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Abstract. We present an extensive experimental study of heuristics for
crossing minimization. The heuristics are based on the planarization ap-
proach, so far the most successful framework for crossing minimization.
We study the effects of various methods for computing a maximal pla-
nar subgraph and for edge re-insertion including post-processing and
randomization.

1 Introduction

The crossing minimization problem is one of the crucial problems in graph draw-
ing (see, e.g., [22]). Here, the task is to find a drawing of a graph in the plane
with the minimum number of crossings. The crossing number represents a fun-
damental measure of non-planarity of graphs and has been studied for more
than 40 years by graph theorists. The algorithmical problem of computing the
crossing number has also been studied in the context of VLSI-layout. So far, only
a few infinite classes of graphs exist, for which the crossing number is known.
We do not even know the asymptotic value for the complete graph K, with n
vertices and for the complete bipartite graph K, , with 2n vertices, as n tends
to infinity [23].

We do know, however, that the crossing number problem and several of
its variants are NP-hard [133]. While many other prominent NP-hard prob-
lems have been successfully attacked with integer programming and branch-and-
bound techniques, no similar approach to the crossing number problem is known
to date. To our knowledge, no exact algorithm exists that is able to solve even
small instances of the crossing number problem to provable optimality within
reasonable computation time. For graphs with bounded degrees, Even et al. [§]
have recently suggested an approximation algorithm in which the sum of the
numbers of vertices and crossings is O(log® |[V|) times the minimum sum thus
improving the results of O(log® |V|) by Bhatt and Leighton [2] and Leighton and
Rao [I7]. Grohe [9] has given an exact algorithm that works in quadratic time if
the crossing number is fixed. Both algorithms are rather of theoretical nature and
have so far not been useful for solving practical instances. Much easier to tackle
is the bipartite crossing number, for which a vast amount of experimental pa-
pers exist in the literature (see, e.g., [16/7]). Experimental papers in other fields
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include, e.g., a collection of experimental studies in graph drawing by Vismara
et al. and the paper by Brandenburg et al. on force-directed methods [4].
The only experimental state-of-the-art study — to our knowledge — concerning
crossings for general graphs has been published in [6]. It includes four different
algorithms for orthogonal graph drawing on the benchmark set described above.
Two of these algorithms were based on the topology-shape-metrics approach,
and the others are incremental algorithms that focus on a small area and a small
number of bends. The results show that the former two algorithms are superior
in terms of the criteria number of crossings, number of bends, area, and edge
length. E.g., the best algorithm had up to 8 times fewer crossings. Therefore, we
decided to solve the crossing minimization problem heuristically using a 2-step
planarization approach, which we will discuss in Section [3} There, we will also
describe our strategies (some of them are new) for crossing reduction. Section
contains a discussion of our extensive experimental results. Our paper ends with
a section on conclusions (see Section [l). Before we can start the technical part of
the paper, we need to introduce some basic mathematical terms (see Section ).

2 Preliminaries

In a drawing of a graph G = (V, E) each vertex v € V is mapped to a distinct
point p, in the plane and each edge (u,v) € E is mapped to a closed simple
curve that connects the points p,, and p, and does not pass through the image
of any other vertex. If two curves share an interior point p, we say that they
cross at p. The crossing number ¢r(G) is the minimal number of crossings in
any drawing of GG. The crossing number problem is the problem of finding the
crossing number for a given graph G.

The graphs that can be drawn without any edge crossings are called planar
graphs. A planar drawing of a graph divides the plane into regions called faces.
Every drawing defines a planar and a combinatorial embedding of the graph G.
Such an embedding essentially fixes the topology of the graph. A combinatorial
embedding is defined as a clockwise ordered list of adjacent neighbors for each
vertex v € V. When, in addition, the outer face is fixed, the combinatorial
embedding is also called a planar embedding of G. An alternative definition of
a combinatorial embedding is for each face f an anti-clockwise ordered list of
the edges bordering f. Given a planar graph, a combinatorial embedding can be
computed in linear time [5T9]. In general, a planar graph can have an exponential
number of combinatorial embeddings. In the following section, we will use the
name embedding for planar or combinatorial embedding.

