
Indifferentiability, Impossibility Results on
Reductions, and Applications to the Random

Oracle Methodology�

Ueli Maurer, Renato Renner, and Clemens Holenstein

Department of Computer Science,
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland

{maurer,renner,holenste}@inf.ethz.ch

Abstract. The goals of this paper are two-fold. First we introduce and
motivate a generalization of the fundamental concept of the indistin-
guishability of two systems, called indifferentiability. This immediately
leads to a generalization of the related notion of reducibility of one system
to another. In contrast to the conventional notion of indistinguishabil-
ity, indifferentiability is applicable in settings where a possible adversary
is assumed to have access to additional information about the internal
state of the involved systems, for instance the public parameter selecting
a member from a family of hash functions.
Second, we state an easily verifiable criterion for a system U not to
be reducible (according to our generalized definition) to another system
V and, as an application, prove that a random oracle is not reducible
to a weaker primitive, called asynchronous beacon, and also that an
asynchronous beacon is not reducible to a finite-length random string.
Each of these irreducibility results alone implies the main theorem of
Canetti, Goldreich, and Halevi stating that there exist cryptosystems
that are secure in the random oracle model but for which replacing the
random oracle by any implementation leads to an insecure cryptosystem.

1 Introduction

1.1 Motivation: Cryptographic Security Proofs

The following generic methodology is often applied in cryptographic security
proofs. To prove the security of a cryptosystem C(·) with access1 to a (real)
component system S, denoted C(S), one first proves that the system C(T) is
secure for some idealized component system T . Second, one proves the following
general relation between S and T : For any cryptosystem C̃(·), the security of
C̃(T) is not affected if T is replaced by S. Let us consider two examples.

� This research was supported by SNF Project No. 20-66716.01.
1 The notation C(·) means that C takes as an argument (or is connected to) a system

that replies to queries by C.

M. Naor (Ed.): TCC 2004, LNCS 2951, pp. 21–39, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

22 U. Maurer, R. Renner, and C. Holenstein

Example 1. Let T be a source of truly random bits (secret for two communicat-
ing parties A and B) and let S be a pseudo-random bit generator (with secret key
shared by A and B). If C(·) denotes XOR-based encryption (i.e., C(T) denotes
the one-time pad and C(S) denotes an additive stream cipher with key-stream
generator S), then the security of C(S) follows from the security of C(T) and
the fact that, for any efficient distinguisher (or adversary), S behaves essentially
like T , i.e., S and T are (computationally) indistinguishable.

Example 2. Let T be a random oracle R, (i.e., a publicly accessible random func-
tion) and let S be a hash function H(F), where H is a hash algorithm depending
on a public parameter F (selecting one function from a class of functions). In
contrast to pseudo-randomness (where the parameter is secret), no hash func-
tion can implement a random oracle in the above sense, as proved by Canetti,
Goldreich, and Halevi [6]. In other words, there exists a cryptosystem C(·) such
that C(R) is secure while C(H(F)) is insecure for any hash algorithm H.

It is important to note that the formalization of this second example is more
involved than the first. Obviously, a random oracle is easily distinguishable from
a hash function if one knows its program and the public parameter, but this fact
does not prove the above mentioned claim that a random oracle can generally
not be replaced by a hash function. What then is needed to prove this claim
and, more generally, similar impossibility results? It is the purpose of this paper
to formalize this problem and to provide the answer.

1.2 Random Oracles, Beacons, and Other Systems

In this paper, we will be concerned with the following general question: For
given systems S and T , can T be replaced by S in the above sense? A natural
extension of this question is whether a system U can be reduced to a system V,
i.e., whether there exists an efficient algorithm B such that U can be replaced
by B(V) (in the above sense).

One example of such a system that we will consider more closely is the
random oracle. Its importance in cryptography is due to the so called random
oracle methodology where the security of a cryptosystem is proven under the
assumption that a common randomly chosen function (the random oracle) is
accessible by each party. This fact is then used as evidence for the security
of the corresponding (real) cryptosystem where the random oracle is replaced
by a hash function. The methodology was first made explicit by Bellare and
Rogaway [2] and has been used in many papers (e.g. [8,9,17,13,2,11,3,16]).

A (binary) random oracle R can be seen as an infinite sequence R1, R2, . . .
of public random bits where any arbitrary bit Rx can be accessed in one compu-
tational step. One can also think of weaker primitives where the cost to access
the randomness is higher. In particular, we introduce a primitive, called (binary)
asynchronous beacon2 Q, defined as a sequence of random bits R1, R2, . . . which
2 The term “beacon”, due to Rabin, is used here only in the sense described. In par-

ticular, the fact that for Rabin’s beacons the randomness is available simultaneously

Indifferentiability, Impossibility Results on Reductions 23

can only be read sequentially, i.e., the time needed to access Rx is linear in x. A
natural question is whether one can implement a random oracle using an asyn-
chronous beacon, i.e., whether there is an efficient algorithm B such that B(Q)
behaves like R. (Note that for each input, B could make polynomially many
queries to Q before generating the output.)

An even weaker primitive is a finite random string F , i.e., a finite sequence of
bits R1, . . . , Rn (e.g., accessible in constant time). One could also consider other
systems between a finite random string, an asynchronous beacon, and a random
oracle, for which the random bits might be accessible faster than sequentially
but not in an arbitrary (random access) manner, or where the distribution of the
random bits is not uniform. In a sense, a random oracle and a finite random string
are two extreme points on a scale, and an asynchronous beacon is somewhere in
the middle.

For any two such systems U and V one can still ask the question whether U
can be implemented using V. This paper formalizes and solves this problem. We
show that, loosely speaking, the answer to this question is characterized by the
rates at which entropy can be accessed in the systems U and V. As special cases
one sees that a random oracle cannot be implemented using an asynchronous
beacon, and a beacon cannot be implemented using a finite random string. This
also proves the main result of [6] as a simple consequence of the fact that a
random oracle R contains substantially more entropy than a finite random string
F , in a manner to be made precise.

