
Layout of Directed Hypergraphs with
Orthogonal Hyperedges

(Extended Abstract)�

Georg Sander

ILOG Deutschland GmbH, Ober-Eschbacher Str. 109,
61352 Bad Homburg, Germany

sander@ilog.fr

Abstract. We present a layout algorithm for directed hypergraphs. A
hypergraph contains hyperedges that have multiple source and target
nodes. Hyperedges are drawn with orthogonal segments. Nodes are or-
ganized in layers, so that for the majority of hyperedges the source nodes
are placed in a higher layer than the target nodes, similar to traditional
hierarchical layout [8,11]. The algorithm was implemented using ILOG
JViews[10] for a project that targeted electrical signal visualization.

1 Introduction

While classical graphs deal with edges between pairs of nodes (or vertices), a
hypergraph deals with hyperedges between more than two nodes. In mathemat-
ical terms, a directed hypergraph G = (N, E) contains a set N of nodes and a
set E ⊆ P(N) × P(N) of hyperedges. A hyperedge e = (S, T ) has source nodes
S ⊆ N and target nodes T ⊆ N .

In the literature, various drawing strategies are described for undirected hy-
pergraphs [5,6,7]. To lay out directed hyperedges, some graph drawing tools use
traditional polyline graph layout techniques applied on regular edges, and sim-
ulate the hyperedge by overlapping the start line segments of all regular edges
that represent the hyperedge [9,10]. A disadvantage of this approach is that the
paths of the simulated hyperedge branches out very early, so that the hyperedge
drawings are unnecessary complex. We show in this article a better solution.

In a project for the automobile industry, we developed a display tool for
schematics of automotive communication networks. To show different views to
such a communication network and to show different levels of details we provided
three different layout algorithms. This paper sketches the foundations of one of
these algorithms which draws so-called function net diagrams of a communica-
tion network. The nodes in a function net diagram represent control units for,
e.g., outside mirrors, turn signals, automatic break assistants, or horns. Connec-
tions between the nodes represent electric signals that are emitted from a single
� The full article is available via ftp://ftp.ilog.fr/private/ILOG.de/rnd/gsander/
public/hypergraph.ps.gz

G. Liotta (Ed.): GD 2003, LNCS 2912, pp. 381–386, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



382 G. Sander

Fig. 1. Hypergraph with orth. hyperedges (left: schematic, right: real world diagram)

function and are received by one or several other functions. For example, a signal
containing distance information is submitted to a park distance control unit.

An electrical signal is essentially a single source hyperedge: it starts at the
electrical component that produces the signal, and it ends at all components that
need the signal as input. The drawing conventions for these diagrams include
that the hyperedge is drawn by a set of orthogonal line segments so that there is
a path along the segments from the source node to each target node. Each path
towards one target node should share many segments with the paths to the other
target nodes. (Fig. 1). The customer requirements include that the components
(nodes) are organized in horizontal layers. Additional goals are to balance the
diagram and to avoid unnecessary crossings, segment overlaps and bends.

The traditional hierarchical layout [8,11] has similar layout objectives; how-
ever, it is designed for classical graphs and does not work for hypergraphs. In
the following, we assume that the reader is already familiar with the details of
traditional hierarchical layout. We sketch the new additions that are necessary
to convert the traditional hierarchical layout into an algorithm suitable for hy-
pergraphs. Even though the project used single source hyperedges, our algorithm
can be applied to general directed hyperedges as well.

2 Grid Representation

The first goal is to position the nodes on a preliminary two-dimensional grid.
Each node consumes one grid cell, i.e., it obtains an integer grid coordinate (i, j)
where i is the column number and j is the row number of the grid. The grid
representation easily allows the routing of long hyperedge segments that span
several columns or several rows without bends because the nodes are aligned
to the grid cells so that there is free space between rows and columns (Fig.
2). In order to produce a more balanced drawing, the layout will dissolve the
preliminary grid in a later step.

