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Abstract. We present a general method to prove security properties of crypto-
graphic protocols against active adversaries, when the messages exchanged by the
honest parties are arbitrary expressions built using encryption and concatenation
operations. The method allows to express security properties and carry out proofs
using a simple logic based language, where messages are represented by syntactic
expressions, and does not require dealing with probability distributions or asymp-
totic notation explicitly. Still, we show that the method is sound, meaning that
logic statements can be naturally interpreted in the computational setting in such
a way that if a statement holds true for any abstract (symbolic) execution of the
protocol in the presence of a Dolev-Yao adversary, then its computational inter-
pretation is also correct in the standard computational model where the adversary
is an arbitrary probabilistic polynomial time program. This is the first paper pro-
viding a simple framework for translating security proofs from the logic setting
to the standard computational setting for the case of powerful active adversaries
that have total control of the communication network.

1 Introduction

Cryptographic protocols are a fundamental tool in the design of secure distributed com-
puting systems, but they are also extremely hard to design and validate. The difficulty
of designing valid cryptographic protocols stems mostly from the fact that security
properties should remain valid even when the protocol is executed in an unpredictable
adversarial environment, where some of the parties (or an external entity) are maliciously
attempting to make the protocol deviate from its prescribed behavior.

Two approaches have been developed to formulate and validate security properties:
the logic approach and the cryptographic approach. The logic approach is based on
the definition of an abstract security model, i.e., a set of rules that specify how the
protocol is executed and how an adversarial entity may interfere with the execution of the
protocol. Within this model, one can prove that it is not possible to reach a configuration
that violates the desired security property, using the axioms and inference rules of the
system. So, in the logic approach cryptographic primitives are axiomatized and treated as
abstract operations, rather then being explicitly defined. A different approach is taken by
(complexity theory based) modern cryptography, where basic cryptographic primitives
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are explicitly constructed, and proved to satisfy some well defined (computational)
security property (possibly under some computational hardness assumption). Then, these
primitives are combined to build higher level protocols whose security can be formally
proved within a general computational model.

The cryptographic approach is widely considered as the most satisfactory from a
foundational point of view, as it guarantees security in the presence of arbitrary (prob-
abilistic polynomial time) adversaries. Unfortunately, this powerful adversarial model
makes also protocol analysis a very difficult task. Typical cryptographic security proofs
involve the definition of complex probability spaces, the use of asymptotic notions like
polynomial time computability and reductions, negligible functions, etc., and the accu-
rate accounting of the success probability of all possible attacks. Proving security of a
protocol using the logic approach is comparatively much simpler: once the rules govern-
ing the execution of the protocol are established, security can be easily obtained using
the axioms and inference rules of logic. The advantage of the axiomatic approach is
also its main weakness: since security is axiomatized (as opposed as being defined from
more basic notions) it is usually hard to assess the significance of a security proof in
this framework. Proving security in a certain logic framework only means that a formal
statement (expressing the desired security property) follows from a given set of axioms
that aim to model the security features of typical cryptographic primitives used in the
implementation of the protocol. However, since the security axioms do not typically
hold true in realistic models of computation, it is not clear if the formal proofs allow to
assert anything about concrete executions of the protocol.

Recently, there has been growing interest in trying to bridge these two approaches,
with the ambitious goal of coming up with logic systems together with computational
interpretations of logic formulas in the standard computational setting, so that if a certain
statement can be proved within the logic, and the cryptographic protocol is implemented
using primitives that satisfy standard cryptographic security properties, then the compu-
tational interpretation of the security statement is also valid in the computational setting.
This allows to prove that a protocol meets strong security properties (as typically con-
sidered by the cryptography and complexity theory community), while retaining the
simplicity of the logic based approach in defining security and carrying out proofs.

An important step toward bridging the gap between these two approaches, while
retaining the simplicity of the logic formulation, has been made by Abadi and Rogaway
in [2], where a simple language of encrypted expressions is defined, and it is proved
that if two expressions are equivalent according to a (syntactically defined) simple logic
formalism, then also their natural computational interpretations are equivalent according
to the standard notion of computational indistinguishability. The logic of [2] is now well
understood from a computational point of view, with completeness results [18] showing
that if a sufficiently strong encryption scheme is used, then the any two expressions are
computationally equivalent if and only if they can be proved equivalent within the logic,
and further refinements [12] exactly characterizing the computational requirements on
the encryption scheme under which this equivalence holds true. However, the logic model
of [2,18,12] is extremely simple, and allows to describe (see [1]) only the simplest kind of
attacks, where a set of parties is communicating over a public network, and an adversary
is monitoring their conversations in the attempt of extracting additional information.
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Such an adversary, that can observe the transmitted messages, but cannot otherwise alter
their content or flow, is called a passive adversary and is usually considered inadequate
in most applications.

1.1 Our Contribution

In this paper we present a logic framework that allows to model active adversaries, that
beside eavesdropping all network communications, can also drop, modify, reroute, or
inject messages in the network.As in [2], we consider protocols where the parties (attempt
to) communicate by exchanging messages that are built from a set of basic elements
(like nonces, keys and identifiers) using encryption and concatenation operations, but,
differently from [2], we give to the adversary total control over the communication
network. Despite the complications introduced by active attacks, we show that it is still
possible to carry out cryptographically meaningful proofs within a model that retain the
simplicity of theAbadi-Rogaway logic. In particular, we consider two possible execution
models for the protocols:

– a concrete model, where the protocols are naturally implemented using any en-
cryption scheme (satisfying the standard cryptographic security notion of indistin-
guishability under chosen ciphertext attacks) and executed in the presence of an
active probabilistic polynomial time adversary, and

– an abstract model, where the protocol is executed symbolically, in the presence of
an abstract adversary that may modify or forge messages, but only using a set of
abstract rules when decomposing and assembling messages.

The rules that govern the symbolic execution of the protocol and the behavior of
abstract adversaries originate in the work of Dolev and Yao [10], and are common to
most logic based approaches to protocol analysis.

