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Abstract. In this paper we consider the problem of drawing and dis-
playing a series of related graphs, i.e., graphs that share all, or parts of
the same vertex set. We designed and implemented three different algo-
rithms for simultaneous graph drawing and three different visualization
schemes. The algorithms are based on a modification of the force-directed
algorithm that allows us to take into account vertex weights and edge
weights in order to achieve mental map preservation while obtaining in-
dividually readable drawings. The implementation is in Java and the
system can be downloaded at http://simg.cs.arizona.edu/|

1 Introduction

Consider the problem of drawing a series of graphs that share all, or parts of
the same vertex set. The graphs may represent different relations between the
same set of objects. For example, in social networks, graphs are often used to
represent different relations between the same set of entities. Alternatively, the
graphs may be the result of a single relation that changes through time. For
example, in software visualization, the inheritance graph in a Java program
changes as the program is being developed. Consider the graphs in Fig.[Il. There
are two simultaneously displayed graphs that represent two snapshots of a file
system structure rooted at the directory graphs/. The drawing conveys well
both underlying structures and it is easy to identify the changes between the
two snapshots.

In this paper, we attempt to address the following problem: Given a series
of graphs that share all, or parts of the same vertex set, what is a natural way
to layout and display them? The layout and display of the graphs are different
aspects of the problem, but also closely related, as a particular layout algorithm
is likely to be matched best with a specific visualization technique. As stated
above, however, the problem is too general and it is unlikely that one particular
layout algorithm will be best for all possible scenarios. Consider the case where
we only have a pair of graphs in the series, and the case where we have hundreds
of related graphs. The “best” way to layout and display the two series is likely
going to be different. Similarly, if the graphs in the sequence are very closely
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Fig. 1. Two snapshots of the file structure rooted at directory graphs/. Red vertices
and edges belong to earlier snapshot. Dark blue vertices belong to both snapshots.
Light blue vertices and edges belong to the later snapshot. The edges of later snapshot
are curved.

related or not related at all, different layout and display techniques may be
more appropriate. With this in mind, we consider several different algorithms
and visualization models.

For the layout of the graphs, there are two important criteria to consider:
the readability of the individual layouts and the mental map preservation in the
series of drawings. The readability of individual drawings depends on aesthetic
criteria such as display of symmetries, uniform edge lengths, and minimal num-
ber of crossings. Preservation of the mental map can be achieved by ensuring
that vertices that appear in consecutive graphs in the series, remain in the same
positions. These two criteria are often contradictory. If we individually layout
each graph, without regard to other graphs in the series, we may optimize read-
ability at the expense of mental map preservation. Conversely, if we fix the vertex
positions in all graphs, we are optimizing the mental map preservation but the
individual layouts may be far from readable.

For the visualization of the graphs there are numerous different possibilities.
We could draw each graph in the series in its own 2D plane, in order of appear-
ance, or we could show one graph at a time, and morph to the next one. If there
are only a small number of graphs in the sequence, we could display all of them
simultaneously, using different edge styles.
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Fig. 2. Layout and visualization: (a) aggregate; (b) merged; (c) split.

We designed and implemented three layout algorithms and three visualization
schemes; see Fig. 2l We summarize the layout algorithms below:

1. In the first layout algorithm we create an aggregate graph from the given
sequence of graphs. The aggregate graph is node-weighted and edge-weighted
and the node (edge) weight corresponds to the number of times a particular
node (edge) appears in the sequence. A modified force-directed approach is
used to layout the aggregate graph, taking into account the weights of the
nodes and the edges.

2. In the second layout algorithm, we create a merged graph. The merged graph
consists of all the graphs in the sequence, together with additional edges
connecting the same vertices in all graphs. A modified force-directed layout
is used to layout the merged graph by restricting each graph to its own 2D
plane.

3. The third layout algorithm is designed for a pair of related graphs G; and G»
but can be generalized to larger series of graphs. We use intelligent (rather
than random) placement of the vertices, based on graph distances, to inde-
pendently obtain initial drawings D; and D for the two graphs. Next the
placement of the vertices from D;(Ds) is used to “seed” an iteration of the
force-directed layout for G5(G1) and the process is repeated until the two
layouts converge.

