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Abstract. In this paper, we study a layout problem of a digraph us-
ing queues. The queuenumber of a digraph is the minimum number of
queues required for a queue layout of the digraph. We present upper and
lower bounds on the queuenumber of an iterated line digraph Lk(G) of
a digraph G. In particular, our upper bound depends only on G and
is independent of the number of iterations k. Queue layouts can be ap-
plied to three-dimensional drawings. From the result on the queuenum-
ber of Lk(G), it is shown that for any fixed digraph G, Lk(G) has a
three-dimensional drawing with O(n) volume, where n is the number
of vertices in Lk(G). We also apply these results to particular families
of iterated line digraphs such as de Bruijn digraphs, Kautz digraphs,
butterfly digraphs, and wrapped butterfly digraphs.

1 Introduction

Let H be a graph. The vertex set and the edge set of H are denoted by V (H)
and E(H), respectively. A k-queue layout of H consists of a linear ordering σ
of the vertices, i.e., σ is a bijection from V (H) to {1, 2, . . . , |V (H)|}, and an
assignment of each edge to one of k queues so that the set of edges assigned
to each queue obeys a first-in/first-out discipline. (Consider scanning in left-to-
right (ascending) order. If the left vertex of an edge e is encountered, e enters its
assigned queue. If the right vertex of e is encountered, e exits from its assigned
queue.) We can formally define such a discipline as follows; if edges {a, b}, {c, d}
are in the same queue such that σ(a) ≤ σ(b), σ(c) ≤ σ(d), and σ(a) ≤ σ(c), then
one of the following inequalities holds:

– σ(a) ≤ σ(b) ≤ σ(c) ≤ σ(d)
– σ(a) ≤ σ(c) ≤ σ(b) ≤ σ(d)

The minimum number of queues required for a queue layout of H is the
queuenumber of H, and denoted by qn(H).

As a dual concept of a queue layout, a stack layout is known. A k-stack layout
of H consists of a linear ordering σ of the vertices, and an assignment of each
edge to one of k stacks so that the set of edges assigned to each stack obeys a
last-in/first-out discipline. (If the left vertex of an edge e is encountered, e is
pushed into its assigned stack, and if the right vertex of e is encountered, e is
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popped out of its assigned stack.) That is, if {a, b}, {c, d} are in the same stack
such that σ(a) ≤ σ(b), σ(c) ≤ σ(d), and σ(a) ≤ σ(c), then one of the following
inequalities holds:

– σ(a) ≤ σ(b) ≤ σ(c) ≤ σ(d)
– σ(a) ≤ σ(c) ≤ σ(d) ≤ σ(b)

The minimum number of stacks required for a stack layout of H is the stack-
number of H, and denoted by sn(H). (A stack layout is equivalent to a book-
embedding. In the study of book-embeddings, pagenumber is used instead of
stacknumber.) Queue and stack layouts of a digraph are similarly defined as
those of the underlying graph of the digraph. (Note that our definitions for di-
graphs are different from queue and stack layouts defined in [19,20] in which all
arcs must have the same direction with respect to the vertex ordering.)

Queue and stack layouts are motivated by several area of computer science
[5,9,18,21,25,27,29,30,31]. In particular, such layouts of interconnection networks
have applications to the DIOGENES approach, proposed by Rosenberg [27], to
fault-tolerant processors array. Also, Wood [30,31] have shown that queue and
stack layouts can be applied to three-dimensional drawings. For queue layouts,
he proved that every graph G with n vertices from a proper minor-closed family
has an O(1) × O(1) × O(n) three-dimensional straight-line grid drawing if and
only if G has O(1) queuenumber.

Until now, queue and/or stack layouts have been studied for many graph
classes:

– Stacknumber: complete graphs [4], complete bipartite graphs [24], butterfly
graphs [12], trees, grids, X-trees [5], hypercubes [5,22], de Bruijn digraphs,
Kautz digraphs, shuffle-exchange graphs [16], planar graphs [32], genus-g
graphs [23], bandwidth-k graphs [28], k-trees [13], iterated line digraphs [14].