1.3 Indistinguishability and Indifferentiability

Informally, two systems S and T are said to be indistinguishable if no (efficient)
algorithm D(·), connected to either S or T , is able to decide whether it is inter-
acting with S or T . As mentioned above, the security of a cryptosystem C(S)
involving a component S is typically proven by considering the cryptosystem
C(T) obtained from C(S) where the component S is replaced by an idealized
component T . The original system C(S) is secure if (a) the system C(T) is se-
cure, and (b) the component S is indistinguishable from T (cf. Example 1).

The notion of reducibility is directly based on indistinguishability. A system
U is said to be reducible to V if the system V can be used to construct a new
system B(V) which is indistinguishable from U . Again, reducibility is useful for
cryptographic security proofs: If U is reducible to V, then, for any cryptosystem
C(U) using U as a component, there is another cryptosystem based on V, namely
C(B(V)), having the same functionality and, in particular, providing the same
security as C(U).

However, these considerations are all subject to the assumption that the party
using such a component has exclusive access to it, i.e., that all other parties, in-
cluding a possible adversary, are unable to directly influence the component’s

to all parties, and that future beacon outputs remain secret until released, is not of
relevance here.

24 U. Maurer, R. Renner, and C. Holenstein

behavior or obtain any information about its randomness. As described in Ex-
ample 2, this is not the case for many components. Indeed, while for each party
the output of a random oracle R is indistinguishable from the output of a local
random function Rloc, the security of a cryptosystem based on Rloc (where, e.g.,
the randomness is used for a randomized encryption) might obviously be lost
when replacing this component by R.

In order to extend the definition of indistinguishability such as to include this
type of systems, we will propose a new concept of indistinguishability, called in-
differentiability. Together with its derived notion of reducibility, it will allow for
exactly the same general statements about the security of cryptosystems as the
conventional definitions. In particular, this means that, first, if a component S is
indifferentiable from T , then the security of any cryptosystem C(T) based on T is
not affected when replacing T by S. Second, differentiability of S from T implies
the existence of a cryptosystem C(·) for which this replacement of components is
not possible, i.e., C(T) is secure but becomes insecure if T is substituted by S.
Thus, similar to conventional indistinguishability, indifferentiability is the weak-
est possible property allowing for security proofs of the generic type described
above, but it applies to more general settings.

1.4 Organization of the Paper

In Section 2, we give a straightforward proof of the classical separation result
in [6] that a random oracle cannot be realized by a (family of) hash functions.
While this separation result also follows directly from our general results derived
in the subsequent sections, we think that starting with a self-contained proof of
this (well-known) example will help the reader to understand the motivation for
the definitions and to follow the rest of the paper. Section 4 and Section 5 are
concerned with the generalization of the concept of indistinguishability, called
indifferentiability, and the corresponding generalization of reducibility, respec-
tively. These notions are then applied in Section 6 to state and prove a general
irreducibility criterion, which is used in Section 7 to derive separation results for
finite random strings, beacons, and random oracles.

2 A Motivating Example: A Simple Proof of the
Impossibility of Implementing a Random Oracle

The following proposition directly implies the separation result as formulated
in [6]. Its original proof is quite involved as it is based on techniques like Micali’s
CS-proofs [11]. Very recently, the same authors [7] showed that their result ex-
tends to signature schemes for only short messages. Other similar impossibility
results are proposed in [12] and [1].

Proposition 1. There exists a signature scheme C(·) (consisting of a key-gener-
ating, a signing, and a verification algorithm) with access to either a random
oracle R or an implementation thereof such that the following holds (with respect
to some security parameter k):

Indifferentiability, Impossibility Results on Reductions 25

– C(R) is secure, i.e., the probability that an attacker against C(R) is successful
is negligible in k.3

– There is an adversary breaking C(f) for any arbitrary efficiently computable
function f . In particular, C(H(F)) is insecure for any hash function H with
public parameter F .

– C(·) is efficient (i.e., the running time of the algorithms is polynomially
bounded in the size of their input and the security parameter k).

Proof. The proof consists of two parts. First, we construct C(·) based on a dis-
tinguishing algorithm D(·) which has the property that the behavior of D(R) is
different from D(f). Second, we give a construction for D(·) and prove that it
has all the desired properties.

Let us thus assume that D(·) is an algorithm taking as input a bitstring m
(together with a security parameter k) and generating a binary output such that
the following holds:

(a) The probability (over the randomness of R) that there exists an input caus-
ing D(R) to output 1 is negligible in k.

(b) For any efficiently computable function f , there exists an input m causing
D(f) to output 1. Moreover, m is easily computable given an algorithm for
efficiently computing f .

(c) D(·) is efficient (i.e., its running time is polynomially bounded by the size
of its input m and the security parameter k).

Let C̄(·) be an efficient signature scheme which is secure when accessing a
random oracle. The signature scheme C(·) is then constructed by modifying the
signing algorithm of C̄(·) as follows: On input m, it first calls D(·) for input m.
If D(·) outputs 0, m is signed as usual (i.e., by calling the signing algorithm
of C̄(·)). Otherwise, it behaves completely insecurely (e.g., by revealing a secret
key).

It is easy to see that C(·) satisfies the requirements of the proposition: The
security of C(R) follows directly from property (a). Furthermore, property (b)
implies that there is an input m (efficiently computable by an adversary) causing
C(f) to behave completely insecurely. Finally, the efficiency of C(·) follows from
the efficiency of D(·) (property (c)) and the efficiency of C̄(·).

