken into account during the process of
calibration. Therefore, it has been appearing a lot of calibration methods us-
ing scene constraints [2], [3], [5], [10], [11], [12], [14], [18], [19], [20], [23], [24],
[25]. Usually, the used information in the scene is parallels, orthogonality, or
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the known angles, circles and their centers, concentric conics et al. For exam-
ple, in [14], the images of circular points are determined when there is a circle
with several diameters in the scene, then the linear constraints on the intrinsic
parameters are set up. In [2], by using the parallel and orthogonal properties
of the scene, the constraints on the projective matrix are given. Parallelepipeds
with some known angles and length ratios of the sides are assumed existed, then
from them the equations on the intrinsic parameters are established in [20]. [25]
presents a calibration method using one-dimensional objects.

Our idea in this paper is also to use the scene information to find the con-
straints on the intrinsic parameters of cameras. Two circles in one plane or in two
parallel planes, called two parallel circles, are assumed to be in the scene, and
then a quasi-affine invariance of them is found. Based on the invariance, camera
calibration is investigated, and a new algorithm is proposed. Compared with the
previous methods, this method has the following advantages: it is from parallel
circles with minimal number; it is simple by virtue of the proposed quasi-affine
invariance; it does not need any matching.

The parallel circles are quite common in our life, and then this calibration
method can be applied. It can also be used to solve the ambiguity for recovering
the geometry of single axis motions in [8], [9]. The two literatures have shown
that the geometry of single axis motion can be recovered given at least two
conic loci consisting of corresponding image points over multiple views. If the
two conics are separate or enclosing, the recovery has a two fold ambiguity, the
ambiguity is removed by using three conics in the literatures. In fact, if the two
conics are separate, it is enough to remove the ambiguity only from the two
conics by taking into account the quasi-affine invariance presented in this paper.

On the other hand, in [16], Quan gave the invariants of two space conics.
When the two conics are parallel circles, this invariants cannot be set up, but a
quasi-affine invariance proposed in this paper indeed exists. Actually, the imaging
process of a pinhole camera is quasi-affine [6], [7], the proposed quasi-affine
invariance is very useful.

The paper is organized as follows. Section 2 is some preliminaries. Section
3 uses a quasi-affine invariance of two parallel circles to establish the equations
on the camera intrinsic parameters, and gives a linear algorithm for calibrating
a camera from these equations. Then, the invariance and algorithm are vali-
dated from both simulated and real experiments in Section 4. Conclusions and
acknowledgements are remarked in Section 5 and 6 respectively.

2 Preliminaries

In this paper, ”≈” denotes the equality up to a scale, a capital bold letter
denotes a matrix or a 3D homogeneous coordinates, a small bold letter denotes
a 2D homogeneous coordinates.

Definition 1. If two circles in space are in one plane, or in two parallel planes
respectively, we call them two parallel circles.
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C 3 C 1

C 2

Fig. 1. Parallel circles. C1 and C3 are coplanar, C2 is in the plane parallel to the plane
containing C1 and C3. Any two of them are two parallel circles

See Fig. 1, C1, C2, C3 are parallel circles each other.
Under a pinhole camera, a point X in space is projected to a point x in the

image by:

x ≈ K[R, t]X, (1)

where K is the 3×3 matrix of camera intrinsic parameters, R is a 3×3 rotation
matrix, t is a 3D translation vector. The goal of calibrating a camera is to find
K from images.

The absolute conic consists of points X = (X1, X2, X3, 0) at infinity such
that:

X2
1 + X2

2 + X2
3 = 0, or, XτX = 0,

and its image ω is:
xτK−τK−1x = 0. (2)

If some points on ω can be inferred from image, the equations on the intrinsic
parameters can be set up by (2). If the number of these equations is enough,
the intrinsic parameters will be determined. In the following, we are to find the
points on ω by using two parallel circles in the scene.

Some preliminaries on projective geometry are needed, the readers can refer
to the details in [17]. Every real plane other than the plane at infinity, denoted
by P , intersects the plane at infinity at a real line, called the line at infinity
of P , denoted by L0. L0 intersects the absolute conic at a pair of conjugate
complex points, called the circular points of P . Every circle in P passes through
the circular points of P . Let C1 and C2 be two parallel circles, P1 and P2 be
the parallel planes containing them. Because P1 and P2 have the same line at
infinity, they have the same pair of circular points. Therefore, C1 and C2 pass
through the same pair of circular points, they and the absolute conic form a
coaxial conic system at the two circular points (A coaxial conic system means a
set of conics through two fixed points).