Traditional hierarchical layout deals with layers, which corresponds to rows
in this grid. For each hyperedge, all source nodes should be in a higher layer



Layout of Directed Hypergraphs with Orthogonal Hyperedges 383

Fig. 2. Grid representation of the hypergraph

Fig. 3. Left: hypergraph with 1 hyperedge, mid: layering graph, right: cross.red.graph

than all target nodes (source-target condition). Therefore, we translate the hy-
pergraph into a layering graph. Besides hypergraph nodes, each hyperedge e has
a representative node ne in the layering graph. For each hyperedge e, regular
edges are added to the layering graph from the source nodes to ne and from ne to
the target nodes (Fig. 3 middle). The layering graph is an appropriate represen-
tation of the source-target relationship of the hyperedges. If the layering graph
is cyclic, then some hyperedges must violate the source-target condition. Since
the layering graph is a regular graph, we use the standard heuristic to make
the graph acyclic and to calculate a ranking of the nodes [1]. From the ranking,
the layer number (row number) can be obtained by eliminating all ranks that
contain only hyperedge nodes ne but no regular nodes.

In order to calculate the column number, we need an appropriate relative
ordering of the nodes within the layers. This can be considered as preliminary
crossing reduction, because a good ordering ensures that later a routing with
only few crossings is possible. Each hyperedge that spans several layers must
have a backbone segment from which the segments can branch out that connect
the end nodes. We translate the hypergraph into a crossing reduction graph
(Fig. 3 right). The crossing reduction graph differs from the layering graph in
the representation of the hyperedges:

– We duplicate the number of layers: each node at layer j corresponds to a
node at layer 2j in the crossing reduction graph. The odd layer numbers are
reserved for nodes representing hyperedges.

– The backbone segment of a hyperedge is represented by a chain of nodes in
the crossing reduction graph that spans from jmin + 1 to jmax − 1, where



384 G. Sander

jmin and jmax is the minimal and maximal layer number of an end node of
the hyperedge in the crossing reduction graph. All nodes of the chain are
sequentially connected by regular edges in the crossing reduction graph.

– Each source node n of the hyperedge at layer j is connected by a regular
edge to the node of the backbone segment chain at layer j + 1.

– Each target node of the hyperedge at layer j is connected to the node of the
backbone segment chain at layer j − 1.

The crossing reduction graph is a proper hierarchy, hence the standard tech-
niques [8] for crossing reduction in hierarchical layout can be applied to obtain
the relative ordering of nodes within levels.

3 Creating the Hyperedge Segments

Once all nodes have integer row and column coordinates, we create the hyperedge
segments so that they run between the node grid coordinates. All horizontal
segments that must be placed in the free space between row j and j + 1 get the
preliminary coordinate j + 0.5, and similarly with the vertical segments.

For each hyperedge, first the vertical backbone segment is created, and then
the horizontal segments that run between the rows are connected as needed
to the backbone segment. For each hyperedge, only maximally one horizontal
row segment per row is needed. Finally, the row segments are connected to
the source and target nodes of the hyperedge via vertical end segments. The
preliminary coordinate assignment for all segments is straight forward, except
for the backbone segment. We use a heuristic for the preliminary coordinate
of the backbone segment. The heuristic has the goal to reduce the number of
segment crossings. The full article illustrates the details. As result, all hyperedge
segments are created, but segments of different hyperedges may overlap, since
only segment coordinates 0.5, 1.5, 2.5, etc, are used.

4 Disentangling Segment Coordinates

To resolve the segment overlaps, all segments that run between the same grid
row or grid column are collected. For instance, all horizontal segments at coor-
dinate k + 0.5 are collected in a set SH

k . The goal is to spread them to different
coordinates between k and k + 1. The distribution of the segments influences
the number of segment crossings (Fig. 4). A simple yet efficient solution of the
problem based on sifting is illustrated in [3]. We sketch here quickly a different,
more sophisticated solution: To minimize the number of crossings, we generate
the segment crossing graph for SH

k . Each segment of SH
k corresponds to a node in

the segment crossing graph. For each pair of segments s1, s2 ∈ SH
k , we calculate

the number of crossings C1 if s1 has a lower coordinate than s2, and C2 if s2 has
a lower coordinate than s1, If C1 < C2, we add an edge between s1 and s2 with
cost C2 − C1, otherwise we add an edge between s2 and s1 with cost C1 − C2.

If the segment crossing graph is acyclic, the segment crossing graph can be
sorted topologically. If the final segment coordinates respect this topological



Layout of Directed Hypergraphs with Orthogonal Hyperedges 385

Fig. 4. Two distributions of the same segments. Left: 2 crossing, right: 5 crossings

ordering, then the number of crossings is minimal and no segments overlap.
However, usually, the segment crossing graph contains cycles. In this case, some
edges must be removed from the segment crossing graph to break the cycles,
using one of the standard techniques for this problem [1].