We remark that although we consider protocols written in an abstract language of
symbolic expressions, we are ultimately interested in the security properties of the proto-
col when implemented using standard (computational) cryptographic algorithms, in the
presence of probabilistic adversaries that may toss random coins, and perform different
actions based on the bit representation of keys and ciphertexts observed on the net-
work. This concrete execution model, where a probabilistic polynomial time adversary
has full control of the communication network and parties communicate by exchanging
bit-strings is exactly the execution model used in most computational works about cryp-
tographic protocols, e.g., the treatment of mutual authentication protocols by Bellare et
Pointcheval and Rogaway [7,8,6].

Our main technical result shows that there is a close correspondence between ab-
stract executions of the protocol in the presence of a Dolev-Yao adversary, and the
execution of the implementation of the protocol in the presence of an arbitrary polyno-
mial time adversary. This correspondence provides a general methodology to design and
validate security protocols in a cryptographically meaningful way, but using simple ab-
stract (symbolic) adversarial and execution models. Informally, our main technical result
shows that with overwhelming probability (over the random coin tosses of the protocol
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participants and the probabilistic polynomial time adversary) any state1 reached by the
parties running the protocol can be represented (using an injective mapping function) as
an abstract state in the symbolic execution of the protocol in the presence of a Dolev-
Yao adversary. This connection is used to establish the computational security of the real
protocol as follows:

– Express the security property S as a set of “secure” states in the concrete execution
of the protocol, and find a set of abstract states A such that any state represented by
elements of A also belongs to S.

– Prove, symbolically (i.e., within the abstract Dolev-Yao model), that no formal
adversary can make the honest parties ever reach a state outside A.

– Conclude that no concrete adversary can violate the security property S with non-
negligible probability.

Notice that both the protocol design and analysis is performed within a logic framework
where probability is not explicitly used. A concrete implementation of the protocol and
computational proof of security is automatically obtained using our technical result:
since real executions can be mapped to valid symbolic executions with overwhelming
probability (say 1 − ε), if there is a concrete polynomial time adversary that in a real
execution brings the system in a state outside S with non-negligible probability (say
bigger than ε), then there must exists a symbolic execution that brings the system to a
state outside A.

1.2 Related Work

Bridging the gap between the computational and logic treatment of cryptography has
been the subject of many recent research efforts. The works which are more closely
related to our paper are [2,18,1,12], which present a simple logic for reasoning about the
security protocols written in a language similar to ours, but only for the case of passive
adversaries. In this line of work, our paper is the first one to show how to deal with more
general active attacks.

Other approaches to bridging the logic and computational models of cryptography
have also been considered in the literature, but they all seem considerably more complex
than [2,18,1,12]. In [16] the notions of probability, polynomial bounded computation,
and computational indistinguishability are incorporated in a process calculus, and se-
curity is defined in terms of observational equivalence on processes. Still a different
approach has been considered in [4,3], which essentially provides a cryptographic im-
plementation of Dolev-Yao terms, within a general framework where security is defined
using a simulation paradigm similar to the universal composability framework of [9].
Another seemingly related work is [13,14], which tries to give a cryptographic definition
of secure encryption that captures the intuitive idea of Dolev-Yao adversaries.

1 By state we mean the collective memory content of the parties executing the protocol. In fact,
our result establishes a connection between abstract and concrete executions not only for single
states of the system at a given point in time, but for the entire sequence of states the system
goes through.
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In a recent paper [15] Impagliazzo and Kapron introduce a logic which (similarly to
[2,18,1,12]) allows to reason about computational indistinguishability in a cryptograph-
ically sound way without the explicit use of asymptotics and probabilities. The logic
of [15] is much more powerful than the one of [2,18,1,12], allowing the use of limited
forms of recursion. The results in [15] can be viewed as complementary to ours, as they
are mostly aimed at analyzing the security of low level cryptographic operations (e.g.,
pseudorandom generators), whereas in this paper we consider the analysis of higher
level protocols based on secure cryptographic primitives.

The formal execution model used in this paper is closely related to the trace based
framework of [19], and the strand space model of [11]. Proofs in the latter model have
been successfully automated [21]. We view our work as an important step toward giving
a solid cryptographic foundation to automated tools like the one described in [21].

2 Preliminaries

For a natural number n we will denote by [n] the set {1, 2, ..., n}, and by [n] the set
{0} ∪ [n]. As usual, we will say that a function ν(·) is negligible if it is smaller than the
inverse of any polynomial (provided that the input is large enough).

Security of encryption in the multi-user setting. As usual, an asymmetric en-
cryption scheme AE = (Kg, E , D) is given by algorithms for key generation, encryption
and decryption. The key generation function is randomized and takes as input the se-
curity parameter η and outputs a pair of public-secret keys (pk, sk). The encryption
function is also randomized, and we denote by Epk(m; r) the process of computing the
encryption of message m using random coins r. The decryption function takes as input
a secret key and a ciphertext and returns the underlying plaintext. It is mandated that for
any message m and random coin tosses r, m = Dsk(E(m; r)).

In this paper we use a variant of the standard notion of indistinguishability against
chosen-ciphertext attack [20], in short IND-CCA. More precisely, we use the extension
of this security notion to the multi-user setting, introduced (and proved equivalent to the
standard definition) by Bellare, Boldyreva and Micali in [5]. The definition is as follows.