A quasi-affine transformation lies part way between a projective and affine
transformation, which preserves the convex hull of a set of points, and the relative
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positions of some points and lines in a plane, or the relative positions of some
points and planes in 3D space. For the details, see [7] or Chapter 20 in [6].

3 New Calibration Method from the Quasi-affine
Invariance of Two Parallel Circles

Under a pinhole camera, a circle is projected to a conic. Moreover, because K,
R, t in (1) are real, a real point is projected to a real point, and a pair of
conjugate complex is projected to a pair of conjugate complex. So the images of
a pair of circular points must still be a pair of conjugate complex.

If there are three or more than three parallel circles in the scene, then from
their images, the images of a pair of circular points can be uniquely determined
without any ambiguity by solving for the intersection points of the three image
conics [8], [21]. If there are only two ones in the scene, denoted by C1, C2, whose
images are denoted by c1, c2, whether the images of a pair of circular points can
be uniquely determined or not depends on the relative positions of c1 and c2.
The equations for c1, c2 are two quadric equations, the number of their common
solutions over complex field is four with multiplicity. If there are real solutions
among these four ones, or c1 and c2 have real intersections, then there is a unique
pair of conjugate complex among these four solutions, which must be the images
of the pair of circular points. If c1 and c2 have no real intersection, these four
solutions are two pairs of conjugate complex. Which pair is the images of the
circular points? We will discuss it in the following.

c 1 c 2
c 2 c 1

Fig. 2. Two cases that c1 and c2 have no real intersection: the left side is the separate
case; the right side is the enclosing case

If the relative positions of the camera and circles in the scene are in general,
or, the circles lie entirely in front of the camera, the images of these circles are
ellipses. From now, we always regard that the circles in the scene are entirely in
front of the camera. Then, when c1 and c2 have no real intersection, there are
two cases as shown in Fig. 2, one case is that c1 and c2 separate; another case is
that c1 and c2 enclose. For the enclosing case, we can not distinguish the images
of the circular points between the two pairs of conjugate complex intersections
of c1 and c2 [21]. While, for the separate case, we can distinguish them by a
quasi-affine invariance.
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Firstly, a lemma with respect to two coplanar circles is needed. In order to
distinguish notations of two coplanar circles from the above notations C1 and
C2 of two parallel circles, we denote two coplanar circles as C1 and C3.

Lemma 1. If C1 and C3 are two coplanar separate circles, their homogeneous
equations have two pairs of conjugate complex common solutions. We connect
the two points in each pair of the conjugate complex common solutions, then
obtain two real lines, called the associated lines of C1 and C3. One of the two
associated lines lies between C1 and C3, and the other one, which is the line at
infinity passing through the circular points, does not lie between C1 and C3 as
shown in Fig. 3.

The proof of Lemma 1 is given in Appendix.

The line at infinity

L 1

L 0

O

C 1

X 0

C 3

X

Y

1 X 0 - R

R

Fig. 3. Two coplanar separate circles C1, C3, and their associated lines L1 and L0

(the line at infinity). C1 and C3 intersect at two pairs of conjugate complex points,
one pair is on the line L1; another pair, which is the pair of circular points, is on the
line at infinity L0. L1 lies between C1 and C3, while, L0 does not

Theorem 1. If c1, c2 are the images of two parallel circles and separate, their
homogeneous equations have two pairs of conjugate complex common solutions.
We connect the two points in each pair of the conjugate complex common solu-
tions, then obtain two real lines, called the associated lines of c1 and c2. One
of the two associated lines lies between c1 and c2, and the other one does not
lie between c1 and c2 as shown in Fig. 4. If the camera optical center does not
lie between the two parallel planes containing the two circles, the associated line
not lying between c1 and c2 is the vanishing line through the images of circular
points. Otherwise, the associated line lying between c1 and c2 is the vanishing
line through the images of circular points.
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l 1 l 0

c 1 c 2

Fig. 4. The distributions of c1, c2, and their two associated lines l1 and l0. c1 and c2

intersect at two pairs of conjugate complex points, one pair is on the line l1; another
pair is on the line l0. l1 lies between c1 and c2, while, l0 does not. The images of
circular points are the pair on l0 if the optical center does not lie between the two
parallel planes containing the two circles. Otherwise, they are the pair on l1