It remains to be proven that an algorithm D(·) with the desired properties
(a) to (c) indeed exists. We give an explicit construction for D(·) and then show
that properties (a) to (c) are satisfied. For the following, assume without loss of
generality that the random oracle R is binary, i.e., its outputs are single bits.

Construction of D D(·) interprets its input m as a pair (π, t) consisting of an
encoding of a program π for a universal Turing machine and a unary encoding
of some integer t (i.e., t ≤ |m|). Let q = 2|π| + k (where |π| is the length of
the encoding of π). For inputs x = 1, . . . , q, D(·) simulates at most t steps of
3 A function f : k �→ f(k) is negligible in k if f(k) decreases faster than the inverse of

any polynomial in k.

26 U. Maurer, R. Renner, and C. Holenstein

the program π, resulting in outcomes π(1), . . . , π(q).4 Similarly, D(·) sends the
queries x = 1, . . . , q to the component it is connected to (R or f), resulting in
answers a(1), . . . , a(q). If π(x) = a(x) for all x = 1, . . . , q, D(·) outputs 1, and
0 otherwise.

D satisfies property (a). For any fixed program π, let pπ be the probability
(over the randomness of R) that for an input m encoding π, D(R) outputs 1.
By construction, this happens if and only if π(x) = a(x) for all x = 1, . . . , q.
Since, for each x, the random output a(x) (of the binary random oracle R) is
equal to the output π(x) (of the fixed program π) with probability at most 1/2,
we have pπ ≤ 2−q = 2−2|π|−k. Hence, the probability pl of the event that there
exists a program π of length l such that D(R) outputs 1 is bounded by

pl ≤
∑

π∈{0,1}l

pπ ≤ 2l · 2−2l−k = 2−l−k .

Finally, the probability p that there exists a program π of arbitrary length caus-
ing D(R) to output 1 is bounded by

p ≤
∞∑

l=1

pl ≤
∞∑

l=1

2−l · 2−k ≤ 2−k .

D satisfies property (b). Let π be an arbitrary program that efficiently com-
putes f , and let t be the maximum running time of π for all inputs y ∈ {1, . . . , q}
where q = 2|π|+k. By construction, the values π(x) computed by D(f) on input
m := (π, t) satisfy π(x) = f(x). Consequently, the equalities π(x) = a(x) tested
by D(f) hold for all values x = 1, . . . , q, causing D(f) to output 1. Note that
the maximum running time t can be determined efficiently given the program π
(since π is efficient). The input m is thus efficiently computable from π.

D satisfies property (c). The running time of D(R) is essentially given by
the time needed to compute the q = 2|π| + k values π(1), . . . , π(q). For the
computation of each of these values, the program π is executed for at most
t steps. Since |π| as well as the number t are both bounded by the size of
m (recall that t is unary encoded in m), the running time of D(R) satisfies
O((2|π| + k) · t) ≤ O((|m| + k)2). ��

3 Basic Definitions and Notation

3.1 Interacting Systems

For the representation of (cryptographic) systems, we will basically adapt the
terminology introduced in [10]. A (X ,Y)-system is a sequence of conditional
4 If the program π does not generate an output after t steps, π(i) is set to some dummy

value.

Indifferentiability, Impossibility Results on Reductions 27

probability distributions PYi|XiY i−1 (i ∈ N) with Xi := [X1, . . . , Xi] and
Y i−1 := [Y1, . . . , Yi−1], where Xi, called the ith input, and Yi, the ith output,
are random variables with range X and Y, respectively. Intuitively speaking, a
system is defined by the probability distribution of each output Yi conditioned
on all previous inputs Xi and outputs Y i−1. If each output Yi of S only depends
on the actual input Xi, and possibly some randomness, then S is called a random
function. For instance, a system S might be specified by an algorithm, where,
for each input, the output is computed according to a given sequence of instruc-
tions. For convenience, we will assume that the systems’ inputs and outputs are
natural numbers, or, equivalently, their representation as finite bitstrings.

A configuration of systems is a set of systems where the systems’ interfaces are
pairwise connected. Any configuration of systems can be seen as a new system.
For instance, let S be a system with two interfaces and let T be a system whose
interface is connected to the first interface of S. The resulting system, denoted
as S(T), has one interface corresponding to the second (free) interface of S as
shown in Fig. 1(a). In this case, the original system S is denoted as S(·), and T
is called component of S(T). More complex constructions are denoted similarly,
e.g., E(Cpriv,A(Cpub)) and B(Vpriv) for the configuration depicted in Fig. 1(b)
and Fig. 1(c), respectively.

S

T

��

��

(a) S(T) E

A

C

��

�

�

��

��

priv pub

(b)
E(Cpriv, A(Cpub))

B

V

��

�

�

��
priv pub

(c) B(Vpriv)

Fig. 1. Composition of systems.

Many complexity-theoretic and cryptographic properties of systems and par-
ticularly of algorithms are defined in terms of their asymptotic behavior with
respect to some security parameter k. Thus, in the sequel, when speaking of a
“system” S, we will rather mean a family (Sk)k∈N parameterized by k, where
each Sk is a system in the sense described above.

28 U. Maurer, R. Renner, and C. Holenstein

3.2 A Notion of Efficiency for Systems

An algorithm B is said to be computationally efficient if its running time is
bounded by a polynomial in its input size and the security parameter k. Simi-
larly to the computational efficiency of algorithms, we are interested in a certain
notion of efficiency for systems S and constructions based on them. However,
since a system S is not necessarily described by an algorithm, the usual formu-
lation in terms of the number of computational steps is not sufficiently general.
A more abstract approach to overcome this problem is to assign to each (X ,Y)-
system S a cost function c with range R

+ specifying the amount of a certain
resource (e.g. time), needed to process an input. For simplicity, we will assume
that these costs only depend on the actual input, i.e., c is a function mapping
elements from X to R

+. Additionally, the costs c of a composite system B(V)
must be compatible with the costs c̄ of the underlying component V, i.e., for any
input x to B(V), c(x) is at least as large as the sum of the costs c̄(x̄i) for all
queries x̄1, . . . , x̄n sent by B to V while processing x.