3 The Planarization Approach

In practice, the crossing minimization problem is solved heuristically using a
2-step planarization approach. In a first step, a small number of edges is deleted
from G = (V,E) in order to obtain a planar graph P. In a second step, the
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edges are re-inserted into the planar graph P while trying to keep the number
of crossings small.

3.1 Methods for Computing the Planar Subgraph

For the first step, we need to solve the so-called mazimum planar subgraph prob-
lem, which has been shown to be NP-hard [I8]. If the number of edges to be
deleted is small, the exact branch-and-cut algorithm suggested in [I5] is able
to provide a provably optimal solution quite fast. However, the method is quite
complicated to understand and to implement: Moreover, if the number of deleted
edges exceeds 10, the algorithm usually needs far too long to be acceptable for
practical computation. Since we are interested in approaches for practitioners,
we did not involve this exact method into our studies. Interested readers are
refered to the study of Ziegler [25] concerning the number of deleted edges in
the Rome library benchmark set.

A widely used standard heuristic for finding a maximal planar subgraph
is to start with the empty graph, and to iteratively try to add the edges one
by one. In every step, a planarity testing algorithm is called for the obtained
graph. If the addition of an edge would lead to a non-planar graph, then the
edge is disregarded; otherwise, the edge is added permanently to the planar
graph obtained so far. After |F| iterations (planarity tests), we have obtained a
maximal planar subgraph P of G, i.e., a subgraph of G which will get non-planar
as soon as any of the edges in G — P will be added. We will denote this method
as MAXIMAL. The standard (and also our) implementation needs a running
time of O(|E||V|). Theoretically, this can be improved to nearly linear running
time using so-called online-planarity testing algorithms (e.g., [1I21]), but we are
not aware of any correct implementation.

An alternative to this method is to use the planarization algorithm based on
PQ-trees suggested in [I2J14]. Observe, that this method cannot guarantee to
derive a maximal planar subgraph. The theoretical worst case running time is
O(|V']?). In practice it is much faster.

The quality of the results can be improved by introducing random events and
calling them several times. The PQ-tree based algorithm starts by computing a
so-called st-numbering. Our random event was simply to choose a random edge
of E in order to get s and ¢t. We studied the effects of up to 100 calls. We denote
these methods as PQ1, PQ10, PQ50, and PQ100 for 1, 10, 50, and 100 iterations.

3.2 Edge Re-insertion Strategies

Fixed Embedding. Also the edge re-insertion step is a NP-hard optimiza-
tion problem [25]. The standard algorithm used in practice re-inserts the edges
e1,ea,..., e iteratively starting with a given planar embedding of G. The ap-
proach is based on the observation that an edge e; crosses an edge in P if and
only if it uses an edge in the geometric dual graph of P. Hence, the problem of re-
inserting only one edge into P with a given planar embedding can be solved via
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a simple shortest-path computation in the extended dual graph of P. (We need
to extend the dual graph in order to connect the end-vertices of e; with the dual
graph.) After each insertion step 4, the crossings generated by edge e; are substi-
tuted by artificial vertices so that the resulting graph G U {ey,...,e;} becomes
planar again (i = 1,..., k). The theoretical worst case running time for inserting
k edges of our implementation is O(Zf:1(|V| + Z;;E ¢;)) = Ok(|V|+|C))),
where ¢; is the number of crossings introduced in step j, ¢ = 0, and C the
number of crossings in the final drawing. In practice, it is much faster, since the
update of the dual graphs are implemented efficiently. We denote this re-insertion
method as FIX.

Variable Embedding. However, the quality of the resulting drawing highly
depends on the chosen embedding for P. In [11], Gutwenger et al. have given a
linear time algorithm based on the SPQR-tree data structure for inserting one
edge into a planar graph P so that the number of crossings in PU{e} over the set
of all possible planar embeddings of P is minimized. Our implementation has the
same theoretical running time as the variant FIX. We denote this re-insertion
method as VAR.

Constrained Crossing Minimization. Obviously, re-insertion of all edges
at the same time will improve the solution. However, no practically efficient
algorithm is known. The constrained crossing minimization problem asks for the
minimum number of crossings obtained by a set of edges F' when inserted into
a planar graph P, while the embedding of P is not changed. The problem has
been investigated in [20025]. Experiments show that it can only be solved to
provable optimality if there are less than 10 re-inserted edges — and even then,
the running time is relatively high. Therefore, we did not include this method
into our experiments.