Proof. Let the two parallel circles be C1, C2, and P1, P2 be the planes containing
them, O be the camera optical center. Because P1, P2 are parallel, the quadric
cone with O as its vertex and passing through C2 intersects the plane P1 at a
circle, denoted by C3. C1 and C3 are two coplanar circles in P1. Because c1 and
c2 are separate, and are also the images of C1 and C3, we know that C1 and C3
are separate too. See Fig. 5. By Lemma 1, there is the fact: one of the associated
lines of C1 and C3 lies between C1 and C3 (denoted by L), and the other one,
i.e. the line at infinity passing through the circular points, does not lie between
C1 and C3 (denoted by L0).

If O does not lie between P1 and P2, we know that C1, C3 in P1 are all in
front of the camera. Because under a pinhole camera, the imaging process from
the parts of P1 in front of the camera to the image plane is quasi-affine ([7],
Chapter 20 in [6]), the relative positions of c1, c2 and their associated lines are
the same as the ones of C1, C3, L, L0. So the associated line not lying between
c1 and c2 is the images of L0, i.e. the vanishing line through the images of the
circular points.

If O lies between P1 and P2, the plane through O and L0, denoted by P0,
which is parallel to P1 and P2, lies between C1 and C2. And, the plane through
O and L, denoted by P , does not lie between C1 and C2. This is because C3
and C1 lie on the different sides of P , and also C3 and C2 lie on the different
sides of P . The projection from C1, C2, P0, P to their images is quasi-affine, so
c1, c2 and their associated lines have the same relative positions as the ones of
C1, C2, P0, P (The image of P0 is the vanishing line lying between c1 and c2,
the image of P is the associated line not lying between c1 and c2).

Then, the theorem is proved.

Therefore, if c1 and c2 are separate, by Theorem 1, we can find out the
images of a pair of circular points. If c1 and c2 are enclosing, and their two
pairs of conjugate complex intersections do not coincide, we can not find out the
images of circular points now (if the two pairs of conjugate complex intersections
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The camera optical center

C 3

C 2

C 1

O

Fig. 5. The camera and two parallel circles C1, C2. O is the camera optical center. The
quadric cone passing through O (as the vertex) and C2 intersects the plane containing
C1 at another circle C3. C1 and C3 are coplanar. If the images of C1 and C2 are
separate, C1 and C3 are separate too because the image of C3 is the same as the
image of C2

coincide to one pair, the coinciding pair is the images of circular points, and at
the time, C1, C3 are concentric) [21].

In fact, the enclosing case of c1 and c2 usually seldom occurs, and other
cases of c1 and c2 occur quite often in our life. We regard that c1 and c2 are not
enclosing below.

By the discussion in the second paragraph in this section and Theorem 1, the
images of a pair of circular points can always be determined from a single view
of two parallel circles. Assuming the images of the determined circular points
to be mI , mJ , by (2), we have two linear equations on the camera intrinsic
parameters ω = K−τK−1 as:

mτ
I ω mI = 0, mτ

Jω mJ = 0. (3)

If the camera intrinsic parameters are kept unchanged and the motions between
cameras are not pure translations, then from three views, six linear equations
on the intrinsic parameters can be set up. Thus, the camera can be calibrated
completely.

An outline of our algorithm to calibrate a camera from the images of two
parallel circles is showed as follows.

Step 1. In each view, extract the pixels u of the images of two parallel circles,
and fit them with uτc1u = 0, uτc2u = 0 to obtain c1 and c2 by the least
squares method, then establish two conic equations as e1 : xτc1x = 0,
and e2 : xτc2x = 0.

Step 2. Solve the common solutions of e1, e2 in each view.
Step 3. Find out the images of the circular points from the solved common

solutions of e1, e2 by the method presented in this section.
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Step 4. Set up the equations on the intrinsic parameters ω = K−τK−1 from the
images of circular points found out in Step 3 by (3).