Similarly to the usual notion of computational efficiency of algorithms, we
say that a system S (or, more precisely, the class (Sk)k∈N of systems Sk with
cost functions ck) is cost-efficient if ck(x) is bounded by a polynomial in the
input length |x| and the security parameter k, i.e., ck(x) ≤ p(|x|, k) for some
polynomial p. For two systems U and V, let Γ (V/U) be the set of all deter-
ministic systems5 B(·) such that the costs of the system B(V) are bounded by
a polynomial in the costs of the system U and the security parameter k. This
means that, for any B(·) ∈ Γ (V/U), the construction B(V) is as cost-efficient (up
to a polynomial factor) as U , and, in particular, if the system U is cost-efficient,
then so is the system B(V).

We will see in Section 6 that the entropy of the output of a system expressed
in terms of the costs to produce this output is a measure allowing for deciding
whether a certain reduction is possible. Let the system Sk be a random function
with cost function ck which is monotonically increasing in its inputs, and let
Y1, . . . , Ynt be the sequence of outputs of Sk on inputs 1, . . . , nt, where nt is the
maximal input x such that ck(x) ≤ t. The functions h0

Sk
and h∞

Sk
are defined,

based on two different entropy measures, as

h0
Sk

(t) := H0(Y1, . . . , Ynt) and h∞
Sk

(t) := H∞(Y1, . . . , Ynt),

respectively, where H0(Z) := log2 |Z|, and where H∞ is the min-entropy (defined
as H∞(z) := − log2 maxz∈Z PZ(z)). That is, for any bound t on the costs ck

determining a maximum input nt, the quantities h0
Sk

(t) and h∞
Sk

(t) measure
the entropy of the outputs of the system Sk for inputs 1, . . . , nt (where the
probability is taken over the internal randomness of Sk). Clearly, h0

S and h∞
S are

monotonically increasing functions, and h0
S(t) ≥ h∞

S (t).

5 The restriction to deterministic systems B(·) does not restrict the generality of our
results. It simply implies that any randomness to be used by B(·) must be modeled
explicitly (by a random system attached to B(·)).

Indifferentiability, Impossibility Results on Reductions 29

3.3 Cryptosystems and Security

A cryptosystem as well as any cryptographic primitive can generally be modeled
as a random system providing interfaces to certain players. Usually, these players
are either honest parties or controlled by an adversary. In this paper, we will be
concerned with settings where the cryptographic primitives can be accessed by
the honest players and the adversary in some predefined way. As an example,
consider a publicly accessible resource (e.g., a random oracle or a public random
string), where the interfaces to all players are identical. In this case, a possible
adversary can access exactly the same information as the honest parties. Another
example is a private resource, (e.g., a source of private randomness), to which
the adversary is assumed to have no (direct) access at all.

In general, one might want to model situations where the adversary has some
partial access to a cryptographic primitive. We thus define a resource S to be
a random system with two interfaces, called private and public, respectively.
In the following, we will think of the private and the public interface as being
accessible by the honest parties and the adversary, respectively. A resource S is
called public if the private and the public interface are identical (i.e., the answers
to identical queries are identical).

Let U and V be resources. Similarly to the set Γ (V/U), we denote by Γ p(V/U)
the set of deterministic systems B(·) such that the costs of the system B(V) :=
B(Vpriv) resulting from connecting B(·) to the private interface of V (cf. Fig. 1(c))
are polynomially bounded by the costs of U and a security parameter k.

In the following, we think of a cryptosystem C as being a resource (with a
private and a public interface, modeling the access of the honest parties and
the adversary, respectively). The security of a cryptosystem C is characterized
relative to an ideal cryptosystem C′ which by definition is secure. Obviously, this
requires the ability to compare the security of cryptosystems, i.e., it needs to be
specified what it means for a cryptosystem C to be at least as secure as another
cryptosystem C′. The following definition is based on ideas proposed by Canetti
[4,5], and by Pfitzmann and Waidner [14,15] (for the case of static adversaries),
adapted to our notion of systems.

Let C and C′ be two cryptosystems, and consider the configuration depicted
in Fig. 1(b), where E(·, ·) is a random system with binary output, called envi-
ronment.

Definition 1. C is said to be at least as secure as C′, denoted C � C′, if for
all environments E the following holds: For any attacker A accessing C there is
another attacker A′ accessing C′ such that the difference between the probability
distributions of the binary outputs of E(Cpriv,A(Cpub)) and E(C′priv

,A′(C′pub)),

∣∣Prob[E(Cpriv,A(Cpub)) = 1] − Prob[E(C′priv
,A′(C′pub)) = 1]

∣∣,

is negligible in the security parameter k.
Similarly, C is computationally at least as secure as C′, denoted C �c C′, if,

additionally, E, A, and A′ are efficient algorithms.

30 U. Maurer, R. Renner, and C. Holenstein

4 Indifferentiability

4.1 The Conventional Notion of Indistinguishability

Before introducing indifferentiability as a generalization of indistinguishability,
we first recall the standard definition of indistinguishability. Let S = (Sk)k∈N

and T = (Tk)k∈N be two (X ,Y)-systems.

Definition 2. S and T are (computationally) indistinguishable if for any (com-
putationally efficient) algorithm D (called distinguisher), interacting with one of
these systems and generating a binary output (0 or 1), the advantage

∣∣Prob[D(Sk) = 1] − Prob[D(Tk) = 1]
∣∣

is negligible in the security parameter k.