Post-Processing Strategies. The idea of the post-processing strategies is to it-
eratively delete an edge from the drawing and to re-insert it again. Our strategies
vary in the set and/or number of edges involved in the deletion and re-insertion
process, and the order of processing them.

The variant INS involves exactly those edges which have been deleted already
in the planar subgraph step, whereas the variants ALL and MOST involve the
whole set of edges E in the original graph G. An iteration takes either the
whole set (in variant INS and ALL) or 2% of this edges (variant MOST 2%)
iteratively (one after the other). The procedure stops only if within one iteration
no improvement has been made. How do we choose the edges in variant MOST
x%? After each iteration, we sort the involved edge set in descending order
according to the number of crossings they are involved in. Now, only the first
2% edges of this list are taken for re-insertion. The variant in which there is no
post-processing routine is called NONE.

The post-processing procedure can be implemented efficiently by updating
the dual graph only at those regions, in which changes did occur. We did this for
our FIX strategy. In principal, such an update is also possible for the VARIABLE
embedding setting [I]. However, we are not aware of any implementation of this
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algorithm. This explains the big running time discrepancy in the post-processing
procedure between the FIXED and VARIABLE embedding setting.

Permutations. After a whole deletion and re-insertion process of the cho-
sen strategy for embedding FIX/VAR and a strategy for post-processing
NONE/INS/ ALL/MOST, we get a certain crossing number. Our permutation
variant does nothing else, but repeating the whole edge re-insertion process and
keeping the best results. The random effect exists in choosing a different ordering
of the edges in G — P for the initial re-insertion step. The notation PERM: gives
the number of these repetition rounds. We have experimented with PERMI,
PERM2, PERM10, and PERM20.

4 Experimental Results

For our computational experiments, we have used our new graph drawing li-
brary which is the basis of the GoVisual layout tools [10]. Our computational
experiments ran on a PC with Pentium 4, 2.4 GHz, 512 MB RAM, under
MS Windows 2000, and our C++4-code has been compiled with MS Visual
C++.NET (Visual C++ 7). We used the benchmark set which is commonly
known as the Rome library. It contains 11.528 graph with 10 to 100 ver-
tices, and has been generated from a core set of 112 graphs used in real-life
software engineering and database applications. The library is available via
http://www.dia.uniroma3.it/people/gdb/ wpl2/undirected-1.tar.gz.

4.1 Results of the Planar Subgraph Computations

In our first experiments, we measured the average number of deleted edges of the
five strategies for computing a planar subgraph for each group with vertex size
i, 1 = 10,...,100, separately. The results improve significantly as the number of
permutations increases. While the number of deleted edges went up to 19 (on
average) for PQ1, it was about 16 for PQ10, and 15 for PQ50 and PQ100. Tt
seems that it really pays off to run the planar subgraph algorithm many times.
However, the results for 50 and 100 permutations are very close to each other.
This effect comes from the random effect chosen for our implementation (see Sec-
tion [30]). By choosing other randomization techniques, this effect may occur at
a higher number of permutations. Since the running time of our implementation
is relatively small, it seems that taking 100 iterations of the PQ-based algorithm
(PQ100) is a good choice. The running time for PQ1 was below 0.002 seconds,
while the time for MAXIMAL increased to 0.022 seconds at 100 vertices. The
time for PQ100 was about 0.34 seconds for instances with 100 vertices.

4.2 Results for the Edge Re-insertion Step

FIX vs. VAR. Figure [ shows the number of crossings generated with the
variants PQ1 vs. PQ100 and FIX vs. VAR. The VAR strategy seems to get

! originally, it were 11,582 graphs, but some of the files are corrupted
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better results than the FIX strategy. This effect is outperformed, however, by
starting with a better planar subgraph for edge re-insertion (i.e., taking PQ100
instead PQ1). Because of this, we decided to stay with PQ100 for our further
experiments.

65 T T T T T T T T
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55
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45
40+
35
30
25

20

PQ1-FIX-NONE-PERM1 —+—
PQ100-FIX-NONE-PERM1 —=— |
PQ1-VAR-NONE-PERM1 —%—

PQ]OO—VAR—N(‘)NE—PERMJ —e—

10 20 30 40 50 60 70 80 920 100

Fig. 1. The effect of the edge re-insertion strategies FIX and VAR.