– Queuenumber: complete graphs, complete bipartite graphs, trees, grids, uni-
cyclic graphs, X-trees, binary de Bruijn graphs, butterfly graphs (all in [21]),
k-tree [6,26,31],

In this paper, we treat iterated line digraphs and study queue layouts for
the class. Let G be a digraph. The vertex set and the arc set of G are de-
noted by V (G) and A(G), respectively. The line digraph L(G) of G is defined as
follows. The vertex set of L(G) is the arc set of G, i.e., V (L(G)) = A(G).
The vertex (u, v) is a predecessor of every vertex of the form (v, w), i.e.,
A(L(G)) = {((u, v), (v, w)) | (u, v), (v, w) ∈ A(G)}. When we regard “L” as
an operation on digraphs, the operation is called the line digraph operation. The
k-iterated line digraph Lk(G) of G is the digraph obtained from G by iteratively
applying the line digraph operation k times. Iterated line digraphs have many
desirable properties for interconnection networks of massively parallel computer
such as bounded degree, small diameter, and high connectivity. In fact, the class
of iterated line digraphs contains several well-known interconnection networks
such as de Bruijn digraphs, Kautz digraphs, butterfly digraphs and wrapped
butterfly digraphs.
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We present upper and lower bounds on the queuenumber of an iterated line
digraph Lk(G). In particular, our upper bound depends only on G and is inde-
pendent of the number of iterations k. As corollaries, upper and lower bounds
on the queuenumbers of de Bruijn digraphs, Kautz digraphs, butterfly digraphs,
and wrapped butterfly digraphs, some of which are generalizations of previously
known results, are obtained. Also, it is shown that for any fixed digraph G,
every digraph with n vertices in {Lk(G) | k ≥ 1} has an O(1) × O(1) × O(n)
three-dimensional straight-line grid drawing.

This paper is organized as follows. In Section 2, we present upper and lower
bounds on the queuenumber of Lk(G). In Section 3, we apply the results to spe-
cific families of iterated line digraphs. In Section 4, we consider three-dimensional
drawings of iterated line digraphs.

2 Queue Layouts of Iterated Line Digraphs

We assume in this paper that a digraph may have loops but not multiple arcs,
since Lk(G) has no multiple arcs for all k ≥ 1 even if G has multiple arcs. Let
G be a digraph. If (x, y) ∈ A(G), then we say that x is a predecessor of y, y
is a successor of x, x is the tail of (x, y), and y is the head of (x, y). Two arcs
such that the head of one arc is the tail of the other arc, are successive arcs.
For v ∈ V (G), let Γ+G (v) denote the set of successors of v in G, and let A+G(v)
denote the set of arcs with tail v in G. Also let δ+(G) = minv∈V (G) |A+G(v)| and
∆+(G) = maxv∈V (G) |A+G(v)|. Analogously, Γ−

G (v), A−
G(v), δ

−(G), and ∆−(G)
are defined.

2.1 An Upper Bound

We first define a restricted queue layout, and then present an algorithm to con-
struct such a restricted queue layout of L(G), based on a restricted queue layout
of G, while preserving the number of queues.

For a queue layout of a digraph and an arc e = (u, v) of the digraph, if
σ(u) < σ(v) (resp. σ(v) < σ(u)), then we say that e has right-direction (resp.
left-direction). For a loop, we consider that it has no direction. We say that an
arc with right-direction and an arc with left-direction have opposite directions.

As a restricted queue layout, we define a tree-queue layout as follows.

Definition 1. A tree-queue layout of a digraph G is a queue layout of G such
that for arcs assigned to the same queue, the following two conditions hold.

– any two arcs with the same head have opposite directions.
– any successive arcs have the same direction except for a loop.