The relation between indistinguishability and the security of cryptosystems
is summarized by the following proposition, which in its generalized form (The-
orem 1) will be proven below. Let S and T be two resources which have only
private interfaces.

Proposition 2. If and only if S and T are indistinguishable, then, for every
cryptosystem C(T) using T as a component, the cryptosystem C(S) obtained
from C(T) by replacing the component T by S is at least as secure as C(T).

The first implication, stating that the security of C(S) is an immediate conse-
quence of the indistinguishability between S and T (and the security of C(T)), is
well-known in cryptography. On the other hand, to our knowledge, the (simple)
observation that this condition is also necessary in general has not previously
been stated explicitly.

It is important to note that Proposition 2 only applies to settings where the
resources have no public interfaces, i.e., a possible opponent has no direct access
to any additional information correlated with the behavior of the systems.

4.2 Generalization to Indifferentiability

We will now extend the definition of indistinguishability to resources (with pri-
vate and public interfaces, as defined in Section 3). A first attempt might be to
consider a distinguisher D accessing both the private as well as the public inter-
faces of the resources. However, it turns out that such an approach leads to a too
strong notion of indistinguishability (with respect to Proposition 2). This means,
for instance, that there are resources S and T which are not indistinguishable
(according to such a definition) while, for any cryptosystem C(T) based on T ,
replacing T by S has no impact on its security, i.e., the second implication of
Proposition 2 would not hold.

A notion of indistinguishability overcoming this problem is formalized by the
following definition, which, unlike the conventional definition, is not symmetric.
Let S = (Sk)k∈N and T = (Tk)k∈N be two resources and let D(Spriv

k ,Spub
k) and

D(T priv
k ,P(T pub

k)) denote the configurations of systems as depicted by Fig. 2 (a)
and (b), respectively.

Indifferentiability, Impossibility Results on Reductions 31

D

S

�

�

�

�

priv pub

�

(a)

D

P

T

���

� ��

priv pub

�

(b)

Fig. 2. Indifferentiability: The distinguisher D for differentiating S from T is either
connected to the system S or the system T . In the first case (a), D has direct access
to the private and the public interfaces of S, while in the latter case (b) the access to
the public interfaces of T is replaced by an arbitrary intermediate system P.

Definition 3. S is indifferentiable from T , denoted S � T , if for any system
D (called distinguisher) with binary output (0 or 1) there is a system P such
that the advantage

∣∣Prob[D(Spriv
k ,Spub

k) = 1] − Prob[D(T priv
k ,P(T pub

k)) = 1]
∣∣

is negligible in the security parameter k. The indifferentiability is computational,
denoted S c� T , if only computationally efficient algorithms are considered for
D and P .

Note that indistinguishability is a special (symmetric) case of indifferentia-
bility. Indeed, if the resources have no public interfaces, indifferentiability (Def-
inition 3) is obviously equivalent to indistinguishability (Definition 2).

One important point about our generalization of indistinguishability is that a
similar relation between the security of cryptosystems and the indifferentiability
of its components as the one stated in Proposition 2 (for indistinguishability)
holds. The following theorem shows that indifferentiability is the exact (i.e.,
necessary and sufficient) criterion needed to make general statements about the
security of cryptosystems when substituting their components.

Let S = (Sk)k∈N and T = (Tk)k∈N be two resources.

Theorem 1. Let C range over the set of all cryptosystems. Then,

S � T ⇐⇒ ∀ C : C(S) � C(T).

In the computational case, the same equivalence holds when “�” and “�” are
replaced by “ c�” and “�c ”, respectively.

32 U. Maurer, R. Renner, and C. Holenstein

The theorem implies that if S is indifferentiable from T and if a cryptosys-
tem C(T) based on T is secure, then so is C(S), the cryptosystem obtained from
C(T) by replacing the component T by S. Note that the asymmetry of indif-
ferentiability implies that there is an asymmetry on the right hand side of the
equivalence in Theorem 1. In fact, even if security of C(S) implies security of
C(T), then security of C(T) does not necessarily imply security of C(S).

�

E

�

� ��

A

�

�

�

�

C

�
�

S

priv pub

D

(a)

�

E

�

� ��

A

�

� ��

P

�

�

C

�
�

T

priv pub

A′

D

(b)

Fig. 3. Illustration for proof of Theorem 1 (“=⇒”).

Proof. The proof is given for the information-theoretic case, where all systems
might be computationally unbounded. It can however easily be adapted to hold
for the computational case. To simplify the notation, set

dD,P(k) :=
∣∣Prob[D(Spriv

k ,Spub
k) = 1] − Prob[D(T priv

k ,P(T pub
k)) = 1]

∣∣

where D is a distinguisher, P an additional system, and where the configurations
of systems are specified by Fig. 2 (as in Definition 3). Similarly, define

eE,C,A,A′(k) :=
∣
∣Prob[E(C(Spriv

k), A(Spub
k)) = 1] − Prob[E(C(T priv

k), A′(T pub
k)) = 1]

∣
∣

where E is an environment, C a cryptosystem, and where A, A′ are attackers
interacting with S and T , respectively (as shown in Fig. 3). The statement of

Indifferentiability, Impossibility Results on Reductions 33

E

A

D

�
�

S

priv pub

C

�

�

�

(a)

E

A′

D

�
�

T

priv pub

C

P

�

�

�

(b)

Fig. 4. Illustration for proof of Theorem 1 (“⇐=”).

the theorem can then be rewritten as

∀D : ∃P : dD,P(k) is negl. ⇐⇒ ∀C : ∀E : ∀A : ∃A′ : eE,C,A,A′(k) is negl.

The idea for the proof is to relate both sides of this equivalence relation such
that dD,P(k) = eE,C,A,A′(k) holds.