We first define a left-right selector as a function LR defined by LR(m0, m1, b) = mb

for all equal-length strings m0, m1 and for any bit b. We measure the “strength” of en-
cryption scheme AE when simultaneously used by a number of n parties by considering
the pair of experiments Expn−ind−b

AE,A (η) for b = 0, 1. Each experiment involves an ad-
versary A and is as follows. First, n pairs of keys (pki, ski) are generated by running
the key generation algorithm on input the security parameter η, each time with fresh
coins. Then, the adversary is given as input the set of n public keys pk1, ...,pkn, and is
provided access to a set of n encryption oracles {Epki(LR(·, ·, b))}i∈[n]. The adversary
is also provided access to a set of n decryption oracles {Dski(·)}i∈[n], where ski is the
secret key associated to pki. The adversary can query any of the encryption oracles with
any pair of messages (m0, m1) (and obtain as result the ciphertext corresponding to mb)
and also, it is allowed to query the decryption oracles. The adversary is forbidden how-
ever to submit to decryption oracle Dski(·) a ciphertext which was obtained as result of
a query to encryption oracle Epki

(LR(·, ·, b)). At some point, the adversary has to output
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a guess bit d. The adversary wins if d = b and looses otherwise. We define the advantage
of the adversary in defeating IND-CCA security in an environment with n users as

Advn−cca
AE,A (η) = Pr

[
Expn−cca−1

AE,A (η) = 1
]

− Pr
[
Expn−cca−0

AE,A (η) = 1
]

and say that the encryption scheme is n-IND-CCA secure if Advn−cca
AE,A (·) is a negligible

function for any probabilistic polynomial time adversary Ac. The following theorem
proved [5] is useful in deriving our results.

Theorem 1. If AE is an IND-CCA encryption scheme, then for any polynomial n(·),
AE is n-IND-CCA secure.

3 Two-Party Protocols

In this section we describe a simple language for defining multi-party protocols, and
how such protocols are executed. For simplicity, we concentrate on two party protocols,
where the two parties alternate in the transmission of messages. In Section 6 we explain
how to extend this setting to multi-party protocols.

3.1 Protocol Syntax

A simple way to represent a large class of two-party protocols is by a sequence of
messages m1, . . . , mn, where m1, m3, m5, . . . are the messages sent by the first player
(called the initiator), and m2, m4, m6, . . . are the messages sent by the second player
(called the responder). We consider protocols where the messages are arbitrary expres-
sions built from basic values (like the names of the parties involved in the protocol,
randomly generated nonces and cryptographic keys) using concatenation and encryp-
tion operations. Formally, each message is represented by a term generated according
to the following grammar:

Term ::= Id | Key | Nonce | Pair | Ciphertext

Pair ::= (Term,Term)
Ciphertext ::= {Term}Key

where Id,Key,Nonce are three sets of basic symbols corresponding to the party’s
names (e.g., Id = {I, R} for two party protocols where I represents the initia-
tor and R the responder), Key = {KI , KR} their public keys, and Nonce =
{X1, X2, . . . , Y1, Y2, . . .} represent nonces generated at random by the protocol par-
ticipants. For example, the following sequence of terms

NSL = ({(I, X1)}KR
, {(R, (X1, Y1))}KI

, {Y1}KR
) (1)

represents the well known Needham-Schroeder-Lowe protocol [17]. In this protocol,
the initiator first sends its identity I followed by a freshly generated random nonce
X1, encrypted under the responder public key. The responder replies with its identity,
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followed by nonce X1 and a freshly generated nonce Y1, all encrypted under the initiator
public key. Finally, the initiator concludes the protocol by re-encrypting nonce Y1 under
the responder public key, and transmitting the corresponding ciphertext.

We remark that protocols are a compact way to represent two distinct programs
(the one executed by the initiator, and the one executed by the responder), and the way
they interact. For example, the initiator program corresponding to protocol (1) is the
following:

1. Generate a random nonce X1, encrypt the pair (I, X1) under key KR, and transmit
the ciphertext.

2. After receiving a message m2, try to decrypt m2 and parse the plaintext as
(R, (X1, Y1)), i.e., check that the first and second component of the message are
the intended recipient and the nonce generated in the first step.

3. Encrypt the value Y1 received in step 2 under KR, and send it to the receiver.

Similarly, the responder program waits for a message m1, and tries to decrypt m1 and
parse the plaintext as (I, X1). If successful, generate a random nonce Y1, and send
(R, (X1, Y1)) encrypted under the initiator key KI .

In the cryptographic setting, where protocols are executed in a malicious environ-
ment, it is important to specify what happens if anything goes wrong during the execution
of a program. For example, if decryption fails, or the decrypted message does not have
the expected pattern. We assume that if at any point a party detects a deviation from the
protocol, then the party immediately aborts the execution of its program.

Not every sequence of messages is the description of a valid protocol. For exam-
ple, ({X1}KI

, {X1}KR
) is not a valid protocol because the responder, after receiving

{X1}KI
, cannot decrypt the message and recover the nonce X1 to be retransmitted in

the second message {X1}KR
. In particular, we assume that the messages transmitted

by each party can be computed from the previously received messages in the Dolev-
Yao model, which will be formally defined when describing the adversary. In order
to simplify the presentation we also assume that the initiator (resp. responder) encrypt
messages only under the responder (resp. initiator) public key. In particular, this implies
that the messages received by a party can be immediately and completely decrypted. We
remark that our techniques seem to extended to more complex protocols, where parties
generate and transmit new keys on the fly (e.g., in the case session keys to be used in
hybrid encryption schemes), provided that some reasonable restrictions are imposed on
their use. We give some further discussion in Section 6.

3.2 Programs and Their Execution

Notice that the expressions, typically referred to as “messages”, in the description of a
protocol are not the actual messages being transmitted during the execution of the proto-
col, but rather the “instructions” to be executed by a party to compute the corresponding
messages. We will refer to this kind of expressions as abstract message descriptions.
For example, the expression “I” does not mean that the symbol “I” should be transmitted
literally, but the identity of the initiator should be transmitted. Similarly, expressions
of the form X1 calls for the generation and transmission of a new nonce, rather than
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the transition of symbol X1. Below, we define how messages are computed according
to a given protocol. For the sake of readability, we only give an informal description.
We consider two different ways to execute a protocol: symbolic execution, and concrete
execution.