The three visualization schemes closely correspond to the algorithms above.
However, different combinations of layout algorithms and visualization schemes
can also be used. We summarize the layout models below:

1. In the aggregate view model we use the aggregate graph to show all the graphs
in one combined drawing, using different edge(node) styles, to differentiate
between the different graphs.

2. In the merged view model we create a 3D drawing, in which each graph is
displayed in its own 2D plane, and the planes are arranged on top of each
other in the order that the graphs appear in the sequence.

3. In the split view model each graph is displayed in its own drawing window.
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2 Previous Work

Classical force-directed methods [915] for graph drawing use a random initial
embedding of the graph and treat the graph as a system of interacting physical
objects. Force-directed layout algorithms typically employ an energy function
that characterizes the state of the system. The minimization of suitably cho-
sen energy functions tends to produce aesthetically pleasing graph drawings.
Several variations of force-directed methods for edge-weighted graphs have been
proposed. In [7lT2] edge-weighted graphs are drawn so that the length of edges is
proportional to their weights. Similarly, layouts for vertex-weighted graphs have
also been considered in the context of focus-vertices that apply repulsive force
proportional to their weight, so that the neighborhoods of such vertices will not
be too cluttered [14].

In dynamic graph drawing the goal is to maintain a nice layout of a graph
that is modified via operations such as insert/delete edge and insert/delete ver-
tex. Techniques based on static layouts have been used [3II3[17]. North [I6]
studies the incremental graph drawing problem in the DynaDAG system. Bran-
des and Wagner adapt the force-directed model to dynamic graphs using a
Bayesian framework [2]. Diehl and Gorg [6] consider graphs in a sequence to
create smoother transitions. Brandes and Corman [I] present a system for vi-
sualizing network evolution in which each modification is shown in a separate
layer of 3D representation with vertices common to two layers represented as
columns connecting the layers. Thus, mental map preservation is achieved by
precomputing good locations for the vertices and fixing the position throughout
the layers.

Simultaneous planar graph embedding is a related problem that asks whether
there exist locations for the vertices of two different planar graphs such that
each of the graphs can be drawn with straight lines and no crossings. Recent
theoretical results 48] imply that simultaneous embeddings exist only for special
cases and relaxations of the problem (such as the one we address in this paper)
should be considered. Along these lines, Collberg et al [5] describe a graph-based
system for visualization of software evolution, which uses a modification of our
algorithm for visualization of large graphs [10], while preserving the mental map
by fixing the locations of all common vertices in the evolving graph.

3 Modified Force-Directed Method

We first review the basic force-directed graph layout algorithm and then describe
the modifications for node-weighted and edge-weighted graphs. The modified
force-directed algorithm is used in all three layout algorithms.

A standard force-directed layout algorithm begins with an initial random
placement of the vertices. Then it iteratively computes the effect of repulsive
and attractive forces on vertices and updates the temperature. The temperature
controls the scale of each iteration. At the beginning the temperature is high and
vertices move significant distances and with time, the temperature is decreased.
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The attractive and repulsive forces are respectively defined as, f,(d) = —x2/d
and f,(d) = d?/k, where d is the distance between two vertices. The repulsive
forces are calculated for each pair of vertices whereas the attractive forces are
calculated for pairs of vertices connected by an edge. The ideal distance between
vertices, K, is defined as k = C\/Aframe/n, where Af,ome is the area of the
frame, C' is a constant determining how the vertices fill the frame, and n is the
total number of vertices.

Given a series of graphs Gp,Go,...,Gy, we create one node-weighted and
edge-weighted aggregate graph Ga = (Va, Fa). A node v € V4 has weight w if
it appears in w of the graphs in the series. Similarly, an edge (u,v) € E4 has
weight proportional to the number of times edge (u, v) appears in the series. We
use the node and edge weights to modify the standard force-directed algorithm
as follows. If vertex v has large weight (it appears in many graphs) then it should
to be placed close to the center in the final layout. If an edge (u,v) has large
weight then the vertices u and v should be placed very close to each other in the
final layout. This is a simple heuristic, but it ensures that:

— persistent vertices remain close to the center of the layout, while fleeting
vertices appear and disappear on the periphery;

— vertices that are adjacent in many of the graphs in the series are placed close
together.