Let us start with the first implication (“=⇒”). Let C be any cryptosystem,
E an environment and A an attacker. Define the distinguisher D as the system
resulting from C, E , and A being combined as shown in Fig. 3(a), and let P be
the system such that dD,P(k) is negligible in k. Finally, define the attacker A′

as A(P) (cf. Fig. 3(b)). The two settings involving the system S (represented
in Fig. 3(a) by solid lines and dashed lines, respectively) as well as the two
settings involving the system T (Fig. 3(b)) are then obviously equivalent, i.e.,
the probabilities of their outputs are equal. Consequently, eE,C,A,A′(k) equals
dD,P(k), i.e., eE,C,A,A′(k) is negligible.

The second implication (“⇐=”) is proven similarly. Let D be any distin-
guisher. Let the cryptosystem C be identical to D,6 and define the environment E
and the attacker A as a trivial system simply forwarding all queries as shown in
Fig. 4(a). Let A′ be an attacker such that eE,C,A,A′(k) is negligible in k. Finally,
6 Motivated by a construction given in [6], one could also define a more “realistic”

cryptosystem containing D such that, if D outputs 0, it performs some useful task,
while, if D outputs 1, it behaves completely insecurely by revealing some secret
information.

34 U. Maurer, R. Renner, and C. Holenstein

define P := A′ (cf. Fig. 4(b)). Again, the two settings involving the system S
(Fig. 4(a)) as well as the two settings involving the system T (Fig. 4(b)) are
equivalent, i.e., dD,P(k) equals eE,C,A,A′(k) and is thus negligible. ��

5 Reductions and Reducibility

In cryptography one often asks whether a given system V can be used to con-
struct a (seemingly stronger) system U which is specified by its functionality.
If this is the case, one says that U is reducible to V. The formal definition of
reducibility makes clear that this concept is strongly related to the notion of
indistinguishability, or, in our generalized setting, to indifferentiability.

Let U and V be two resources.

Definition 4. U is information-theoretically securely (computationally se-
curely) reducible to V, denoted U → V (U →c V), if there exists a (computa-
tionally efficient) algorithm B ∈ Γ p(V/U) such that B(V) � U (B(V) c� U).

Analogously to indistinguishability and indifferentiability, the concept of re-
ducibility is useful for cryptographic security proofs. The following theorem is a
direct consequence of Theorem 1 and the above definition of reducibility.

Theorem 2. Let C range over the set of all cryptosystems. Then,

U → V ⇐⇒ ∃ B ∈ Γ p(V/U) : ∀ C : C(B(V)) � C(U).

In the computational case, the same statement holds when “→” and “�” are
replaced by “→c ” and “�c ”, respectively.

6 A Sufficient Criterion for Irreducibility

The following theorem gives an easily verifiable sufficient criterion for a public
resource U not to be reducible to another public resource V. This criterion will
be formulated in terms of the entropy of the output generated by these resources,
as defined in Section 3.

Let U = (Uk)k∈N and V = (Vk)k∈N be two public resources with costs given
by cUk

and cVk
, respectively. For convenience, let us assume that for fixed t, the

entropies h∞
Uk

(t) and h0
Vk

(t) are monotonically increasing in k. Informally speak-
ing, the theorem states that U is not reducible to V if h∞

Uk
(t) grows “sufficiently

faster than” h0
Vk

(t).

Theorem 3. If for each k ∈ N and any polynomial p the function h∞
Uk

grows
asymptotically faster than the function h0

Vk
◦ p, then U � V.

A similar theorem holds for the computational case. (In the proof given be-
low, the main changes needed to obtain a computational version are indicated.)
The proof mainly follows the lines of the proof of Proposition 1 given in Section 2:

Indifferentiability, Impossibility Results on Reductions 35

It is shown that for any reduction B(·), there exists a distinguisher for differ-
entiating B(V) from U . The idea is to let the distinguisher simulate B(V) and
then check whether this simulation corresponds to the behavior of the resource
it is connected to (U or B(V)). By an entropy argument, it can be concluded
that this test fails (with high probability) if (and only if) the distinguisher is
connected to U .

Proof. It has to be shown that B(V) � U for any B(·) ∈ Γ p(V/U). By the
definition of Γ p(V/U), B(V)’s costs c̄k are bounded by a polynomial p in the
costs cUk

of Uk and the security parameter k,

c̄k(x) ≤ pk(cUk
(x)) . (1)

Similarly to the proof presented in Section 2, we first give an explicit con-
struction of a distinguisher for differentiating B(V) from U , and then show that
it has all the desired properties.

Construction of D The distinguisher D(·, ·) for differentiating B(V) from U
has two interfaces (cf. Fig. 2 where S = B(V) and T = U) which we call Dpriv

and Dpub, respectively.
For r ∈ N, let the min-entropy H∞(Y1 · · ·Yr) of all outputs Yi of the system

Uk on inputs xi := i (for i = 1, . . . , r) be denoted as h̄k(r), and let l be some
positive integer to be determined later. For simplicity, let us assume (without
loss of generality) that the functions h̄k as well as h∞

Uk
are invertible, and that

the outputs of V are single bits.
D is constructed as follows: First, D sends queries x′

j := j for j = 1, . . . , l to
interface Dpub and stores the received answers z1, . . . , zl (which by assumption
are single bits). Then, D subsequently simulates B(V) on test inputs xi := i for
i = 1, . . . , n where n := (h̄k)−1(l + k), resulting in outcomes ȳi. For the simula-
tion of B, any query x′ ∈ {1, . . . , l} of B to V is answered by the corresponding
stored value zx′ . If x′ > l, D stops with output 0. The same test inputs xi are
then sent to interface Dpriv, resulting in answers yi. If yi = ȳi for all i = 1, . . . , n,
D outputs 1, and 0 otherwise.

