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Abstract. In this paper we consider the problem of drawing a planar
graph using circular-arcs as edges, given a one-to-one mapping between
the vertices of the graph and a set of n points on the plane, where n is
the number of vertices in the graph. If for every edge we have only two
possible circular arcs, then a simple reduction to 2SAT yields an O(n2)
algorithm to find out if a drawing with no crossings can be realized. We
present an improved O(n7/4polylog n) time algorithm. For the special
case where the possible circular arcs for each edge are of the same length,
we present an even more efficient algorithm that runs in O(n3/2polylog n)
time. We also consider the problem if we have more than two possible
circular arcs per edge and show that the problem becomes NP-Hard.
Moreover, we show that two optimization versions of the problem are
also NP-Hard.

1 Introduction

A natural question that arises in graph drawing is whether a graph with fixed
vertices can be drawn without crossings, when several choices are given for each
of the edges. From an information visualization point of view convex edges are
preferable, i.e., straight line segments or circular arcs. In general, embedding a
planar graph at fixed locations and drawing it with straight lines may result in
many crossings. Using circular arcs instead can reduce or eliminate the crossings;
see Fig. 1(a). Thus, a natural problem to consider is whether a given graph with
fixed vertex locations can be drawn without crossings, using circular arcs.

We first consider the 2-Circle Drawing (2CD) problem, in which each edge has
to be drawn as one of the two circular arcs defined by a circle passing through
the endpoints. This problem is reminiscent of the Manhattan wiring problem:
Consider the axis-aligned rectangle with a diagonal defined by the line segment
between two vertices connected by an edge. Then the two semi-rectangles sepa-
rated by the diagonal are the two choices for drawing the edge. This formulation
of the problem can be efficiently solved in O(n log n) time, using an efficient find
and delete data structure (to find intersections between a pair of semi-rectangles
and to delete a semi-rectangle from the data structure) [14].
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Fig. 1. (a) Ω(n2) crossings with straight-line edges and none with half-circles; (b) A
planar graph that cannot be drawn without crossings using any circular arc segments.
(c) Given the circle Ci, edge ei = (u, v) is drawn either with the circular arc ci or ci.
(d) An example of a 2SAT reduction: (c1 ∨c3)∧ (c1 ∨c3)∧ (c3 ∨c2)∧ (c1 ∨c2)∧ (c1 ∨c2).

The same approach cannot be applied to the 2CD problem directly. Although
efficient data structures exist for operations on full circles, no such data struc-
tures exist in the case of circular arcs (semi-circles). The novelty of our 2CD
algorithm is that we provide a way to use an efficient data structure for full
circles to solve the problem with circular arcs. For the sake of completeness,
we first show that the 2CD problem can be reduced to 2SAT and thus solved
in O(n2) time. Then we provide our novel approach to solve the 2CD problem
in time O(n7/4polylog n) for the general case and in time O(n3/2polylog n) for
the restricted case where the circular arcs are exactly half-circles. Although the
practical gain in terms of running time is not significant, we believe that our
approach for solving the 2CD problem might be of independent interest to solve
similar problems.

Next, we consider the 3-Circle Drawing (3CD) problem, where for each edge
there are three circular arcs to choose from. We show that the 3CD problem is
NP-hard. Although using circular arcs to represent the edges allows a certain
flexibility, not every planar graph can be drawn without crossings using circu-
lar arcs. Fig. 1(b) shows an example of a planar graph that cannot be drawn
without crossings using any circular arc segments. This difficulty suggests two
optimization problems: Min2CD is the problem of minimizing the number of
crossings for a given 2CD instance by representing every edge with an appro-
priate circular arc. Max2CD is the problem of maximizing the number of edges
that can be drawn without crossings using circular arcs. We show that both of
these optimization problems are NP-hard.