In order to handle the vertex weights we place a dummy vertex in the center of
the frame and ensure that it attracts all the other vertices in proportion to their
weights. We formulate this new central attraction force as, f.,(d) = d? x w/x,
where w is the weight of the vertex and d is its distance from the center. To
handle edge weights we scale the attractive forces by their edge weights and the
new formulation of the attractive forces becomes, f,(d) = d? x w./r, where w,
is the weight of the edge e.

4 Layout Algorithms and Visualization Schemes

Depending on mainly two factors, the number of graphs to be embedded simul-
taneously and how similar the individual graphs are, different layout methods
and visualization techniques arise. If there are not too many graphs to be em-
bedded and the graphs share a reasonably large common substructure, then a
layout method that embeds common vertices of each individual graph at exactly
the same locations and the common edges in a similar manner is preferable. In
terms of visualization, it might be more advantageous to view the graphs on
the same plane. However, if there are many graphs to be embedded, or if the
individual graphs do not share many common substructures, then more flexible
embeddings might be more visually appealing. In such cases, we do not insist
on exactly the same locations for shared vertices of different graphs but rather
try to locate them in close proximity, so that the mental map of the viewer is
somewhat preserved. Not insisting on the exact same location for same vertices,
allows for more freedom to draw each graph with higher readability. In terms of
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Fig. 3. Left: Individual layout of P; drawn with curved edges. Middle: Individual layout
of K7 drawn with straight-line segments. Right: Simultaneous embedding of P; and
K~ obtained from the aggregate layout method.

visualization, having each graph laid out on a separate 2D plane or morphing
between consecutive 3D drawings seems most suitable.

Based on these observations we describe three different layout methods: ag-
gregate graph layout, merged graph layout and independent iterations layout. Af-
ter describing each layout method, we present a matching visualization scheme
that seems most appropriate for it: aggregate view, merged view and split view.
While the three visualization schemes closely correspond to their matching al-
gorithms, different combinations of layout and visualization algorithms can also
be used.

In the aggregate graph layout method we begin by creating the node-
weighted and edge weighted graph G4 = (Va, E4) from the graph sequence,
G1,Ga,. .., Gy, as described in the previous section. We then apply the modified
force-directed layout algorithm to obtain a drawing for G4. From this drawing
we extract the drawings of each individual graph in the series. Thus, vertices and
edges that are present more than once in the series are in the same position in all
graphs that they appear in. This approach guarantees mental map preservation,
possibly at the expense of good readability. Yet, since the vertex/edge weights
are taken into account in the layout of the aggregate graph, the final layout will
be close to an individual layout of a graph proportional to the importance of
that one graph. In other words, if a graph G; has many vertices/edges that exist
in most of the graphs, then G; is an important graph and the resulting layout
will be similar to that of an independent layout of G;.

4.1 Aggregate Graph Layout

Fig.[3 shows the simultaneous layout of K7, the complete graph on seven vertices
and P7, the path with seven vertices. The edges that belong to the path are
drawn using curved and thick edges. Note that although an individual layout of
K7 would place one of the vertices in the middle, the simultaneous embedding
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with the aggregate layout method pushes that vertex out because of the presence
of the path. A summary of the aggregate graph layout algorithm is in Fig.
Aggregate View: The matching visualization scheme for the aggregate graph
layout is the aggregate view. In this scheme we only display a vertex once, even
though it may be in multiple graphs and we display all edges from all the graphs
in the sequence; see Fig. Bl The graphs can be displayed in 2D or 3D and we
employ different edge colors and edge styles to differentiate between the different
graphs. Displaying all graphs using a single vertex set allows the viewer to see
multiple graphs at the same time and view the difference in relationships more
easily. Different edge colors and edge styles are used to distinguish between the
relationships from each graph. For example in Fig. 8l the edges of one graph are
drawn with green straight line segments, whereas the other graph is drawn with
thicker curved edges in a different tone of green.