In a symbolic execution, messages are symbolic expressions, built according to
grammar Term starting from basic symbols Id = {A, B, C, . . .} representing the
parties, nonces Nonce = {N, M, . . .}, and keys Key = KA, KB , KC , . . .. Messages
are computed in the obvious way: in the case of symbolic executions, symbols I and R are
replaced by the identity of the initiator and responder,KI , KR with their respective public
keys, and nonce identifiers Xi, Yi are set to new nonces from Nonce = {N, M, . . .}
the first time they occur in the execution of a protocol, or to some value recovered
from previous messages. Formally, at every stage of the execution of a protocol, the
local state of a party is represented by a program counter pointing to which message
should be received next, and a partial function Φ mapping the identifiers I, R, X1, Y1, . . .
occurring in the program executed by that party to corresponding symbolic values from
A, B, C, . . . , N, M, . . .. When a message is to be transmitted, the function Φ is used
to evaluate the corresponding expression in the program text. When a new message is
received, the function Φ is first used to check the validity of the message, and then
extended with additional bindings obtained from unifying the received message with the
expression in the program text. Notice that each symbol (e.g., X1) in the description of
a protocol corresponds to two different variables, one stored with the protocol initiator
and one with the responder. These two variables are usually bound to the same value.
However, when the protocol is executed in the presence of an active adversary that
may alter the messages transmitted and received by the parties, this is not necessarily
the case. So, it is important to distinguish between the variable identifier X1 used in
the description of a protocol from the two variable instances associated to the parties
executing the protocol (as well as variable instances corresponding to different executions
of the same protocol by other pairs of parties.)

In a concrete execution, messages are bit-strings, obtained running the key gener-
ation, encryption and decryption algorithms used in an actual implementation of the
protocol. This time, when a nonce identifier firstly occurs in the execution of a protocol,
the corresponding party generates a random bit string (of length equal to some security
parameter). Public keys Ki are mapped to bit-strings using the key generation algorithm
of some specified encryption scheme, and complex expressions are evaluated running
the encryption algorithm, and encoding pairs in some standard way. We always assume
that the bit representation of an expression allows to uniquely determine its type, and
parse it accordingly. This time, the state of a party is given by a program counter, and a
partial function mapping the variable identifiers to corresponding bit strings. As before,
these bindings are used both to evaluate the messages to be transmitted, and to parse the
received messages, with the main difference that this time parsing received messages
involves the execution of the decryption algorithm, and computing the answers involves
running the (randomized) encryption algorithm.
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3.3 Adversaries, Execution Environments, and State Traces

We consider the concurrent execution of several instances of a given protocol. The
execution of each protocol instance is called a “session”. We assume that the parties
executing a protocol communicate using a network that is under the total control of
some adversary A. The adversary can sniff messages off the network, send messages
to any session of the protocol run by any party and obtain in return the corresponding
answer. We do not assume that the communication is guaranteed, i.e. once the adversary
obtains a message from a certain session, it may choose to never deliver the message to
the intended destination, or may deliver a different message spoofing the sender identity.
We also model the collusion of some parties with the adversary by letting the adversary
choose a set C of parties and obtain all their private keys.

We model an adversarially controlled communication network by letting all the
parties executing the protocol send and receive messages to and from the adversary. For-
mally, we let the adversary interact with an oracle that runs the honest parties programs.
The adversary may issue the following commands to the oracle:

1. new(A, B): start the execution of a new instance of the protocol, with party A acting
as the initiator, and party B acting as the responder. In response to this message, the
oracle picks a new session identifier s, starts the execution of a new instance of the
protocol run by A and B, and returns the session identifier s together with the first
message transmitted by party A to the adversary.

2. send(s : I, m): send message m to the initiator of session s. Update the initiator’s
state accordingly, and return its response to message m to the adversary.

3. send(s : R, m): send message m to the responder of session s. Update the responder
state accordingly, and return its response to message m to the adversary.

As for the protocol execution, we consider two different adversarial models: an
abstract adversary that communicates with the parties via symbolic expressions, and
a concrete one that uses the bit-strings obtained by running some specific encryption
algorithm.

The abstract adversary, usually called a Dolev-Yao adversary, is constrained in the
way it can compute new messages from messages it already knows, as to capture the
security of the cryptographic operations (in our case asymmetric encryption and gen-
eration of random nonces.) We first give the formal definition and then we explain the
intuition behind it. Consider a set M representing the messages that the adversary knows
at a certain point during its execution. This set includes the messages that the adversary
had already received from honest parties, as well as some messages which the adversary
is assume to be able to compute (for instance new nonces). In particular, M contains
the set of identities Id = {A1, A2, . . .}, the set of all public keys Keys = K1, K2, . . .
and a set Nonce of nonce symbols denoting the nonces produced by the adversary, and
(depending on the setting) a set of identities C that model corrupted parties that collud-
ing with the adversary. The set of messages that the adversary can compute from M ,
denoted closure(C, M) is defined as the smallest set such that

1. M ⊆ closure(C, M)
2. If T1, T2 ∈ closure(C, M) then (T1, T2) ∈ closure(C, M)
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3. If (T1, T2) ∈ closure(C, M) then T1, T2 ∈ closure(C, M)
4. If T ∈ closure(C, M) then {T}K ∈ closure(C, M) for all K ∈ Keys
5. If {T}Ki ∈ closure(C, M) and Ai ∈ C then T ∈ closure(C, M)

Most of the constraints above are rather self-explanatory. The first three, say that the
adversary can construct new messages which are messages that it already knows (1), are
built by pairing messages it knows (2) splitting a pair that it knows (3) or encrypting a
message it knows with a key that it knows (4). The fifth requirement which captures the
security of encryption, states that if an adversary knows the decryption key corresponding
to the key used to encrypt a certain message, then the adversary can recover that message.
Notice that this definition precludes the adversary from recovering the plaintext if it does
not know the decryption key.

The real adversary is usually constrained to run in (probabilistic) polynomial time,
but can otherwise, perform any kind of operations. This is the standard adversary used in
computational treatments of authentication and other cryptographic protocols. The real
adversary also issues commands of the form new(i, j), send(s : I, m) and send(s :
R, m) to the oracle environment, but this time m can be an arbitrary bit string. Similarly,
the oracle replies with bit strings computed by the parties using their keys and the
encryption function.