On the instances with 100 vertices we get 60.32 crossings on average. This is
about the same number which was also reported in the study by Di Battista et
al. [6]. By computing a better planar subgraph the number of crossings reduces
from 60.32 to 46.97 (about 22% improvement). This number can further be
reduced to 42.37 by choosing the best embedding for each inserted edge. This is
already an improvement of about 30%.

For the remaining Figures, we decided to show the relative improvement of
the variants acording to the standard method PQ1-FIX-NONE-PERM1, which
was also used in [6].

Post-Processing. Figure 2] shows the effect of the post processing variants
for the VAR strategy. Taking the inserted edges as candidates for re-insertion
is already much better than the NONE strategy (no post-processing at all).
However, the results can be improved a lot more by taking the whole set of
edges into account. We observe that already taking into account 25% of the edges
gives similar results to the options MOST100 and ALL. ALL, MOST100, and
MOST25 improve the number of crossings up to 46.11% (corresponds to 32.5
crossings at 100 vertices) compared to the standard method. For the FIXED
strategy, the picture looks very similar. Here, the improvement coming from
post-processing in comparison to NONE is a little bit better.

We also measured the running times of the post processing variants. Strate-
gies INS and MOST10 have about the same running time (up to 0.18 seconds),
which is up to a factor of 2.5 slower than the NONE variant. MOST25 needs
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PQ100-VAR-NONE-PERM1 —+—
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Fig. 2. The effect of the post processing variants compared to the standard method.

up to 0.35 seconds. Not surprisingly, MOST100 and ALL have a similar running
time (up to 0.53 seconds), and are the slowest variants. For the FIX strategy,
the running time of all versions is about the same. The time for variant PQ100-
FIX-MOST100-PERM1 is only 0.01 seconds larger than the time for variant
PQ100-FIX-NONE-PERM1. This comes from the efficient update operations
mentioned in Section B2

Permutations. Figure [ shows the effect of the permutation variants for FIX.
As expected, the results improve with a higher permutation number. However, we
observe that the post-processing effects are stronger than the PERM20 effects:
all four strategies PQ100-FIX-MOST100-PERM: lead to much better results
(between 41.77% and 50.25% improvement at 100 vertex instances) than the
four strategies PQ100-FIX-NONE-PERM: (i = 1,2,10,20) (between 22.12%
and 32.36%).

Obviously, the running time increases a lot: PERM20 needs about 20 times
the running time of PERM1 (since the edge re-insertion step dominates the
procedure). For VAR, the situation is similar. The only difference is that the
upper three curves are closer to the others.

PQ1 vs. PQ100. Finally, we have tested the effects of the maximal planar sub-
graphs heuristics PQ1 and PQ100 again for the best edge re-insertion strategies.
Figure @lshows that PQ100-FIX-ALL-PERMZ20 gives an improvement of 49.55%
compared to the standard method, whereas PQ1-FIX-ALL-PERM20 gives an
improvement of 47.22%. The running times for both variants are about the
same. Interestingly, this is not true for the strategies PQ100-VAR-ALL-PERM1
and PQI1-VAR-ALL-PERMI1. Due to the better planar subgraph achieved with
PQ100-VAR-ALL-PERMI1, the running times differ by 0,21 seconds at the in-
stances with 100 vertices (0.48 compared to 0.69). Surprisingly, the PQ100 strat-
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Fig. 3. The effect of the PERM variants.
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Fig. 4. The relative effect of the maximal planar subgraph variants.

egy is faster than the PQ1 strategy. The relative improvements in the number
of crossings are 45.15% and 41.03%, respectively.