The above construction of D must be modified slightly in order to avoid the
following technical problem: The stored values z1, . . . , zl might be arbitrarily
chosen by P, in which case they do not necessarily correspond to (potential)
outputs of V. The number of queries of the simulated system B and, in the
computational case, the running time of the simulation of B, might thus be
unbounded when using z1, . . . , zl as answers for simulating B’s queries. To over-
come this problem, D simply stops the simulation of B on input x after some
maximal number tmax(x) of queries (and, in the computational case, some max-
imal number t′max(x) of computational steps) of B, where tmax(x) (and t′max(x))
is the maximal number of queries (computational steps) of B when receiving
correct answers to its queries.

It remains to show that D satisfies the following properties:
(a) D(Upriv,P(Upub)) outputs 1 with negligible probability in k.
(b) D(B(Vpriv),Vpub) outputs 1 with certainty.

36 U. Maurer, R. Renner, and C. Holenstein

D satisfies property (a). Note that D can only have output 1 if the n-tuples
y = (y1, . . . , yn) and ȳ = (ȳ1, . . . , ȳn) are equal. It thus suffices to verify that
the probability of this event is negligible in k.

Since ȳ is fully specified by the bits z1, . . . , zl used for the simulation of B(V)
(note that B is deterministic) there are at most 2l possible values for ȳ. Let Ȳ
be the set of these 2l values. Obviously, y can only be equal to Ȳ if y ∈ Ȳ. This
happens with probability at most

∑

y∈Ȳ
PY (y) ≤ |Ȳ| · max

y∈Ȳ
PY (y) ≤ 2l · 2−H∞(Y) = 2l · 2−h̄k(n) ≤ 2−k ,

which concludes the proof of property (a).

D satisfies property (b). We first show that the property holds for l satisfying

l ≥ h0
Vk

(pk((h∞
Uk

)−1(l + k))), (2)

where pk(·) is defined as in (1). Second, we prove that condition (2) is always
satisfied for l large enough (but polynomially bounded in the computational
case).

By the definition of h∞
Uk

, cUk
(x) ≤ (h∞

Uk
)−1(l + k) holds for all queries x =

1, . . . , n. By assumption, the costs cU and c̄ (of U and B(V), respectively) satisfy
condition (1). The costs cVk

(x′) of Vk for each potential query x′ of B to V are
thus bounded by

cVk
(x′) ≤ pk((h∞

Uk
)−1(l + k)) .

Let xmax be the maximal query of B to V (i.e., x′ ≤ xmax for all queries of B).
It follows from the definition of h0 that the length l′ of the list containing V’s
answers to the queries 1, . . . , xmax satisfies

l′ ≤ h0
Vk

(pk((h∞
Uk

)−1(l + k))) .

By construction, D outputs 1 if the list of stored values z1, . . . , zl contains the
(correct) answers to all queries x′ of B to Vpriv (note that, by assumption, B
is deterministic). Clearly, this is the case if l′ ≤ l, which is true if l satisfies
inequality (2).

It remains to prove that (2) holds for l large enough: By assumption, for any
k ∈ N, the function h0

Vk
◦ pk ◦ (h∞

Uk
)−1 grows slower than the identity function.

Hence

lim
l→∞

l

h0
Vk

(pk((h∞
Uk

)−1(l + k)))
≥ 1 ,

which implies that (for any fixed k) there is a value for l satisfying (2).

Indifferentiability, Impossibility Results on Reductions 37

7 Applications

7.1 Random Oracles, Asynchronous Beacons, and Finite Random
Strings

We will now apply the framework presented in the previous sections to prove
separation results for random oracles, beacons, and finite random strings. Each
of these cryptographic primitives can be modeled as a public resource S whose
outputs only depend on the previous inputs (i.e., S is a random function, pro-
viding identical private and public interfaces with input set X = N and output
set Y = {0, 1}).7 Each query x ∈ X to S is answered by Rx where R = R1R2 · · ·
is a (possibly infinite) bitstring randomly chosen according to some distribution
PR.

Random oracles, beacons, and finite random strings only differ by the length
of the string R and the cost function c. For a random oracle R, R has infinite
length and the costs are c(x) := 1, or, alternatively, c(x) := |x|, where |x| denotes
the length of x. (In the following, we only need an upper bound for the costs
of a random oracle, i.e., we will assume that c(x) ≤ |x|.) For an asynchronous
beacon Q, R is also an infinite bitstring, but the costs for the queries are higher,
namely c(x) := x. On the other hand, for a finite random string F , the length
|R| of R is given as a function in the security parameter k which is bounded by
a polynomial p, and the costs are c(x) := C for some constant C. Moreover, for
any query on input x with x > |R| the output is 0. In the following, we say that
a random oracle, beacon, or finite random string is uniform if R is uniformly
distributed, and denote these objects as R, Q, and F , respectively.

7.2 Impossibility Results

It is obvious that an asynchronous beacon can always be reduced to a random
oracle (using an algorithm which merely passes on the inputs and outputs) and
that a finite random string can always be reduced to a beacon (using the same
trivial algorithm which additionally checks that the input is not larger than some
predefined bound). The inverse reductions are, however, not possible.

Theorem 4. The following irreducibility results hold for both the information-
theoretic and the computational case (where “�” is replaced by “�c ”):

R � Q and Q � F .

Proof. The main task required for the proof of this theorem is the computation
of the entropies according to the definitions in Section 3. The assertion then
7 We will assume that the outputs of random oracles, beacons and finite random

strings are single bits. This entails no restriction of generality since any of these
random functions providing outputs of some length l can efficiently be reduced to
a corresponding random function with outputs of length 1 (as long as l grows only
polynomially in the security parameter k).