In the sequel we will denote by F the set of symbolic expression used in a formal
execution and by Cη the set of all bit-strings that appear in a concrete execution (parame-
terized by the security parameter η). So, F is built up from a set of basic symbols Fconst

(containing identities, keys and nonces) by using the grammar Term. Similarly, Cη is
built up from a set of basic bit-strings Cconst

η , by pairing and encryption. Here, pairing
is assumed to be done via some standard (invertible) encoding, and encryption is done
by running the encryption algorithm of a fixed concrete asymmetric encryption scheme
AE . The oracle environments for the formal and for the concrete execution models are
denoted by OF and OC .

If Identifiers is the set of identifiers used in the abstract description of a protocol,
and SId is the set of all possible sessions, then the global states maintained by OF and
OC are given by pairs (F, k) respectively (f, l), where

F : SId × {I, R} → (Identifiers → Fconst) k : SId × {I, R} → (N ∪ {√})

and

f : SId × {I, R} → (Identifiers → Cconst
η ) l : SId × {I, R} → (N ∪ {√})

Here F (s, I) gives the local state of the initiator of session s, in the formal execution,
f(s, I) the local state of the initiator of session s in the formal execution and so on.
Functions k and l return the index of the next message expected by a party, or

√
if the

party finished the execution of the protocol.
In the formal world an adversary Af is simply a list of queries of the type send(s :

X, M) (for simplicity we assume that all possible sessions have been already initiated).
We emphasize that this is without loss of generality since security properties in this
setting consider all valid adversaries.

We call one such adversary a valid Dolev-Yao adversary, or simply valid, if each of
the queries that it sends is in the closure of the set formed by some fixed set of adversarial
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nonces (disjoint from the nonces used by the honest parties), identities of parties, public
keys of parties and the responses that it receives from OF . The result of the interaction
between the adversary and the oracle is the sequence of states through which the oracle
OF passes. So if (F0, k0) is the initial state of OF , for each i ≥ 1, state (Fi, ki) is
obtained from state (Fi−1, ki−1) as result of the ith query of the adversary. We denote
the sequence ((F0, k0), (F1, k1), ...) by STr(Af , OF ) and call it the formal state trace
of the execution of Af . The set of all formal traces is denoted by FStrace.

In the concrete model the execution is randomized, since generating keys, random
nonces and encryptions involves the use of random coins. Nevertheless, for each concrete
adversary Ac we can define a similar state trace once the randomness of the oracle and
that of the adversaries are fixed. We will denote by STr(Ac(RA), OC(RO)) concrete
state trace ((f0, l0), (f1, l1), ...) triggered by the queries of the adversary to the oracle
environment, when the random coins of the adversary and those of the environment are
RA and RO respectively. The set of all possible concrete traces is denoted CStrace. We
will give the fully formal definition in the full version of this paper.

4 Faithfulness of the Formal Execution Model

In this section we show that when the encryption scheme used in the concrete implemen-
tation is secure, then concrete state traces are tightly related to state traces of valid formal
adversaries. More precisely, we show that almost always a concrete state trace can be
obtained by composing the state trace of a valid formal adversary with a representation
function that maps symbols to bit-strings. So, in some sense, the concrete adversary does
not have more power than the abstract Dolev-Yao adversaries. We will formally show
how this connection allows to translate security results from the abstract to the concrete
world in Section 5

Definition 1. We call a function R : Fconst → Cconst
η a representation function if it is

injective, and R(Fk) ⊆ Ck
η , R(Fn) ⊆ Cn

η and R(F i) ⊆ Ci
η.

Definition 2. Let cstr = ((f0, l0), (f1, l1), ..., (fn, ln)) be a concrete state trace,
fstr = ((F0, k0), (F1, k1), ..., (Fn, kn)) be a formal state trace and R : F → C
be a representation function. We say that cstr is an implementation of fstr via rep-
resentation function R, notation fstr �R cstr if for each 1 ≤ i ≤ n it holds that
Fi; R = fi and also ki = li. We say that cstr is an implementation of fstr, notation
fstr � cstr if for some representation function R it holds that fstr �R cstr.

The above definition says that a concrete trace is a representation of an abstract trace if
it is possible to rename consistently all symbols in the abstract trace with bit-strings, as
to obtain the concrete trace. Another possible interpretation is that the abstract trace is
an abstract representation of the concrete trace (via the inverse of function R).
Informally, the core of our paper says that a concrete state trace obtained by fixing
the randomness of the adversary and that of the oracle environment, is a representa-
tion of the state trace of an abstract attack which satisfies the Dolev-Yao restrictions,
with overwhelming probability over the coins of the adversary and those of the oracle
environment.
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Theorem 2. Let Π be a protocol. If AE used in the implementation is IND-CCA secure,
then for any concrete adversary Ac

Pr
RA,RO

[∃Af valid : STr(Af , OF ) � STr(Ac(RA), OC(RO))
] ≥ 1 − ν(η)

for some negligible function ν(·).

Proof. Since IND-CCA security implies IND-CCA security in a multi-user setting (The-
orem 1) it is sufficient to prove the theorem under the assumption encryption scheme is
IND-CCA secure in the multi-user setting.

We split the proof of the theorem in two parts. First we show that for any trace
STr(Ac(RA), OC(RO)), obtained by fixing the randomness of the oracle environment
and that of the adversary, it is always possible to find an abstract adversary Af (and a
representation function R) such that STr(Af , OF ) �R STr(Ac(RA), OC(RO)). For
this we provide a construction of Af , which essentially extracts a formal attack from
the concrete attack. In the second part of the proof we show that the constructed formal
attacker Af satisfy the Dolev-Yao restrictions with overwhelming probability (over the
choice of the coins of the adversary and those of the oracle environment), or otherwise
the encryption scheme AE used in the concrete implementation is not Np-IND-CCA
secure, where by Np we denote the number of parties in the system.