The tree-queuenumber of G, denoted by tqn(G), is the minimum number of
queues required for a tree-queue layout of G.



Laying Out Iterated Line Digraphs Using Queues 205
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(u,u)(u,v) (u,w)(u,x) (u,y)

G :

L(G) :

Fig. 1. Algorithm for laying out L(G).

Since a tree-queue layout is a restricted version of a queue layout, it holds that
qn(G) ≤ tqn(G). On the other hand, given a k-queue layout, we can construct
a tree-queue layout as follows. For each queue, we divide the set of arcs in the
queue according to the direction, and assign arcs with the same direction to the
same queue. A loop is assigned to either queue. Next, for each queue, we assign
arcs with the same head in the queue to distinct queues. Thus, a layout using at
most 2k∆−(G) queues is obtained. The resulting layout is a tree-queue layout.
Therefore, tqn(G) ≤ 2∆−(G)qn(G).

The terminology “tree-queue” named after the structural property that the
set of arcs assigned to each queue induces a nearly disjoint union of rooted trees,
where “nearly” means that two trees may have common leaves and the root of
a tree may have a loop.

We will show that the tree-queuenumber of G is an upper bound on the
tree-queuenumber of Lk(G).

Theorem 1. tqn(Lk(G)) ≤ tqn(G) for all k ≥ 1.

Proof. Given a tree-queue layout of G, we present an algorithm to construct a
tree-queue layout of L(G) with the same number of queues. For convenience, we
consider a line and regard the vertex ordering as a placement of vertices on the
line. A vertex x is placed on the left of another vertex y iff σ(x) < σ(y). We
write x <l y if x is placed on the left of y, and x ≤l y if x is not placed on the
right of y. Note that x may equal to y when x ≤l y.

1. For each vertex u of G, we first regard all the tails of arcs in A+G(u) as being
different and then stretch the point corresponding to u on the line so that
any two arcs in A+G(u) obey the first-in/first-out discipline. Then, we assign
each arc in A+G(u) to the point of its tail (see Figure 1). More formally, the
vertices of L(G) are placed on the line in the following way:
a) If u <l w, then (u, a) <l (w, b) for any a ∈ Γ+G (u), b ∈ Γ+G (w).
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b) Suppose that (u, v), (u,w) ∈ A(G).
i. If v <l u <l w, then (u, v) <l (u,w).
ii. If (u, u) ∈ A(G) and v <l u <l w, then (u, v) <l (u, u) <l (u,w).
iii. If u <l v <l w, then (u, v) <l (u,w).
iv. If w <l v <l u, then (u,w) <l (u, v).

According to this placement of vertices on the line, we define the vertex
ordering of L(G).

2. For each arc ((u, v), (v, w)) of L(G), we assign it to the queue to which (u, v)
is assigned in the tree-queue layout of G.

In what follows, we show that the above algorithm correctly produces a
tree-queue layout of L(G). We first show that any two arcs in each queue obey
the first-in/first-out discipline. Let ((u, v), (v, w)), ((x, y), (y, z)) ∈ A(L(G)) such
that they are assigned to the same queue. This means that (u, v) and (x, y) are in
the same queue in the tree-queue layout ofG. If u = x, then clearly ((u, v), (v, w))
and ((x, y), (y, z)) obey the first-in/first-out discipline, by our algorithm. Then
suppose that u �= x. Without loss of generality, we can assume that u <l x. Thus,
(u, v) <l (x, y) (by 1-(a) in the algorithm). Now we assume that ((u, v), (v, w))
and ((x, y), (y, z)) do not obey the first-in/first-out discipline, i.e., one of the
following inequalities holds:

Case 1: (u, v) <l (x, y) ≤l (y, z) <l (v, w)
Case 2: (y, z) <l (v, w) ≤l (u, v) <l (x, y)
Case 3: (u, v) <l (y, z) ≤l (x, y) <l (v, w)
Case 4: (y, z) <l (u, v) ≤l (v, w) <l (x, y)