2 Previous Work

Several variations of the problem of embedding a planar graph at fixed point
locations have been studied. If we can choose the mapping between the vertices
V and the points P , then Kaufmann and Wiese [15] show that the graph can be
drawn without crossings using 2 bends per edge in polynomial time. However, if
the mapping between V and P is given, Pach and Wenger [19] show that O(n)
bends per edge are necessary to guarantee planarity, where n is the number of
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vertices in the graph. Godau [12] shows that if each vertex is allowed to move
slightly in the neighborhood of a fixed point then the problem becomes NP-hard.

Drawing graphs with circular arcs with no assigned vertex locations has been
considered by Cheng et al [5] in the context of planarity, angular resolution and
drawing area. The problems under consideration in this paper are also related
to the k-position point labeling problem, extensively studied in map labeling [3,
20,21]. In the k-position point labeling problem we are given a set of points
and a set of k possible label positions for each point and we would like to find a
labeling of the points that optimizes specific criteria. Criteria such as maximizing
the number of labeled points [3,23] and maximizing the size of the labels [6,7,
11] have been considered. A variant of the map labeling problem is reduced
to 2SAT and NP-Completeness results are presented in [11]. Although these
problems are related to drawing planar graphs with circular arcs, there is a
significant difference: whereas map labeling problems are restricted by region
intersections, drawing planar graphs with circular arcs is restricted by circular
arc intersections.

3 Circular Arcs Drawing: 2CD

The input to the problem is a planar graph G = (V, E), a point set P , and a
one-to-one function f : V → P such that |V | = |P | = n and |E| = m. Note that
m = O(n) as G is a planar graph. For any edge ei = (u, v) ∈ E, we are given
some circle Ci that passes through u and v. The two vertices, u and v, determine
two circular arcs on Ci; let ci and ci be their labels, see Fig 1(c). We would like
to find out whether G can be drawn without crossings using ci or ci for each ei,
and if so to provide such a drawing of G.

We first suggest a straightforward solution of the problem using a reduction
from 2CD to 2SAT. The reduction to a 2SAT formula Φ requires that we identify
all intersections between circular arcs. For each such intersection ci ∩ cj �= ∅, we
add the formula (ci ∨ cj) to Φ, see Fig 1(d). Since there are O(n2) crossings, the
reduction takes O(n2) time and results in a 2SAT formula Φ with O(n) variables
and O(n2) clauses. It is easy to see that G can be drawn without intersections if
and only if the corresponding formula Φ is satisfiable. Since 2SAT can be solved
in time linear in the number of clauses and variables [4,10], we have an O(n2)
time algorithm for the 2CD problem. However we can do much better.

3.1 The 2CD Algorithm

Note that for a given edge ei = (u, v) ∈ E, as possible drawings of ei we consider
the circular arcs defined by the circle Ci, and the position of u and v on Ci.
Alternatively, we could consider the axis-aligned rectangle having its diagonal
as the line segment (u, v), and then consider the 2 semi-rectangles separated
by the diagonal as two choices for drawings of the edge ei. This formulation of
the problem is known as the Manhattan wiring problem which can be efficiently
solved in O(n log n) time [14].



150 A. Efrat, C. Erten, and S.G. Kobourov

Algorithm 2CD Traverse possible(ci)
while D not empty while Cj=find(D, ci) not empty

let Ci be a circle in D delete(D, Cj)
delete(D, Ci) let cj be involved in the intersection
delete ci from P delete cj from P
traverse possible(ci) traverse possible(cj)

start with initial data structure D
while ∃ci, cj ∈ P s.t. ci ∩ cj �= ∅

let dfsnumber(ci) < dfsnumber(cj) Traverse certain(ci)
delete(D, Ci) while Cj=find(D, ci) not empty
delete ci and ci from P delete(D, Cj)
add ci into C let cj be involved in the intersection
traverse certain(ci) delete cj and cj from P

if ∃ intersecting half-circles in C add cj into C
output No traverse certain(cj)

else output C ∪ P

Fig. 2. Algorithm 2CD. The input to the algorithm is D, the data structure used to
store all the circles. If it is possible to draw the graph without crossings, the algorithm
outputs the set of circular arcs used to draw the graph.