Step I. The intuition behind the construction is the following. Since all coins deter-
mining the execution are fixed, all bit-strings represent identities, keys and nonces that
appear in the computation are also fixed, and thus can be recovered. Then by canonically
labeling all these concrete constants with abstract symbols, one can translate each mes-
sage send(s : X, q) of the concrete adversary into an abstract message send(s : X, Q)
such that q is a representation of Q. The sequence of abstract queries send(s : X, Q)
determine the abstract adversary. This is done as follows. The keys and nonces used by
honest parties can be directly determined once their coin tosses are fixed. The trickier
part is to obtain the strings that the adversary uses as nonces, (since these can not be
obtained directly from the randomness of the adversary). Nevertheless, we can do this
by tracking and parsing the queries of the adversary. Whenever we encounter some bit-
string x of type nonce which is not the nonce generated by an honest party, then that
string is certainly a nonce produced by the adversary. So, we introduce a new (symbol)
adversarial nonce XA

k and assign it to denote x. We will denote the formal adversary
constructed this way by Af .

Step II. The second step of the proof is to show that the adversary Af obtained as above
computes its messages following the Dolev-Yao restrictions. We prove this by construct-
ing an adversary B against the encryption scheme. Adversary B runs Ac as a subroutine
and we prove that B wins in the IND-CCA game precisely when the abstract adver-
sary associated to the run of Ac is not Dolev-Yao. If this happens with non-negligible
probability then B is an adversary that contradicts the security of AE .

The key observation is the following. Consider the queries q1, q2, ... made by Ac

while run as a subroutine, and let Af be the abstract adversary associated to Ac. Then
Af makes queries Q1, Q2, ... which are abstract representations of the queries q1, q2, ....
Assume that one of the queries of Af , say Qi, is not Dolev-Yao. In this case it is easy
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to see that Qi must contain an occurrence of some nonce X (generated by the honest
parties) which does not appear in clear in none of the answers that Af obtained, and
moreover Af can not recover this nonce by standard Dolev-Yao operations. Otherwise,
Q can be created by the adversary.

We distinguish two cases. The simpler case is when Qi contains X unencrypted. In
this case, message qi also contains x unencrypted, i.e. the adversary managed to recover
nonce x from ciphertexts he should not have been able to decrypt, i.e. it managed to the
break the encryption function.

The second case is when X appears in Qi encrypted, so Qi has a subterm of the form
T = {t[X]}K form some term t[X] containing X and some key symbol K. In this case,
neither T nor t[X] appeared in clear (since otherwise Qi could have been built by the
adversary.) So in the concrete world, Ac makes query qi which contains an encryption
of x which he had not previously seen, so in this case Ac also contradicts the security
of the encryption scheme.

In this extended abstract we only provide an overview of the construction of an the
adversary B. A detailed description will be provided in the full version of this paper.

Since B is an adversary against Np-IND-CCA encryption, it has access to Np left-
right encryption oracles, and also to the corresponding decryption oracles. B will use his
access to these oracles to mimic the behavior environment OC , in which the public keys
of the parties are the public keys of the encryption oracles. Just simulating the behavior
would be easy for B: it can simply select all random nonces of the honest parties, and then
when the adversary makes a query to OC , B can parse the query (by using the decryption
oracles) compute an appropriate answer by following the program of the honest party,
return it to the adversary and so on.

The adversary B that we construct does something more clever than that. For sim-
plicity of the exposition assume for now that B “knows” the nonce X and the term Q
such that Q is not a valid Dolev-Yao query, and X is the nonce that we described above.
For his simulation, B selects all concrete nonces of the honest parties (except the one
corresponding to X .) For this nonce, B selects two possible concrete representations x0
and x1. Then B starts running the attacker Ac carrying the simulation along the lines
we have described above: it parses queries of the adversary by using the decryption
oracles to which it has access, and answers the queries by following the programs of the
honest parties. There are two important points in which the simulation differs from the
trivial simulation that we described above. First, when B needs to pass to Ac responses
for which the abstract representation contains X , B computes a concrete representation
in which X is replaced by xb, where b is the selection bit of the left-right encryption
oracles. This is possible since X appears only encrypted, so we can create concrete
representations using the encryption oracles. Let us explain.

Let x0 and x1 be the two possible concrete nonce values that B associates to X ,
and say that during his simulation of the environment oracle, B needs to pass to Ac the
representation of terms {X}Ki and {XX}Kj . To accomplish this, B prepares messages
(x0, x1) and (x0x0, x1x1) and submits them to encryption oracles Epki

(LR(·, ·, b)) and
Epkj

(LR(·, ·, b)) respectively. (Here pki and pkj are concrete representations of the keys
Ki and Kj). The resulting ciphertexts are then passed to Ac. Notice that it is crucial that
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X never needs to be sent in clear, since in this case B would not know which of the two
possible concrete representations to send.

The second important point related to the simulation of OC , is that when it parses the
messages sent by Ac, it must avoid sending to a decryption oracle a ciphertext previously
obtained from the corresponding encryption oracle. This would render B invalid. This
however can be easily avoided, since B knows the underlying plaintext of all ciphertexts
obtained from the encryption oracles, modulo which of the concrete nonces x0, x1 is
used (notice that all ciphertexts obtained from the encryption oracles contain one of the
two nonces, and always the same). So, B can compute an appropriate answer (possibly
involving the encryption oracles in the case that the answer involves the representation
of X).

From the point of view of Ac, the simulation of the environment oracle OC is perfect.
By now it is probably clear how B determines the bit b that parameterizes the encryption
oracles. When Ac makes its query q (corresponding to a non Dolev-Yao message), B
intercepts the message, and recovers which of the two values x0, x1 was actually used in
the simulation. If the concrete nonce appears in clear, then this step is trivial. Otherwise,
i.e. the nonce appears encrypted, B simply “peels off” the encryptions surrounding xb

by using the decryption oracles. This is possible, because none of these encryptions was
obtained from an encryption oracle.