Assume that Case 1 holds. By our algorithm, we can see that u <l x ≤l y ≤l v.
Since two arcs with the same head must have opposite directions, y �= v. Hence
u <l x ≤l y <l v. However, this contradicts the first-in/first-out discipline.
Therefore, Case 1 does not hold. Similarly, Case 2 does not hold. Next, consider
Case 3, and assume that it holds. Then we obtain that u ≤l y ≤l x ≤l v.
If u �= y and x �= v, then (u, v) and (x, y) contradicts the first-in/first-out
discipline. Thus, it must be that u = y or x = v. Suppose that x = y, i.e., (x, y)
is a loop. If x = v, then (x, y) and (u, v) have the same head but not opposite
directions. Thus, u = y. However, by our algorithm (1-(b)-(ii)), (x, y) must be
placed on the left of (u, v), which contradicts the situation in Case 3. Suppose
that x �= y, i.e., (x, y) is not a loop. Then (u, v) and (x, y) are successive arcs with
opposite directions, which contradicts a tree-queue layout of G. Hence, Case 3
does not hold. It can be similarly shown that Case 4 does not hold. Therefore,
our algorithm correctly produces a queue layout of L(G).

Next, we show that the queue layout of L(G) is a tree-queue layout. Sup-
pose that ((a, u), (u, v)), ((b, u), (u, v)) ∈ A(L(G)) such that these two arcs are
assigned to the same queue. From our algorithm, (a, u) and (b, u) must be in
the same queue in the tree-queue layout of G such that their directions are
opposite. Note that neither (a, u) nor (b, u) is a loop. Since the directions of
((a, u), (u, v)) and ((b, u), (u, v)) are the same as those of (a, u) and (b, u), re-
spectively, ((a, u), (u, v)) and ((b, u), (u, v)) have opposite directions.
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Next suppose that ((u, v), (v, w)) and ((v, w), (w, x)) are in the same queue.
Then (u, v) and (v, w) are in the same queue in the tree-queue layout of G.
Thus, (u, v) and (v, w) have the same direction, or (u, v) is a loop. If (u, v)
is not a loop, then ((u, v), (v, w)) and ((v, w), (w, x)) have the same direction.
Suppose that (u, v) is a loop. Without loss of generality, we can assume that
u = v <l w. Then by our algorithm (1-(b)-(ii)), (u, v) <l (v, w) <l (w, x).
Therefore, ((u, v), (v, w)) and ((v, w), (w, x)) have the same direction.

Consequently, the layout of L(G) obtained by our algorithm is a tree-queue
layout with the same number of queues in the tree-layout of G. By applying the
algorithm iteratively, we have tqn(Lk(G)) ≤ tqn(Lk−1(G)) ≤ · · · ≤ tqn(G). 
�

Corollary 1. qn(Lk(G)) ≤ tqn(G) for all k ≥ 1.

It can be easily checked that δ−(G) ≤ tqn(G) ≤ |V (G)|. (Thus, for the com-
plete digraph K◦

n, it holds that tqn(K◦
n) = n.) Therefore, we have the following

corollary.

Corollary 2. qn(Lk(G)) ≤ |V (G)| for all k ≥ 1.

2.2 A Lower Bound

It has been shown in [21] that in a queue layout of a graph with n vertices, one
queue has at most 2n−3 edges. Thus, a general lower bound on the queuenumber
of a graph is obtained as follows.

Theorem 2. [21] Let G be a graph with n vertices. Then qn(G) ≥
⌈

|E(G)|
2n−3

⌉
.

The number of arcs in Lk(G) cannot be expressed in a simple form in general.
Besides, we need to consider not only the number of arcs, but also the numbers
of loops and cycles of length two (symmetric arcs) in a digraph in order to
count edges in the underlying graph. Then, we use a structural property of a
line digraph.