4.2 Merged Graph Layout

In contrast to the aggregate method, the merged graph layout method does
not guarantee perfect mental map preservation. The algorithm begins with the
creation of a merged graph G = (Vyy, Epr) from the given sequence of graphs
G1,Ga, ..., Gi. The merged graph is obtained by taking Gy, G, . .. G) and inter-
connecting all corresponding vertices with a special class of edges, Ej,¢.,. Thus,
if a vertex v appears m times in the sequences, there will be m copies of it in
G

The positions of corresponding vertices in each layout depend on how we
assign weights to the edges in F, .. The larger the weight of edges in F,,,, the
closer the corresponding vertices in each separate layout will be. An important
property of this layout method is the proximity of corresponding vertices in the
final layout. Let ui,us, ... u; be all the vertices corresponding to v in the merged
graph and vy,vs,...v,, be the ones corresponding to v. If j > m, then the u
vertices get placed closer to each other than the v vertices do in the final layout.
Once the merged graph has been created and the weights assigned, the modified
force-directed method is applied.

In our implementation we allow the user to interactively assign a weight
for the edges in Fy.,, so that the user has an overall control on the relative

Aggregate Graph Layout
1 Construct Ga = (Va, E4):
Va=ViuWVoUu...UVy, Ea=F,UFEU...UE})
2 Assign weights to each u € V4 and (u,v) € Ea:
w(u) = number of appearances of u in Vi, Va,..., V4
w(u,v) = number of appearances of (u,v) in E1, Ea,..., Ej
Use the modified force-directed layout algorithm on G4
4 Extract the layout of each G; from the layout of G4

w

Fig. 4. Aggregate Graph Layout. G1,Ga, ..., Gk are the input graphs.
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Fig. 5. Simultaneous embedding of K7 and P7 using the merged graph layout method.
The visualization is done in 3D using a separate plane for each graph.

distances of corresponding vertices in different layers. Thus, in effect, the user
has overall control over the extent of mental map preservation. Fig. [] illustrates
the simultaneous embedding resulting from the merged graph layout of K7 and
P;. Note that although the locations of the corresponding vertices might not be
the same, the mental map is still preserved since the relative locations of the
corresponding vertices remain the same. A summary of the merged graph layout
algorithm is in Fig.

Merged Graph Layout
1 Rename the vertices in Vi, Va, ..., Vi so that each vertex is unique
2 Construct Epew by connecting corresponding vertices in Vi, Vo, ..., Vi
3 Construct Gar = (Var, Em):
Vu=ViuVeU...UVy, Ey=FE1UFEU...UFE,UFEpew
4 Assign weights for the edges in Fpew
5  Apply the modified force-directed layout algorithm on G s

Fig. 6. Merged Graph Layout. G1, G2, ..., Gy are the input graphs.

Merged View: The matching visualization scheme for the merged graph layout
is the merged view. In this scheme each of the graphs is drawn on its separate
2D plane, and the planes are layered in 3D in the order of appearance; see Fig.
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At the same time, all the graph layouts are shown on the same screen and since
corresponding vertices from any two planes have the same approximate positions
on their planes, this model provides a clear mental mapping between the two
relationships represented by each graph.

This view model also allows the user to move and rotate the planes in 3D.
This feature is useful in case the user wants to see a particular graph in more
detail, in which case it is sufficient to rotate the view around a particular axis.
In addition, to enhance the user’s 3D view, the vertices are drawn as spheres
and the edges as cylindrical pipes.

4.3 Independent Iterations Layout

The two approaches defined above construct a global graph and extract indi-
vidual layout of each graph from this global layout. Our final layout method is
quite different and we describe it here for only two graphs.

The algorithm begins by creating independent layouts for the two graphs
G1 = (V1, Ey) and Gy = (Va, Es). The layouts are obtained using intelligent
(rather than random) placement of the vertices, based on the graph distance, as
described in [I1]. At this stage, we have the best drawings for each graph when
they are drawn independently. As a result we obtain two different point-sets, P;
and Py specifying the locations of the vertices in G; and Ga, respectively.