The final observation that goes in our construction is that B does not know a priori
which nonce X is the “faulty” nonce, nor does it know which of the messages sent by
the adversary corresponds to the invalid Dolev-Yao abstract message. But since the total
number of nonces and messages appearing in an execution is polynomial in the security
parameter, B can guess both of them with significant probability. If the adversary guesses
wrongly, so he either can not recover a nonce from the position that he guessed, or the
nonce he recovers is different from x0, x1, then B simply outputs a random guess.

Let us provide an informal analysis of the advantage of B (formal details will be
given in the full version of the paper). There are two possible events that lead B to
successfully guessing the bit b. First of all, if guessing X or Q fail, then he outputs b
with probability half. Otherwise, i.e. the abstract adversary Af is not Dolev-Yao, and B
guesses both the nonce X , the message Q which is not Dolev-Yao and the position P in
this message on which X occurs then B correctly guesses b. Each of these probabilities
can be bounded as follows. For concreteness assume the following: the total number of
parties is Np, the total number of messages exchanged during a session is Nr, each party
uses at most Nn nonces, and each message has at most No nonce occurrences. Then, if
Ns is the total number of possible sessions, i.e. |SId|, then B guesses the “right” nonce X
with probability at least 1

2·Nr·Nn
, guesses the “right” message Q with probability at least

1
Ns·Nr

and the “right” occurrence of X with probability at least 1
No

. Putting this together
we obtain that

Nr · Nn · No · Ns · AdvNp−ind-cca
AE,B (η) ≥ Pr [Af invalid]

Since we assumed that AE is IND-CCA secure, hence Np-IND-CCA secure, the left side
of the inequality is a negligible function, hence so is the right side. In other words, the
adversary Af that we construct is not a valid Dolev-Yao adversary only with negligible
probability. 
�
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5 Soundness of Formal Proofs

We now use the result of the previous section to prove our main result. In this section we
provide a uniform way to specify general security properties, both in the formal and the
concrete setting. Then, we exhibit a condition on formal and concrete security notions Pf

and Pc such that proving security of some protocol Π with respect to Pf (in the formal
world) entails that the protocol is secure with respect to Pc in the concrete world. Finally
we provide concrete examples for the case of mutual authentication protocols.

Definition 3. Fix a protocol Π .

1. A formal security notion is any predicate Pf on formal state traces (or equivalently
any subset Pf of FStrace). For each security notion Pf ⊆ FStrace, we say that
protocol Π satisfies Pf , notation Π |=f Pf if for all valid formal adversaries Af , it
holds that STr(Af , OF ) ∈ Pf .

2. A concrete security notion is any predicate Pc on concrete state traces. For each
security notion Pc ⊆ CStrace, we say that protocol Π satisfies Pc, notation Π |=c

Pc, if for all probabilistic polynomial time adversaries Ac it holds that

Pr
RA,RO

[
STr(Ac(RA), OC(RO)) ∈ Pc

] ≥ 1 − ν(η)

where RA and RO are random strings of appropriate length (i.e. polynomially long
in the security parameter η) and ν(·) is some negligible function.

The definitions of satisfiability provided above are rather standard in the settings
that we consider. The one for the formal execution model states that no Dolev-Yao
adversary can induce a “faulty” formal execution trace. The definition of satisfiability
for the concrete execution model states that no probabilistic polynomial time algorithm
can induce a faulty concrete execution trace, except with negligible probability.

We now exhibit a relation between formal security notions Pf and concrete security
notions Pc such that proving (formally) security with respect to Pf implies security with
respect to Pc (in the concrete execution model). The relation is captured in the following
theorem.

Theorem 3. Let Pf and Pc be respectively formal and a concrete security notion such
that

(∀fstr ∈ FStrace,∀cstr ∈ CStrace)((fstr ∈ Pf ∧ ftr � cstr) ⇒ cstr ∈ Pc).

If AE is IND-CCA secure,

Π |=f Pf ⇒ Π |=c Pc

holds.

Proof. The intuition behind the proof is the following. Let cstr be the state trace caused
by an arbitrary adversary Ac. From Theorem 2, with overwhelming probability there ex-
ists a valid formal adversary such that its trace fstr satisfies fstr � cstr, and moreover
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fstr ∈ Pf (since Π |=f Pf ). Then, by the assumption on Pf and Pc, with overwhelming
probability cstr ∈ Pc, i.e. Π |=c Pc. Formally we have the following:

Pr
RA,RO

[
STr(A(RA), OC(RO)) ∈ Pc

]

≥ Pr
RA,RO

[∃fstr ∈ Pf , fstr � STr(A(RA), OC(RO))
]

≥ Pr
RA,RO

[∃Af valid : STr(Af , OF ) � STr(A(RA), OC(RO))
]

≥ 1 − ν(η)

i.e. Π |=c Pc. 
�

Mutual authentication. We now show how to apply the above machinery to the
case of mutual authentication protocol. Informally, at the end of a secure execution
of a mutual authentication protocol, the initiator and the responder are convinced of
each other’s identity. Various ways of formalizing this property already appeared in the
literature [7,8,6,11]. Our formulation is closest to the one in the latest reference, to which
we refer the reader for clarifications and motivations about the definition.

There are two properties that a secure mutual authentication protocol should satisfy.
The first property, called “initiator’s guarantee”, states that if in some session between
two parties, the initiator sent his last message, and thus finished its execution, then there
exists some session between the same parties in which the responder also finished its
execution. The second property, called the responder’s guarantee, says that if in some
session the responder sent his last message (and hence finished its execution), then there
exists some session with the same initiator and responder in which the initiator has either
finished his execution, or is expecting to receive the last message of the protocol. Finally,
a protocol is a secure mutual authentication protocol if it satisfies both initiator’s and
responder’s guarantees.

We can formalize the above informal descriptions by using the language of state
traces as follows.

Definition 4. Let t = ((f0, k0), (f1, k1), ....) be an (abstract or concrete) state trace of
a protocol with Nr rounds.
(1) We say that t satisfies the initiator’s guarantee, if for any position p in the trace, the
following condition is satisfied. If for some s = (i, j, t) ∈ SId it holds that kp(s, I) =

√
then for some s′ = (i, j, t′) ∈ SId it holds that kp(s′, R) =

√
.