We describe a new algorithm that solves a more general problem for circular
arcs. Our approach is different from the Manhattan wiring problem in that we
perform operations only on complete circles. More formally, we find/delete com-
plete circles as part of an intersection, as opposed to performing the operations
on the circular arcs directly. Let D denote the data structure used to store all the
circles. Let find(D, ci) be a function that finds a circle Cj intersecting circular
arc ci, and delete(D, Ci) be a function that deletes the circle Ci from D. Let
α(n), β(n) denote the time required to perform the find and delete operations,
respectively. We next describe how to construct the data structure D and how
to perform the find/delete operations efficiently. The main algorithm is shown
on Fig. 2.

Let a possible circular arc be one that is not yet chosen and not yet discarded
and let P denote the set of possible circular arcs. P initially contains all the
circular arcs. We traverse the circles in a depth-first manner starting with an
arbitrary circular arc ci and making all possible assignments. Each circle is found
and deleted exactly once, resulting in a sequence of O(n) find/delete operations
and requires O(n × (α(n) + β(n)) time. At the end of the first while loop in
the main algorithm, the set P contains exactly one circular arc for each edge.
However, P might contain intersections. At this point we make the following
observation:

Observation 1. Let ci, cj ∈ P. If ci ∩ cj �= ∅ and dfsnumber(ci) <
dfsnumber(cj), then the implication ci ⇒ cj holds, and ci must be included in
the final solution.



Fixed-Location Circular-Arc Drawing of Planar Graphs 151

Let C denote the set of certain circular arcs. Initially C is empty. Once we find a
circular arc, ck, that is certainly in the final solution by the above observation,
we perform a traversal from ck, placing all certain arcs in the set C. To find
the intersections in P it suffices to perform a plane sweep over the whole set P.
Since, whenever we encounter an intersection in P we delete the whole circle,
the plane sweep over P finds O(n) intersections in total. Then the second while
loop requires O(n log n + n × (α(n) + β(n))) time. Finally we end up with a set
C of certain circular arcs, and a set P of possible circular arcs. At this point we
make a second observation:

Observation 2. Let ci, cj ∈ C ∪ P. If ci ∩ cj �= ∅, then ci, cj ∈ C.

The observation holds for the following reasons: Assume ci, cj ∈ P were true.
Then we must have encountered the intersection in the plane sweep step in which
case one of them would have been deleted from P. So, ci, cj ∈ P can not be true.
On the other hand assume, ci ∈ C and cj ∈ P were true. Then we must have
traversed through cj before visiting ci in the traversal step. But when we traverse
through a circle, we delete the whole circle from P. So this can not be the case
either.

Then we need to concentrate on the intersections in C. We perform a final
plane sweep over the set C. If we encounter an intersection, then there cannot be
an assignment without intersections, otherwise C ∪ P gives us a feasible assign-
ment. The running time of the algorithm is the time required for the two while
loops in the main algorithm: O(n log n + n × (α(n) + β(n))). In the next section
we describe the data structure that supports the needed operations.

3.2 The Data Structure

Given a circular arc query ci, finding and deleting a circle Cj that intersects
ci is more efficient than performing the same operations on a circular arc cj

that intersects ci. This observation led us to the 2CD algorithm which assumes
the existence of a data structure D that stores all the circles and allows for
efficient find/delete operations. Gupta et al [13] show how to reduce the problem
of querying circles with a circular arc to one of half-space range searching in
higher dimensions. The method requires at most a 4-dimensional half-space range
searching. To report such intersections then, we make use of the ideas from
geometric range-searching [1,2,18]. The main data structure we use is a partition
tree, constructed using the partitioning theorem by Matoušek [17]: a point set P
can be partitioned into O(n1−1/d) classes in time O(n log n1−1/d) such that for
any class Pi, |Pi| < 2×n1/d and any line l intersects at most O(n(1−1/d)2) classes,
where d is the dimension of the search space. Using this partitioning theorem
we can create a data structure D′ that performs half-space range queries in time
O(n1−1/d(log n)O(1)). Moreover D′ is dynamic, in the sense that we can delete
a circle from D′ in amortized time O(log n). Then using multiple levels of D′