For a vertex v with no loop in G, L(G) has a complete bipartite digraph
corresponding to v, since A−

G(v)∪A+G(v) forms a complete bipartite digraph with
partite sets of size |A−

G(v)| and |A+G(v)| in L(G). The queuenumber of a complete
bipartite graph Km,n with partite sets of size m and n has been determined in
[21] to be min{�m

2 �, �n
2 �},

If G has only loops, then ∆−(G) = ∆+(G) = 1. On the other hand, if G has
an arc which is not a loop and max{δ−(G), δ+(G)} > 0, then there is a vertex
with no loop in Lk(G) for all k ≥ 1. Now suppose that G has an arc which
is not a loop and max{δ−(G), δ+(G)} > 0. Let v be a vertex with no loop in
Lk(G). It can be easily checked that each vertex in Lk(G) corresponds to a walk
of length k in G. Suppose that v corresponds to a walk (v1, v2, . . . , vk+1) in G.
Since |A−

Lk(G)(v)| = |A−
G(v1)| and |A+

Lk(G)(v)| = |A+G(vk+1)|, Lk+1(G) contains
a complete bipartite digraph with partite sets of size |A−

G(v1)| and |A+G(vk+1)|.
Thus, qn(Lk+1(G)) ≥ min{ |A−

G(v1)|
2 ,

|A+
G(vk+1)|
2 }. Therefore, the following theo-

rem holds.
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Theorem 3. qn(Lk(G)) ≥ min{� δ−(G)
2 �, � δ+(G)

2 �} for all k ≥ 2.

Suppose that G has a loop. Let diam(G) denote the diameter of G. (When G
is not strongly connected, we define diam(G) as ∞.) Then for all k > 2diam(G),
there is a walk of length k from a vertex with indegree ∆−(G) to a vertex with
outdegree ∆+(G) passing through a loop. Thus, the following theorem holds.
(Note that it trivially holds for the case that G has only loops, and the case that
G is not strongly connected.)

Theorem 4. Let G be a digraph with a loop. Then,
qn(Lk(G)) ≥ min{�∆−(G)

2 �, �∆+(G)
2 �} for all k > 2diam(G).

3 Queue Layouts for Specific Classes

3.1 De Bruijn and Kautz Digraphs

The de Bruijn digraph B(d,D) can be defined as LD−1(K◦
d) where K◦

d is the
complete digraph with d vertices [11]. The Kautz digraph K(d,D) can be also
defined as LD−1(K∗

d+1), where K
∗
d+1 is the complete symmetric digraph with d+

1 vertices. These digraphs are representative interconnection networks in iterated
line digraphs, and have many nice properties (see [3]). As a direct consequence
of Corollary 2 and Theorem 3, upper and lower bounds on qn(B(d,D)) and
qn(K(d,D)) are obtained. (These results can be also obtained as corollaries of a
result on the queuenumbers of generalized de Bruijn and Kautz digraphs [15].)

Proposition 1. �d
2� ≤ qn(B(d,D)) ≤ d (D ≥ 3).

Proposition 2. �d
2� ≤ qn(K(d,D)) ≤ d+ 1 (D ≥ 2).

3.2 Butterfly Digraphs

The butterfly graph is one of the most popular interconnection networks. The
k-ary butterfly digraph b(k, r) is a directed version of the k-ary butterfly graph,
and can be defined as an iterated line digraph. As an origin digraph to which
the line digraph operation is applied, there are two digraphs.

The Kronecker product of two digraphs G1 and G2, denoted by G1 ⊗G2, is
defined as follows:{
V (G1 ⊗G2) = V (G1) × V (G2),
A(G1 ⊗G2) = {((u1, u2), (v1, v2)) | (u1, v1) ∈ A(G1) and (u2, v2) ∈ A(G2)}.