Step 5. Solve out ω from the equations in Step 4 by singular value decomposition
method, and then do Cholesky decomposition and inverse the result, or
use the equations in [22], to obtain the intrinsic parameters K.

Remark 1. With the notations O, L, L0 as in the proof of Theorem 1, let P be
the plane through O and L, P0 be the plane through O and L0. By the proof
of Theorem 1, we know that the relative positions of C1, C2, P , P0 are the
same as the ones of their images, which just is a quasi-affine invariance. For
other cases except for the enclosing case, the images of circular points are found
out by the real projective invariance preserving the real and conjugate complex
intersections of conics respectively. Of course, the projective invariance is also a
quasi-affine invariance.

Remark 2. In Theorem 1, there are two cases: one case is that the optical center
does not lie between the two parallel planes P1, P2 containing the two circles;
another case is that the optical center lies between P1 and P2. In general, the
former case occurs more often than the latter case. When the two circles are
coplanar, the optical center always does not lie between P1 and P2, the associated
line of c1 and c2 not lying between c1 and c2 is always the vanishing line.

Remark 3. If we use the above method with a calibration grid to calibrate camera
in the same way as Zhang’s method [24], it might be wise to take two intersecting
coplanar circles.

4 Experiments

4.1 Simulated Experiments

In the experiments, the simulated camera has the following intrinsic parameters:

K =




1500 3 512
0 1400 384
0 0 1


 .

Take two parallel circles in the world coordinates system as: X2 + Y 2 =
62, Z = 0; (X − 20)2 + Y 2 = 32, Z = 10. And, take three groups of rotation
axes, rotation angles and translations as: r1 = (17, 50, 40)τ , θ1 = 0.3π, t1 =
(−5, 15, 50)τ ; r2 = (−50, 50, 160)τ , θ2 = 0.1π, t2 = (10,−4, 40)τ ; r3 =
(90,−70, 20)τ , θ3 = 0.2π, t3 = (5, 2, 30)τ . Let Ri be the rotations from ri, θi.
Then project the two circles to the simulated image planes by the three projective
matrices Pi = K[Ri, ti], i = 1, 2, 3 respectively. The images of the two circles are
all separate (in order to verify Theorem 1), and the image sizes are of 700×900,
550×950, 500×850 pixels respectively. Gaussian noise with mean 0 and standard
deviation ranging from 0 to 2.0 pixels is added to the image points of the two
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Table 1. The averages of the estimated intrinsic parameters under different noise levels

Noise levels(pixel) fu fv s u0 v0

0 1500.0000 1400.0000 3.0000 511.9999 384.0000

0.4 1500.4522 1400.4622 3.0655 513.0418 384.7355

0.8 1500.3927 1399.8069 2.6278 518.8032 389.0022

1.2 1500.9347 1399.9088 2.8893 525.2412 392.4559

1.6 1501.8536 1399.4255 3.2259 537.6676 399.6847

2.0 1503.9747 1399.7978 2.4428 548.5837 410.4403

Table 2. The RMS errors of the estimated intrinsic parameters under different noise
levels

Noise levels(pixel) fu fv s u0 v0

0 0.0000 0.0000 0.0000 0.0000 0.0000

0.4 5.1775 4.7679 0.8985 5.1834 5.2046

0.8 11.1786 10.2244 1.8713 11.2057 11.2147

1.2 15.6606 14.3364 2.7034 15.6643 15.9711

1.6 21.1434 19.9497 3.0504 21.4699 21.1630

2.0 26.6784 24.8587 4.8918 27.6128 27.0722
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Fig. 6. The standard deviations of the estimated intrinsic parameters vs. (a) the num-
ber of images; (b) the distance of the two parallel circles (defined to be the distance of
the two parallel planes containing the two circles)
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circles, and then the intrinsic parameters are computed. For each noise level, we
perform 50 times independent experiments, and the averaged results are shown in
Table 1. We also compute the root mean square errors (RMS errors) of intrinsic
parameters under different noise levels, the results are given in Table 2.