to satisfy the intersection conditions of [13], we create the data structure D
that supports find(D, ci) operations in O(n3/4polylog n) time and that requires
O(n log n) time for a sequence of O(n) delete(D, Ci) operations. These results
can be summarized with the following theorem for the 2CD problem.
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center(Ci )

 jc
i

c i

C j

C i

D

  (b)

D

2j
π i

separator(C  )i

Fig. 3. (a) Dj contains an endpoint of ci (b) center(Cj) ∈ πi and center(Ci) ∈ D2j .

Theorem 1. The 2CD problem can be solved in time O(n7/4polylog n).

3.3 Allequal2CD

We can solve a restricted version of the 2CD problem even more efficiently. Let
Allequal2CD be the version of 2CD where each edge ei has the same length and
the line segment between the endpoints of ei is the diameter of circle Ci. In this
case, for a given edge ei, the circular arcs ci and ci are half-circles. We present an
algorithm to solve Allequal2CD in O(n3/2polylog n) time using a data structure
D that enables us to perform efficient find/delete operations. We provide the
details for the construction of D here, since the general data structure described
above can be constructed in a similar fashion.

Let center(Ci) and separator(Ci) denote, respectively, the center of Ci and
the line separating the half-circles ci and ci. Define πi as the half-plane bounded
by separator(Ci), and that contains ci. Let Di be the disk bounded by the circle
Ci, and let D2i be the disk concentric to Di but with radius twice the radius of
Di, see Fig 3. The following lemma is easy to verify.

Lemma 1. A circle Cj intersects a half-circle ci if and only if (i) Dj contains
an endpoint of ci, or (ii) center(Cj) ∈ πi and center(Ci) ∈ D2j.

In order to report intersections of the first type we use the data structure
described by Efrat et al in [9]: given n equal-sized disks in the plane, construct
a data structure DT1 in time O(n log n) such that for a given query point p,
finding a disk that contains p requires O(log n) time. Moreover, deleting a disk
from DT1 requires amortized time O(log n). We preprocess the disks Di for each
i using this structure.

To deal with the intersections of the second type we make use of the partition
tree D′ described above. However, this time we perform half-space range search-
ing in 2-dimensions using a two-level data structure. Let the data structure for
the second type of intersections be DT2. The first level of DT2 is a partition
tree, DT2

′. Based on the partitioning theorem described above, we partition the
centers of all the circles and recursively build the partition tree DT2

′. The leaves
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of DT2
′ partition the centers into constant-sized subsets. Each internal node v is

associated with a subset Pv of the points contained in the leaves of the subtree
rooted at v. We build the second level of the data structure based on these sub-
sets. The second level data structure used in DT2 is the same as DT1, except we
preprocess the disks D2i for each i, rather than the disks Di as is the case for
constructing DT1. We call this second level data structure DT2

′′ to distinguish it
from DT1 which we used to find the first type of intersections. Each internal node
v in DT2

′ contains a pointer to the corresponding DT2
′′, where DT2

′′ contains
the data structure for all the disks D2i centered at Pv. The preprocessing time
for constructing the partition in a node of DT2

′ with m points is O(m log m).
Constructing DT2

′′ for the same node also takes time O(m log m). Since the
number of points in nodes of DT2

′ decreases as a double exponential with their
depth in the tree, the total preprocessing time is O(n log n).

Theorem 2. Allequal2CD problem can be solved in time O(n3/2polylog n).