Then it holds that b(k, r) ∼= Lr−1(K◦
k ⊗ P2r), where P2r is a directed path with

2r vertices [2].
A complete k-ary out-tree is an out-tree such that every non-leaf vertex has

outdegree k, and every path from the root to a leaf has the same length. A
complete k-ary in-tree is an in-tree obtained from a complete k-ary out-tree by
reversing the orientations of arcs. Let X(k, r) denote the digraph obtained from
the complete k-ary in-tree of depth r and the complete k-ary out-tree of depth
r by identifying their roots. Then it holds that b(k, r) ∼= Lr(X(k, r)) [17].
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Fig. 2. b(3, 2), K◦
3 ⊗ P4, and X(3, 2).

Proposition 3. �k
2 � ≤ qn(b(k, r)) ≤ min

{
k,

⌊
k
2

⌋
+ 2

}
.

Proof. The k-ary butterfly graph contains a complete bipartite graph Kk,k.
Thus, �k

2 � is a lower bound on qn(b(k, r)). For an upper bound, we first con-
sider a tree-queue layout of K◦

k ⊗ P2r. Let V (K◦
k) = {v1, v2, . . . , vk} and

V (P2r) = {w1, w2, . . . , w2r} such that (wi, wi+1) ∈ A(P2r) for 1 ≤ i < 2r.
Then V (K◦

k ⊗ P2r) = {(vi, wj) | 1 ≤ i ≤ k, 1 ≤ j ≤ 2r}. As a vertex-ordering
of K◦

k ⊗ P2r, we employ the lexicographical ordering with respect to the indices
j and i of (vi, wj). (In the following, we omit the notation σ for the vertex-
ordering.)

(v1, w1) < · · · < (vk, w1) < (v1, w2) < · · · < (vk−1, w2r) < (vk, w2r).

Let At = {((vt, wp), (vi, wp+1)) | 1 ≤ i ≤ k, 1 ≤ p < 2r} for t = 1, 2, . . . , k. We
prepare k queues and assign the arcs in At into the t-th queue. It can be easily
checked that this layout is a tree-queue layout.

Next we consider a tree-queue layout of X(k, r). It is not difficult to see
that the complete k-ary out-tree of depth r has a 1-tree-queue layout. For the
complete k-ary in-tree of depth r, we prove by induction on the depth that it
has a (�k

2 � + 1)-tree-queue layout. Let T (k, r) denote the complete k-ary in-
tree of depth r. Also, let V (T (k, r)) = {(i, j) | 1 ≤ i ≤ kj , 0 ≤ j ≤ r}, where
j denotes the depth of a vertex (i, j). Note that (1, 0) is the root of T (k, r).
Suppose that r = 1. We order the vertices as follows. (1, 1) < · · · < (�k

2 �, 1) <
(1, 0) < (�k

2 � + 1, 1) < · · · < (k, 1). Then we assign arcs ((i, 1), (1, 0)) and
((�k

2 � + i, 1), (1, 0)) to the i-th queue (1 ≤ i ≤ �k
2 �). When k is odd, we assign

the arc ((k, 1), (1, 0)) to the (�k
2 �+1)-th queue. Clearly, this layout is a tree-queue

layout. Now assume that T (k, r) has a tree-queue layout using �k
2 � + 1 queues.

By adding k arcs to each leaf of T (k, r), T (k, r + 1) is obtained. For each leaf
of T (k, r), we do the similar manipulation to the case of r = 1. Let v be a leaf.
Also let (v, w) be the arc with tail v. About half of Γ−

T (k,r+1)(v) is placed on the
left of v, and the remaining half is placed on the right of v. Then we assign two
arcs with opposite directions in A−

T (k,r+1)(v) to each queue. Here, if k is even,
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then we assign no arc to the queue to which (v, w) is assigned. If k is odd, then
we assign one arc with the same direction as (v, w) to the queue to which (v, w)
is assigned, and use the other queues for the remaining arcs. (Thus, if (v, w) has
right (resp. left) direction, then �k