Finally, we calculate a ranking of the segments from the acyclic segment
crossing graph. Segments of SH

k with rank r ∈ {1, . . . , rmax} get the coordinate
k + r/(rmax + 1), hence are spread between k and k + 1. After this step is done
for all sets SH

k of horizontal segments, the same step is done for all sets SV
k of

vertical segments.

5 Balancing

Nodes aligned to a grid waste space. Furthermore, the layout is not yet well
balanced, because the column numbers of the nodes were calculated from the
ordering of the nodes in the crossing reduction graph, and the crossing reduc-
tion graph does not take any balance criteria into account. The requirements
of the application included that the nodes are organized in layers but not on
a grid. Hence we dissolve the grid now. We keep the rows (layers) but remove
the columns, by allowing the nodes to be shifted within the layers to any non-
integer coordinate. The balancing rules require for instance that a source node
is centered above the target nodes (Fig. 5).

Fig. 5. Left: unbalanced situation. Right: source node is balanced.

In [8], we introduced the pendulum method to balance a traditional hierar-
chical layout. This method is extended for hypergraphs. The central question
of the method is how far a node or segment can be shifted without overlap-
ping the neighbored objects. In a classical, layered graph, this question is trivial
to answer. In a hypergraph, it is more difficult, because long vertical segments
may be influenced by nodes on different levels. Therefore, a visibility graph [2]
is constructed. Edges in the visibility graph indicate the neighbor relationship



386 G. Sander

between nodes and segments. The modification of the pendulum method with
the visibility graph is described in the full article.

6 Conclusion and Acknowledgment

A variant of the layout algorithm was implemented by using the ILOG JViews
Component Suite in Java [10]. As with the traditional hierarchical layout, many
subproblems of the hypergraph layout are NP complete [4], and heuristics are
used. The layout speed is sufficient, however it is slightly slower than traditional
hierarchical layout, due to the fact that the treatment of hyperedges is more
complex than the treatment of regular edges.

The layout algorithm was developed in a project funded by BMW. We thank
the project team at ILOG: F. Baumann, X. Loiseau, C. Sirvain, F. Stork, and
J.P. Vandara. Furthermore the close collaboration with Mr. Schumm and Dr.
Schuller (both BMW) is appreciated.

References

1. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing. Prentice-
Hall, Inc., New Jersey, 1999.

2. G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic
digraphs. Theoret. Comput. Sci., 61:175–198, 1988.

3. T. Eschbach, W. Günther, and B. Becker. Crossing reduction for orthogonal circuit
visualization. In Proc. International Conference on VLSI, Las Vegas, pages 107–
113. CSREA Press, 2003.

4. M. R. Garey and D. S. Johnson. Computers and intractability: A guide through
the theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.

5. H. Gropp. The drawing of configurations. In Proc. Symposium on Graph Drawing,
GD’95, pages 267–276. Springer, LNCS 1027, 1996.

6. D. S. Johnson and H. Pollak. Hypergraph planarity and the complexity of drawing
venn diagrams. Journal of Graph Theory, 11(3):309–325, 1987.

7. E. Mäkinen. How to draw a hypergraph. International Journal of Computer
Mathematics, 34:177–185, 1990.

8. G. Sander. Graph layout through the VCG tool. In Proc. DIMACS International
Workshop on Graph Drawing, GD’94, pages 194–205. Springer, LNCS 894, 1995.

9. G. Sander. A fast heuristic for hierarchical Manhattan layout. In Proc. Symposium
on Graph Drawing, GD’95, pages 447–458. Springer, LNCS 1027, 1996.

10. G. Sander and A. Vasiliu. The ILOG JViews graph layout module. In Proc.
Symposium on Graph Drawing, GD 2001, pages 438–439. Springer, LNCS 2265,
2002.

11. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of
hierarchical systems. IEEE Trans. Sys. Man, and Cybernetics, SMC 11(2):109–
125, 1981.


	Introduction
	Grid Representation
	Creating the Hyperedge Segments
	Disentangling Segment Coordinates
	Balancing
	Conclusion and Acknowledgment