Conclusions. We have run all possible experiments with strategies FIX and
VAR, the different post-processing strategies NONE and ALL, and the permu-
tation numbers 1 and 10. Figure [ shows the results for these eight strategies.
The best results gives PQ100-VAR-ALL-PERM10 (51.63% improvement at 100
vertex instances corresponding to 29.18 crossings) followed by PQ100-FIX-ALL-
PERMI10 (48.42% corresponding to 31.11 crossings). The three strategies us-
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Fig. 6. The running times for the results displayed in Figure Bl

ing post-processing ALL are the four winners in this Figure. Interestingly, the
best method without any post-processing, PQ100-VAR-NONE-PERM10, is in
competition with the strategy PQ100-FIX-ALL-PERM1 (with up to 45% im-
provement). This means that, in order to be competitive with post-processing,
10 permutations are not enough. Additional help is needed, here in form of the
strategy VAR compared to FIX.

Figurel@l shows the running times for the results displayed in Figure[d We ob-
serve that the running time of PQ100-VAR-NONE-PERM10 is much slower than
the running time of PQ100-FIX-ALL-PERM1. Hence PQ100-FIX-ALL-PERM1
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is the clear winner among these two strategies. The best strategy displayed in
Figure [6, PQ100-VAR-ALL-PERM10, has the highest running time. Interest-
ingly, the second best strategy, PQ100-FIX-ALL-PERM10, has the fifth best
running time (up to 0,14 seconds).

Table 1. The ranking list of the best heuristics.

Rank | Crossings | Time (sec)| MPS |FIX / VAR| POST |PERM
1 28.56 8.778 PQ100 VAR ALL |PERM20
2 28.61 8.563  |PQ100 VAR MOST100/PERM20
3 28.66 5.902 PQ100 VAR MOST25 [PERM20
4 29.09 4.359  |PQ100 VAR MOST100/PERM10
5 29.35 3.060 |PQ100 VAR MOST25 [PERM10
6 30.01 0.259 PQ100 FIX MOST100|PERM20
7 30.43 0.258 PQ100 FIX ALL |PERM20
8 30.62 0.130 |PQ100 FIX MOST100/PERM10
9 31.11 0.128 PQ100 FIX ALL |PERMI10
10 31.64 0.112 PQ100 FIX MOST25 [PERM10
11 33.16 0.054 PQ100 FIX MOST100|PERM2
12 33.29 0.053 PQ100 FIX ALL |PERM2
13 34.14 0.050 PQ100 FIX MOST25 [PERM2
14 35.12 0.046 PQ100 FIX MOST100/PERM1
15 35.29 0.045 PQ100 FIX ALL |PERMI1
16 36.09 0.043 PQ100 FIX MOST25 |[PERM1
17 38.93 0.040 |PQ100 FIX MOST10 [PERM1
18 46.98 0.036 PQ100 FIX NONE |PERMI1
19 60.32 0.002 PQ1 FIX NONE |PERM1

Table[dlshows a ranking list of the best obtained results in the following sense:
We have sorted all strategies according to their average crossing number achieved
at the instances with 100 vertices. Running through this list, we deleted all those
strategies, which have obtained worse crossing number and worse running time
than another strategy on the list. It is interesting that the best five strategies
are based on VAR, and all of the remaining strategies in our ranking list are
based on FIX. This stems from the fact, that from a certain point on, the VAR
strategy takes much more time than the FIX strategy. E.g., the strategy PQ100-
VAR-ALL-PERM1 has been eliminated from the table through PQ100-FIX-
MOST100-PERM20. It seems that the effect coming from the permutations is
stronger than the positive VAR effect, at least until a certain point.

Figure [ shows a selection of the best obtained results listed in Table [1
The winners are PQ100-VAR-ALL-PERM20 (with improvement of 52.65% cor-
responding to 28.56 crossings) and PQ100-VAR-MOST25-PERM20, followed by
PQ100-VAR-MOST100-PERM10 and PQ 100-VAR-MOST25-PERM10. Only
then, the FIX strategies appear on the list.
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Fig. 7. The best obtained results within our study.

5 Conclusions

We have conducted extensive experimental studies on the crossing minimization
problem for a benchmark set of graphs. The main conclusions are:

1. Post-processing always helps. It is recommended not to restrict the post-
processing procedure to the inserted edges. Already re-inserting 25% of all
the edges helps a lot.

2. Permutations and random effects help, but not as well as post-processing.

3. It is important to start with a good planar subgraph. A better subgraph
leads not only to an improved number of achieved crossings, but also to an
improved running time of the algorithm.

4. The re-insertion within a variable embedding setting is still worth doing,
even if post-processing is used.
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