(2) We say that t satisfies the responder’s guarantee, if for any position p, the following
condition is satisfied. If for some s = (i, j, t) ∈ SId it holds that kp(s, R) =

√
then for

some s′ = (i, j, t′) ∈ SId it holds that kp(s′, I) = Nr or kp(s′, I) =
√

.
(3) We say that t satisfies the mutual authentication property if it satisfies both initiator’s
guarantee and responder’s guarantee.

Let us denote by MAF (respectively by MAC) the mutual authentication property

in the formal (respectively in the concrete) execution model. It is a simple exercise to

show that MAC and MAF satisfy the conditions of Theorem 3. As a consequence, for

any protocol Π

Π |=f MAF implies Π |=c MAC
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6 Extensions and Work in Progress

For simplicity of exposition, the framework that we presented in Sections 4 and 5 con-
centrates on a setting where parties execute multiple instances of a a single two-party
protocol. The formal and computational models that we presented can be extended in
a number of ways, allowing analysis of an increasingly larger class of protocols. In
this section we present and discuss some extensions which we have considered. These
extensions include:

– considering multi-party protocols (as opposed to only two-party protocols);
– considering execution models in which parties execute instances not of a single but

of a set of protocols;
– extending the protocol specification language with other cryptographic primitives,

e.g. symmetric encryption, digital signatures, message authentication codes;
– considering more flexible rules for writing protocol, allowing for instance transmis-

sion of encrypted keys, forwarding of ciphertexts (without decrypting);
– developing a more general execution model involving reactive parties;
– generalize our abstract definition of security notions to capture secrecy properties.

Our basic setting easily extends to a more general execution model in which parties
execute several multi-party protocols, Π1, Π2, . . . , Πp, simultaneously. In the sequel we
sketch some details of this extension. A multi-party protocol can be naturally specified
by a sequence of actions of the form A → B : M , where A and B are the sender and
the receiver respectively, and M is a representation of the message that A sends to B,
constructed from variables in Identifiers, using the grammar for Term.

Given a protocol specified as a list of actions of the form A → B : M , the program
run by some party P is determined by selecting from the list of actions only those
actions which involve party P as either sender or receiver. The individual execution of
these programs in both the formal and the computational models remains essentially
unchanged. Furthermore, our formalization of the global execution of the protocols (for
both the formal and the concrete world) can be easily adapted. The following discussion
pertaining to the formal model, applies to the concrete model too, with some obvious
modifications.

In the formal execution model, the behavior of the honest parties is modeled by
oracle OF maintaining the global state of the execution. The adversary interacts with
the oracle by initializing new instances of the protocols, and passing messages between
parties as in the two party-case (the syntax of the queries needs to be adapted to the
setting we are discussing.) If we denote by SId be the set of session ids and by max the
maximum number of parties involved in running each particular protocol, in the multi-
user, multi-protocol setting, we model the global state by a pair of functions (F, k),
where

F : SId×[max] → (Identifiers → Fconst) k : SId×[max] → N∪{√}.

The intuition behind this formalization is the identical to the two-party case: F (s, l)
gives the local view of participant number l in the protocol executed in session s, and
k(s, l) gives the index of the next instruction of the protocol which the same participant
will execute.
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The result of the execution is again the sequence of states determined by the for-
mal adversary. In this case, by modeling security properties as sets of “secure” traces
one can capture properties of the whole system (as opposed to properties of a single
protocol). So, formal and computational satisfaction of security requirements pertains
to the entire system. We write Π1, Π2, . . . , Πp |=f Pf to denote the fact that protocols
Π1, Π2, . . . , Πp satisfy property Pf in the formal execution model. Similarly, we write
Π1, Π2, . . . , Πp |=c Pc to mean that the same protocols satisfy security requirement Pc

in the concrete execution model. The formal definition of relations |=f and |=c is the
obvious generalization of Definition 3. In the full version of the paper we will include a
proof of the following generalization of Theorem 2:

Theorem 4. Let Π1, Π2, . . . , Πp be multi-party protocols and let Pf and Pc be a formal,
respectively a concrete security notion such that

(∀fstr ∈ FStrace,∀cstr ∈ CStrace)((fstr ∈ Pf ∧ ftr � cstr) ⇒ cstr ∈ Pc)

Then, if AE is IND-CCA secure then

Π1, Π2, . . . , Πp |=f Pf ⇒ Π1, Π2, . . . , Πp |=c Pc

Another interesting extension is to enrich the protocol specification language with
other cryptographic primitives, e.g. symmetric encryption, digital signatures and mes-
sage authentication codes. It seems that our simple models and results can be immediately
extended, if we only consider protocols in which parties never send encryption of secret
keys. We remark that the problem of encrypted secret keys has also been encountered in
the complex framework of [4], where it is pointed out that including such encryptions in
their treatment is quite problematic. In contrast, we discovered that by imposing certain
restrictions, our results can be extended to protocols in which parties exchange encryp-
tion of secret keys. For instance, our results hold in a setting where parties generate and
send encryptions of symmetric keys under the public keys of other parties, and later use
the symmetric keys to encrypt other messages. We require however that symmetric keys
are never used to encrypt other symmetric keys. The restrictions that we consider are
quite reasonable from a practical point of view, and currently we are seeking the weakest
limitations under which our result still holds.

Yet another extension is to consider protocols with input and output, or even more
generally, reactive protocols in which parties accept inputs and produce outputs during
the execution. While coming up with models for this kind of protocols does not seem to
pose any difficulties, finding appropriate, general definitions for security notions is a more
subtle problem. In particular, such general definitions should encompass some formal
and computational secrecy notions to which our result can be extended. We note that this
would enable analysis of a large class of protocols for which secrecy requirements are
crucial, e.g. key exchange protocols, which makes this direction particularly interesting
to follow in our future research.
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