In order to assess the performance of our calibration technique with the num-
ber of images and with the distance of the two parallel circles, the calibrations
using 4, 5, 6, 7 images and varying the distance of the two circles are performed
respectively, and the standard deviations of the estimated intrinsic parameters
are shown in Fig. 6, where the added noise level is 0.5 pixels. It is clear that
the deviations tend to decrease with the number of the images increasing. Let
d be the distance of the two parallel planes containing the two circles (the two
circles used are: X2 + Y 2 = 102, Z = 0 and (X − 40)2 + Y 2 = 102, Z = d . d
is varying from 0 to 240). Then we can see that: (i) the deviations for fu, fv,
u0, v0 tend to decrease with d increasing from 0 to 50, and then to increase with
d increasing from 50 to 240; (ii) the deviations for s tend to increase with d
increasing. It follows that it is not the coplanar circles such that the algorithm
is most stable.

Fig. 7. The used three images of two parallel circles

4.2 Real Experiments

We use a CCD camera to take three photos of two cups as shown in Fig. 7. The
photos are of 1024 × 768 pixels. In each photo, the pixels of the images of the
upper circles at the brim of the two cups are extracted, then fitted by the least
squares method to obtain two conic equations (see Step 1 of our algorithm). From
Fig. 7, we can see that the extracted conics are separate in each view. Applied
Theorem 1 and the proposed calibration algorithm to these conic equations, the
estimated intrinsic parameter matrix is:

K1 =




1409.3835 8.0417 568.2194
0 1385.3772 349.3042
0 0 1


 .

To verify K1, the classical calibration grid DLT method in [1] is used to
calibrate the same camera (the intrinsic parameters keep unchanged). The used
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Fig. 8. The used images of a calibration grid

image is the left one in Fig. 8, and the calibration result from 72 corresponding
pairs of space and image points is:

K2 =




1325.6124 4.5399 500.7259
0 1321.2270 368.4573
0 0 1


 .

The estimated intrinsic parameters K1, K2 are used to reconstruct the cali-
bration grid from the two images in Fig. 8. The angles between two reconstructed
orthogonal planes are:

89.28◦ by using K1, 89.97◦ by using K2.

Both of them are close to the ground truth of 90◦. Consider the reconstructed
vertical parallel lines on the calibration grid, then compute the angles between
any two of them, and the averages are:

0.0000476◦ by using K1, 0.0000395◦ by using K2.

Both of them are close to the ground truth of 0◦. These results validate the
proposed algorithm in this paper.

5 Conclusions

We presented a quasi-affine invariance of two parallel circles, then applied it
to calibrating a camera. Both simulated and real experiments were given, and
showed the accuracy and robustness of this method. The presented quasi-affine
invariance is quite interesting and useful. It can also be applied to recovering the
geometry of single axis motions by conic fitting method. We believe that it will
have more applications in future.
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Appendix: Proof of Lemma 1

C1 , C3 are coplanar and separate, then we can set up the Euclidean coordinate
system as: one of the centers of C1 and C3 as the origin O, the line through the
two centers as the X-axis, the line through O and orthogonal to the X-axis as
the Y -axis, the radius of one of the circles as the unit length. For example, we
take the coordinate system as in Fig. 3. Then the homogeneous equations of C1
and C3 are respectively:

X2 + Y 2 = Z2, (X − X0Z)2 + Y 2 = R2Z2 (4)

where R is the radius of C3, X0 horizontal coordinate of the center of C3.
Because C1 and C3 separate, X0 > 1 + R. Solve the common solutions of (4),
and compute the associated lines, then we have them as:

L1 : X =
X2

0 − R2 + 1
2X0

, L0 : Z = 0 (the line at infinity)

Because X0 > 1 + R, we can prove that the following inequality holds:

1 <
X2

0 − R2 + 1
2X0

< X0 − R < ∞

From the inequality, we know that C1 , C3 lie on the different sides of L1. Since
L0 is at infinity, C1, C3 must lie on the same side of it as shown in Fig. 3.

In addition, the above proof is independent of the chosen Euclidean coordi-
nate system. This is because if we set up another Euclidean coordinate system
(with the same or different unit length as the above one), they can be transformed
each other by a Euclidean transformation, or a similarity transformation, which
preserves the line at infinity and preserves the relative positions of objects.
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