38 U. Maurer, R. Renner, and C. Holenstein

follows directly from Theorem 3. For a random oracle, we obtain

h∞
Rk

(t) = h0
Rk

(t) ≥
t∑

i=1

2i = 2t+1 − 2,

and similarly, for an asynchronous beacon,

h∞
Qk

(t) = h0
Qk

(t) = t

(independently of k ∈ N). Since for a finite random string the length of R is given
by a function in the security parameter k which is bounded by a polynomial p
in k, we have

h∞
Fk

(t) = h0
Fk

(t) ≤
{

0 if t < C

p(k) otherwise.

(for all k ∈ N). Note that the above expressions for h0
Rk

, h0
Qk

and h0
Fk

also hold
if the respective systems are not uniform. ��

Together with Theorem 2, one can conclude that a random oracle in general
can not be replaced by any algorithm interacting with an asynchronous beacon,
and similarly, a beacon can not be replaced by any algorithm interacting with
a public finite random string without affecting the security of an underlying
cryptosystem. The failure of the random oracle methodology can thus be seen
as a direct consequence of each of the two irreducibility results of Theorem 4.

8 Conclusions

One crucial motivation for introducing the notion of indifferentiability is that it
characterizes exactly when one can replace a subsystem of a cryptosystem by
another subsystem without affecting the security. In contrast to indistinguisha-
bility, indifferentiability is applicable in the important case of settings where a
possible adversary is assumed to have access to additional information about
a system. This generality is for instance crucial in the setting of the random
oracle methodology, and our abstract framework yields as a simple consequence,
actually of each of two different impossibility results, the impossibility result by
Canetti, Goldreich and Halevi [6] stating that random oracles can not be imple-
mented. In view of the highly involved arguments of [6] based on CS-proofs, we
hope to have presented a more generic approach to arguing about such impossi-
bility results, thus also applicable in other contexts where systems have public
parameters or where an adversary can obtain side-information about secret pa-
rameters.

References

1. M. Bellare, A. Boldyreva, and A. Palacio. An un-instantiable random-oracle-model
scheme for a hybrid-encryption problem. ePrint archive:
http://eprint.iacr.org/2003/077/, 2003.

Indifferentiability, Impossibility Results on Reductions 39

2. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing
efficient protocols. In V. Ashby, editor, 1st ACM Conference on Computer and
Communications Security, pages 62–73. ACM Press, 1993.

3. M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign
with RSA and Rabin. In Advances in Cryptology — EUROCRYPT’96, volume
1070 of Lecture Notes in Computer Science, pages 399–416. Springer-Verlag, 1996.

4. R. Canetti. Security and composition of multi-party cryptographic protocols. Jour-
nal of Cryptology, 13(1):143–202, 2000.

5. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proc. 42nd IEEE Symposium on Foundations of Computer Science
(FOCS), pages 136–145, 2001.

6. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited.
In Proceedings of the 30th Annual ACM Symposium on the Theory of Computing,
pages 209–218. ACM Press, 1998.

7. R. Canetti, O. Goldreich, and S. Halevi. On the random-oracle methodology as
applied to length-restricted signature schemes. ePrint archive:
http://eprint.iacr.org/2003/150/, 2003.

8. A. Fiat and A. Shamir. How to prove yourself. Practical solutions to identification
and signature problems. In Advances in Cryptology — CRYPTO’86, volume 263
of Lecture Notes in Computer Science, pages 186–189. Springer-Verlag, 1986.

9. L. Guillou and J. Quisquater. A practical zero-knowledge protocol fitted to security
microprocessors minimizing both transmission and memory. In Advances in Cryp-
tology — EUROCRYPT’88, volume 330 of Lecture Notes in Computer Science,
pages 123–128. Springer-Verlag, 1988.

10. U. Maurer. Indistinguishability of random systems. In Advances in Cryptology
— EUROCRYPT ’02, volume 2332 of Lecture Notes in Computer Science, pages
110–132. Springer-Verlag, 2002.

11. S. Micali. CS proofs. In Proc. 35th Annual Symposium on Foundations of Computer
Science (FOCS), pages 436–453. IEEE, 1994.

12. J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In Advances in Cryptology - CRYPTO 2002,
volume 2442 of Lecture Notes in Computer Science, pages 111–126. Springer-
Verlag, 2002.

13. T. Okamoto. Provably secure and practical identification scheme and correspond-
ing signature scheme. In Advances in Cryptology — CRYPTO’92, volume 740 of
Lecture Notes in Computer Science, pages 31–53. Springer-Verlag, 1992.

14. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure
reactive systems. In 7th ACM Conference on Computer and Communications
Security, pages 245–254. ACM Press, 2000.

15. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its
application to secure message transmission. In IEEE Symposium on Security and
Privacy, pages 184–200. IEEE Computer Society Press, 2001.

16. D. Pointcheval and J. Stern. Security proofs for signature schemes. In Advances
in Cryptology — EUROCRYPT’96, volume 1070 of Lecture Notes in Computer
Science, pages 387–398. Springer-Verlag, 1996.

17. C. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

	Introduction
	Motivation: Cryptographic Security Proofs
	Random Oracles, Beacons, and Other Systems
	Indistinguishability and Indifferentiability
	Organization of the Paper

	A Motivating Example: A Simple Proof of the Impossibility of Implementing a Random Oracle
	Basic Definitions and Notation
	Interacting Systems
	A Notion of Efficiency for Systems
	Cryptosystems and Security

	Indifferentiability
	The Conventional Notion of Indistinguishability
	Generalization to Indifferentiability

	Reductions and Reducibility
	A Sufficient Criterion for Irreducibility
	Applications
	Random Oracles, Asynchronous Beacons, and Finite Random Strings
	Impossibility Results

	Conclusions