2 � + 1 vertices in Γ−
T (k,r+1)(v) are placed on

the left (resp. right) of v.) After such an assignment of arcs, we precisely set the
order position of each tail while preserving the tree-queue layout style. Such a
setting is always possible, since the underlying graph of a digraph induced by the
set of arcs assigned to each queue is a disjoint union of paths such that for any
vertex x with degree two in the graph, one neighbor is on the left of x and the
other is on the right of x. Therefore, T (k, r) has a tree-queue layout with �k

2 �+1
queues, and thus X(k, r) has a tree-queue layout with �k

2 � + 2 queues. 
�

3.3 Wrapped Butterfly Digraphs

The k-ary wrapped butterfly digraph wb(k, r), r ≥ 3, can be defined as
Lr−1(K◦

k ⊗ Cr), where Cr is a directed cycle of length r [2].

Proposition 4. �k
2 � ≤ qn(wb(k, r)) ≤ 2k.

Proof. Similarly to b(k, r), �k
2 � is a lower bound on qn(wb(k, r)). Let V (K◦

k) =
{v1, v2, . . . , vk} and V (Cr) = {w1, w2, . . . , wr} such that (wi, wi+1) ∈ A(C2r)
for 1 ≤ i < r and (wr, w1) ∈ A(C2r). Similarly to the first case of butterfly
digraphs, we order the vertices, and assign the arcs into k queue, except for the
arcs ((vi, wr), (vj , w1)), 1 ≤ i, j ≤ k. We prepare other k queues and assign the
arcs in {((vt, wr), (vj , w1)) | 1 ≤ j ≤ k} into the (k + t)-th queue. We can easily
check that the resulting layout is a tree-queue layout. 
�

4 Three-Dimensional Drawings of Iterated Line Digraphs

A three-dimensional drawing treated here is a three-dimensional straight-line
grid drawing of a graph. The vertices are represented by distinct points in Z3.
Each edge are represented by a line-segment between its end-vertices such that
edges only intersect at common end-vertices, and an edge only intersects a vertex
which is an end-vertex of the edge. If a three-dimensional drawing is contained
in an axis-aligned box with side length X − 1, Y − 1, Z − 1, then the drawing
is called an X × Y × Z drawing with volume X · Y · Z. A three-dimensional
straight-line grid drawing of a digraph is similarly defined.

Dujmović et al. [8] introduced a track layout. A k-track assignment of a
graph G consists of a partition V1, V2, . . . , Vk of V (G) such that each Vi is an
independent set (i.e., if {u, v} ∈ E(G) such that u ∈ Vi and v ∈ Vj , then i �= j)
and a linear ordering σi of each Vi. Each pair of Vi and σi is called a track. An
X-crossing in a track assignment consists of two edges {v, w} and {x, y} such
that v, x ∈ Vi and w, y ∈ Vj , where i �= j, and σi(v) < σi(x), σj(y) < σj(w).
A k-track assignment with no X-crossing is called a k-track layout. The track-
number of G, denoted by tn(G), is the minimum number of tracks required for
a track layout of G. Dujmović et al. proved the following.
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Theorem 5. [8] If G has a k-track layout, then G has a k × 2k × 2kn′ three-
dimensional drawing, where n′ is the maximum number of vertices in a track.

The star chromatic number of a graph is the minimum number of colors re-
quired for a vertex-coloring of the graph such that each bichromatic subgraph is a
disjoint union of stars. Based on the star chromatic number and the queuenum-
ber, Wood [31] presented an upper bound on the track-number. (The upper
bound has been improved in [7].)

Theorem 6. [7] Let G be a graph with star chromatic number χst(G) ≤ c, and
queuenumber qn(G) ≤ q. Then tn(G) ≤ c(2q + 1)c−1.