To find a circle Cj intersecting a given a half-circle ci we first query DT1 with ci’s
endpoints. This step requires O(log n) time. If we cannot find such a circle then
we query DT2 with separator(Ci). Upon finding an internal node v such that
Pv lies completely above separator(Ci), we query the associated DT2

′′ of v with
center(Ci). Let α(n) be the time to find a circle intersecting a given half-circle
ci. Then α(n) is bounded by the query time of DT2 and we get:

α(n) ≤ O(
√

n) × log 2
√

n + O( 4
√

n) × α(2
√

n) (1)

Thus the time required to perform a find operation is α(n) = O(
√

npolylog n).
In order to delete a circle Ci, we first delete Di from DT1 in O(log n) amor-

tized time. We also need to delete the appropriate disks in DT2. To do this we
simply find each internal node v of DT2

′ such that center(Ci) ∈ Pv, and delete
the corresponding disk from DT2

′′, the second level data structure pointed to
by v. Since DT2

′ has depth O(log log n) and deleting a disk from DT2
′′ takes

amortized time O(log n), the deletion of a circle takes O(log2 n) amortized time.
Since find and delete operations are defined for both DT1 and DT2, the two data
structures form the complete data structure D and the theorem follows.

4 The 3CD Problem

The 3CD problem is similar to 2CD, except now we have three choices for the
drawing of each edge ei = (u, v). We consider the problem in which in ad-
dition to the two half-circles we can also choose the line segment connecting
u and v. We show that 3CD is NP-hard using a reduction from the NP-hard
PLANAR-3SAT [16]. A 3SAT instance Φ is called a PLANAR-3SAT instance
if the (bipartite) occurrence graph GΦ = (VΦ, EΦ) is planar. In the occurrence
graph, VΦ contains a vertex for each variable and clause, and EΦ contains an
edge between two vertices v, w ∈ VΦ if v represents a variable x that occurs
in the clause represented by w. Let VR3SAT(Variable Restricted 3SAT) be the
version of 3SAT with the restriction that each variable can appear at most three
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xi

xi

2−link−chains

y
j

zk

xi

2−link−chains

(c)

(x1V y V z)

(x1V x2)x1−variable−clause

(b)(a)

Fig. 4. (a) Variable-circle of xi; (b) Clause-circle of (xi ∨yj ∨ zk); (c) Circle drawing of
(x1 ∨y∨z)∧(x1 ∨x2) . . .. Each edge is represented by 2-link-chains (two parallel chains
of small circles). Since the graph is planar there will be no crossings of the chains.

times, and VR1IN3SAT be the version of VR3SAT in which exactly one literal in
each clause is required to be true. In the planar versions of these two problems,
the occurrence graphs of the input instances must be planar. We will convert
a PLANAR-3SAT instance Φ into a 3CD instance Φ3CD through a series of
modifications that preserve planarity.

Lemma 2. PLANAR-VR3SAT is NP-hard.

Proof Sketch: Due to space constraints we leave the proof of this lemma to the
full version of the paper [8]. ��

Lemma 3. PLANAR-VR1IN3SAT is NP-hard.

Proof Sketch: Due to space constraints we leave the proof of this lemma to the
full version of the paper [8]. ��

Theorem 3. The 3CD problem is NP-hard.

Proof Sketch: We convert a PLANAR-VR1IN3SAT instance Φ′′ into a 3CD
instance Φ3CD. Because of the VR reduction, the occurrence graph GΦ′′ for Φ′′

has maximum degree 3. Then there exists an orthogonal drawing for GΦ′′ (a
drawing such that each vertex is on the integer grid and each edge consists of
horizontal and vertical edge segments) and the grid is of size quadratic in the
size of GΦ′′ [22]. Given the orthogonal drawing of GΦ′′ , we obtain Φ3CD by the
following method: We replace each vertex corresponding to a variable xi with
a variable-circle, with one half labeled xi and the other xi, see Fig. 4(a). We
replace each vertex corresponding to a clause, say, (xi ∨ yj ∨ zk) of Φ′′, with a
clause-circle having one half-circle labeled xi, one labeled yj , and the diameter
of the circle labeled zk, see Fig. 4(b). We represent each edge of GΦ′′ with a
2-link-chain which consists of two parallel links of chain-circles. Let ei be the
edge of GΦ′′ between the vertex corresponding to the clause (xi ∨ yj ∨ zk) and
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the vertex corresponding to the variable xi. Then we represent ei by a 2-link-
chain, where one of the links is connected to the half-circle of the clause-circle
labeled with xi on one end, and to the half-circle xi of the variable-circle on the
other. The other link intersects with both the half-circle yj and the diameter
zk of the clause-circle on one end, and is connected to the half-circle xi of the
variable-circle on the other, see Fig. 4(c).