In the next step G; “borrows” the point-set P, of Gy and treats it as an
initial placement for the standard force-directed algorithm. Similarly, G5 uses
the point-set P; of Gy and uses it as an initial placement for the standard
force-directed algorithm. After applying force-directed iterations to both graphs
(again independently) we arrive at two new point-sets P; and Pj. We repeat the
process of point-set swapping and force-directed calculations until the resulting
point-sets converge to a given threshold minimum desirable distance between
them or until the number of iterations exceed a fixed constant.

Given a mapping between two point-sets, the distance between them can be
measured as the sum of Fuclidean distances between each pair of corresponding
points in the point-sets. This simple metric is not well-suited to our problem as
the following example shows: Assume layout [5 is just a 90° rotation of layout
l1. Even though the topology of the layouts is the same, calculating the distance
between [; and Iy as the sum of Euclidean distances between points would be
misleadingly high. To overcome this problem, we first align the two layouts as
best as possible using rigid 3D motion. In particular, we apply an affine linear
transformation on [y so that the layout of [; after the transformation, is as close
as possible to l5. The transformation consists of translation, rotation, scaling,
shearing and given a point p = (x,y) on the plane it can be defined as:

_ [ Cz1 Cy1 € Cx3
= +
w-(2) 0)+ (5)
We would like to find the function f(p), (i.e. all the constants ¢, etc.) that
minimizes the distance between the transformed layout of [; and Iy, which is
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Fig. 7. Simultaneous embedding of K7 and P; using independent iterations layout
method and split view model for visualization.

Independent Iterations Layout
1 Using independent intelligent placement obtain layouts l1 and l2 for G; and G2
2 Apply a linear transformation on [ to align it to ls
3 Let mindist = dist(l1,1l2) and bestly = Iy, bestly = la
4 Repeat until (mindist < threshold) or (iterationcount > mazxiterationcount):
4.1 Apply layout algorithm on G to get l;/ using I for initial placement
4.2 Apply layout algorithm on G to get I/ using I for initial placement
4.3 Apply a linear transformation to align l; to l2
4.4 1f dist(ly/,lor) < mindist
mindist = dist(ly/, 1)
bestly = lqr, bestly = 1o/
4.5 11 = lyr, la = lor, iterationcount ++

Fig. 8. Independent Iterations Layout. G1 and G2 are the input graphs

then equivalent to minimizing >_ ., dist(f(p),p’), where p’ is the point in I
corresponding to p and dist(f(p),p’) is the Euclidean distance between f(p)
and p’. Then the minimization can easily be achieved by taking the derivative
with respect to c,; and solving for the resulting linear equations. Fig. [7] shows
the simultaneous embedding of K7 and P; resulting from independent iterations
layout using the split view, described below. Note that the resulting layout for
each graph is not the same as an individual layout for that graph. Instead,
the independent iterations layout is a compromise between the two individual
layouts. A summary of the layout algorithm is in Fig.

The algorithm is well defined for two graphs but can be extended to handle
more graphs. The point-set swapping can be extended to swapping the point-sets
of neighboring graphs in the sequence and the distance measure between a pair
of layouts can be extended to measure distances between multiple point-sets.
Currently our implementation works for pairs of graphs only.
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Fig. 9. A pair of graphs representing file system snapshots. The images on top show a
split view and the images on the bottom show a merged view.
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Split View: The two graphs are drawn separately in their own windows in 2-
dimensions and both windows are on the same screen; see Fig.[7l The view model
can be generalized to handle many graphs, in which case the screen would be
split into many individual panes. Still, as the number of graphs to be visualized
increases, the user’s ability to read the relations between them greatly decreases
in this case which makes the model more suitable for visualization of small
number of graphs.

5 Implementation

We have implemented our layout methods and visualization schemes using Java
and the system can be downloaded at http://simg.cs.arizona.edu/| In ad-
dition to the three layout methods and three visualization schemes, the system
provides various capabilities such as graph editing, building some common classes
of graphs (complete graphs, trees, paths), building random graphs, etc. Graphs
in GML format can be loaded and stored. All images in the paper (except that
in Fig. @) are from our system. In Fig. [d we show more layouts obtained with
our system.
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