In Section 2, we have shown that for any fixed digraph G, the queuenumber
of every Lk(G) is at most the tree-queuenumber of G. Also the underlying graph
of Lk(G) has bounded star chromatic number, since the maximum outdegree
and indegree of Lk(G) are equal to those of G, respectively, and it has been
shown that graphs with bounded maximum degree have bounded star chromatic
number [1,10]. Thus, we have the following theorem.

Theorem 7. For any fixed digraph G, every iterated line digraph of G has an
O(1) ×O(1) ×O(n) three-dimensional drawing.

Corollary 3. For any fixed d ≥ 2, B(d,D) and K(d,D) have three-dimensional
drawings with O(n) volume.

For b(k, r) and wb(k, r), the origin digraphs to which the line digraph op-
eration is applied, depend on r. However, their maximum degree and upper
bounds on the queuenumber depend only on k. Thus, we also have the following
corollary.

Corollary 4. For any fixed k ≥ 2, b(k, r) and wb(k, r) have three-dimensional
drawings with O(n) volume.

For B(2, D) and b(2, r), their three-dimensional drawings with O(n) volume
was previously shown in [31].

We can show that the number of vertices in G is an upper bound on the
track-number of Lk(G), if we restrict ourselves to digraphs with no loop and no
symmetric arcs.

Theorem 8. Let G be a digraph with no loop and no symmetric arcs. Then
tn(Lk(G)) ≤ |V (G)| for all k ≥ 1.

Proof. Let V (G) = {v1, v2, . . . , vp}. We order the vertices of G in any manner.
Then we prepare p queues, and assign the arcs in A+G(vi) to the i-th queue. This
trivial queue layout is indeed a tree-queue layout. Also this layout corresponds
to a p-track layout by considering that each track Vi consists of only vi.

By applying the algorithm in Theorem 1, we can obtain a tree-queue lay-
out of L(G) using the same number of queues. We show that this layout also
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corresponds to a p-track layout, where each track Vi = A+G(vi) and the linear
ordering of each Vi follows the vertex ordering of the queue layout. Since G has
no loop, there is no arc between the vertices in each track Vi. Thus, the queue
layout corresponds to a p-track assignment. Since G has no symmetric arcs, for
any Vi and Vj (i �= j), all arcs between Vi and Vj are in the same queue. Also
all vertices in each track are consecutive with respect to the vertex ordering σ
of the queue layout of L(G), i.e., if for some u ∈ Vi and v ∈ Vj , σ(u) < σ(v),
then for every x ∈ Vi and y ∈ Vj , σ(x) < σ(y). Therefore, there is no X-crossing
in the track assignment.

Similarly, we can see that the tree-queue layout of Lk(G) obtained by apply-
ing the algorithm iteratively, corresponds to a p-track layout, where each track
Vi consists of the vertices corresponding to walks of length k starting from vi

in G, and the linear ordering of Vi follows the vertex ordering of the tree-queue
layout of Lk(G). 
�

Corollary 5. Let G be a digraph with no loop and no symmetric arcs. Also let
p = |V (G)|. Then Lk(G) has a p× 2p× 2pn′ three-dimensional drawing, where
n′ is the maximum number of vertices in a track.

References

1. N. Alon, C. McDiarmid, and B. Reed, Acyclic coloring of graphs, Random Struc-
tures & Algorithms 2 (1991) 277-288.

2. J.-C. Bermond, E. Darrot, O. Delmas, and S. Perennes, Hamiltonian circuits in
the directed wrapped butterfly network, Discrete Applied Math. 84 (1998), 21–42.

3. J.-C. Bermond and C. Peyrat, “De Bruijn and Kautz networks: A competition
for the hypercube?,” Hypercube and distributed computers, F. André, J.P. Verjus
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6. V. Dujmović and D.R. Wood, Tree-Partitions of k-trees with applications in graph
layouts, Proc. of WG’03, Lecture Notes in Comput. Sci., Springer, to appear.
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