We claim that Φ′′ is satisfiable if and only if Φ3CD has a feasible assign-
ment without crossings. Assume that Φ′′ is a satisfiable instance of PLANAR-
VR1IN3SAT, and let α be a satisfying assignment. A feasible assignment of
edges in Φ3CD is as follows: For each variable-circle corresponding to variable xi,
assign the half-circle labeled with xi or xi depending on whether xi is assigned
to true or false in α respectively. For each clause-circle corresponding to a clause
(xi ∨ yj ∨ zk), assign the half-circle (or diameter) corresponding to the (only)
true literal in the clause, as determined by α. For each 2-link-chain connected
to the variable-circle of xi, if xi is assigned to true in α, then for the link that
is connected to xi, assign the first chain-circle by choosing the half-circle that
does not cross the xi, and continue assigning the chain-circles through the link
without creating any crossings. For the 2nd link that is connected to the xi half-
circle, assign the first chain-circle by choosing the half-circle that crosses the
half-circle xi, and continue assigning the chain-circles through the link without
creating any crossings. This assignment does not contain any crossings. The only
crossings that could occur would be between a chain-circle at the tip of a link
and a clause-circle, but our method of assigning the chain-circles eliminates this
possibility.

For the other direction, assume that Φ3CD has a feasible assignment of edges
without crossings. Then, finding a truth assignment α for Φ′′ is straightforward:
For each variable-circle corresponding to a variable xi, if the half-circle labeled
with xi is chosen, then assign xi to be true, otherwise assign it false. This yields
a satisfying assignment, since the feasible assignment of edges in Φ3CD chooses
exactly one edge from each clause-circle such that there are no conflicts with the
variable assignments and the true literal assignment for the other clauses. ��

5 Drawing with Few Crossings

If G cannot be drawn without crossings using half-circles, there are two natural
optimization problems. Define Min2CD as the following decision problem: Given
(G = (V, E), κMIN ), where G is a planar graph, and κMIN is a non-negative
integer, does there exist an assignment of half-circles (either ci or ci) for each ei ∈
E such that the number of crossings is at most κMIN? The second optimization
problem, Max2CD, is defined as follows: Given (G = (V, E), κMAX), where G
is a planar graph, and κMAX is a non-negative integer, does there exist an
assignment of half-circles (either ci or ci) for some ei ∈ E such that there are
no crossings and the number of assigned edges is at least κMAX? We prove that
both problems are NP-hard by reductions from the Planar Degree-3 Independent
Set problem (PD3IS). Let H = (VH , EH) be an undirected graph. We say that
a set I ⊆ VH is independent if for all pairs (i, j), where i, j ∈ I, (i, j) /∈ EH .



156 A. Efrat, C. Erten, and S.G. Kobourov

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

(a)

n−k+1 links

(b)

Fig. 5. (a) Min2CD reduction. Vertex circles correspond to vertices in H, chain circles
correspond to edges in H, and tail circles are auxiliary circles. (b) The original graph
H drawn on an integer grid.

The PD3IS problem is the following: Given (H = (VH , EH), κIND), where H is a
planar graph with maximum degree 3 and κIND is a non-negative integer, does
there exist an independent set I with |I|=κIND?

Lemma 4. PD3IS is NP-hard.

Proof Sketch: Due to space constraints we leave the proof of this lemma to the
full version of the paper [8]. ��

Theorem 4. Min2CD is NP-hard.

Proof Sketch: Let (H = (VH , EH), κIND) be an instance of PD3IS. The reduc-
tion produces a Min2CD instance (G, κMIN ), with κMIN = nH −κIND. Since H
has maximum degree 3, we can find an orthogonal drawing of H, such that each
vertex is on the integer grid of size quadratic in the size of H [22], see Fig. 5(b).
The reduction scales the grid of H by a factor of nH −κIND +1 and replaces the
vertices of H with vertex-circles, circles of diameter (nH−κIND+1) units, see the
large circles in Fig. 5(a). Each edge of H is represented with nH −κIND +1 links
of chain-circles, circles having half a unit diameter connected to a vertex-circle
at its head. Each vertex-circle also has a tail circle, connected to it at its tail in
such a way that the diameter of the tail-circle crosses the tail of the vertex-circle.
Since the given graph H is planar, we can obtain such a grid drawing of circles
without causing any intersection between the chain-circles.

We claim that H has an independent set of size κIND if and only if G can
be drawn using half-circles with at most nH − κIND crossings. Assume H has
an independent set I, where | I |=κIND. Then there are κIND vertices in H
that are pairwise disconnected, which further implies that in G there are κIND

vertex-circles which are not connected by links. Then a feasible assignment of
half-circles which allows a drawing of G with at most nH − κIND crossings
follows easily: For each vertex-circle, if the vertex corresponding to it is in I,
then assign the head of the vertex-circle, otherwise assign the tail as chosen.
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This results in an assignment that will have at least κIND heads, and at most
nH −κIND tails. The chain-circles of the links connected to a vertex-circle which
is already assigned to its head are assigned so that no crossing is created, i.e.,
starting from the chain-circle attached to the already assigned head, choose the
half-circle that does not create any crossings. The chain-circles of the other links
are assigned edges in a very similar way, but this time with no condition on the
assignment of the first chain-circle. Finally the tail-circles are assigned randomly
to the half-circles. Such an assignment assigns half-circles for every circle in the
drawing, and creates no more than nH − κIND crossings. The only crossings
created are those between the tail-circles and the vertex-circles assigned to their
tails. We already know that there are at most nH −κIND such vertex tails, which
implies the first direction of the claim.

For the other direction, assume G has an assignment of half-circles with at
most nH − κIND crossings. Let CH (CT ) be the sets of vertex-circles having
their heads (respectively tails) chosen in this assignment We know that | CT |≤
nH − κIND, since otherwise the assignment would create more than nH − κIND

crossings. This implies that | CH |≥ κIND, since | CT | + | CH |= nH . For
any (ci, cj) pair, where ci, cj ∈ CH , there cannot be any links between ci and cj

because if ci, cj were linked together, each of the nH −κIND +1 links would have
at least one crossing, creating more than nH − κIND crossings which would be
a contradiction. Let I be the set of vertices corresponding to the vertex-circles
in CH ; then I is an independent set with size at least κIND. ��

Theorem 5. Max2CD is NP-hard.

Proof Sketch: The reduction is again from PD3IS. Let (H = (VH , EH), κIND)
be an instance of PD3IS. The reduction produces a Max2CD instance
(G, κMAX), with κMAX = tH − nH + κIND, where tH is the total number
of circles in G. The proof proceeds along the lines of the proof of Theorem 4
with a slight modification: in this case we add nH −κIND +1 tail-circles to each
vertex-circle, rather than just one tail-circle. Then H has an independent set of
size κIND if and only if G can be drawn without any crossings such that at least
κMAX = tH − nH + κIND edges have been assigned to some half-circle. ��

6 Open Problems

We conclude with two open problems: (1) Can Min2CD and Max2CD be ap-
proximated within a constant factor? (2) Can we draw graphs with pre-specified
vertex positions, using elliptic or other parabolic curve segments without creat-
ing too many crossings?
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