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Abstract. We address the need for a high level of abstraction to describe how
devices should work together and to manage their interaction. Our perspective
is from workflow, where business processes are managed by a workflow sys-
tem that assigns tasks, passes them on, and tracks the progress. One can envi-
sion device ecologies for different purposes and situations but this paper fo-
cuses on a device ecology example within the home environment. We illustrate
how a workflow model can be applied to describe and manage device ecologies
— in particular, we treat devices as Web services and utilize the Business Proc-
ess Execution Language for Web Services (BPEL4WS) for describing
workflows in device ecologies. We also show how the DySCo workflow alge-
bra can be employed to model device ecology workflows and discuss how to
model the impact of these workflows on devices’ observable states. The result
of this work is a starting point for a workflow based programming model for
device ecologies.

1 The Rise of Device Ecologies

We are surrounded by appliances, and increasingly so. The American Heritage Dic-
tionary defines an appliance as “a device or instrument designed to perform a specific
function, especially an electrical device, such as a toaster, for household use.” Us-
ability experts have advocated special-purpose devices (in contrast to general-purpose
PCs) which, with their supporting computational and communication infrastructure,
fit the person and tasks so well, are sufficiently unobtrusive and inter-connectivity
seamless, that the technological details become virtually invisible compared to the
task. These devices are often called information appliances, or Internet appliances if
they have Internet-connectivity [5,16]. Part of “smart” behaviour is this interaction
among devices and resources. The current Internet and networking technologies, and
developments in wireless networking enable the “smart” devices to communicate
with one another and with Internet or Web resources. The devices might need to
interact effectively in order to accomplish the goals of its user(s), and such interaction
ability, whether occurring over very short ranges or across continents, can open up
tremendous possibilities for innovative applications.

The American Heritage Dictionary defines the word “ecology” as “the relation-
ship between organisms and their environment.” We perceive the above mentioned
developments as yielding a computing platform of the 21* century that takes the form
of device ecologies consisting of collections of devices (in the environment and on
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users) interacting synergistically with one another, with users, and with Internet re-
sources, undergirded by appropriate software and communication infrastructures that
range from Internet-scale to very short range wireless networks. These devices will
perform tasks and work together perhaps autonomously but will need to interact with
the user from time to time.

There has been significant work in building the networking and integrative infra-
structure for such devices, within the home, the office, and other environments and
linking them to the global Internet. For example, AutoHan [19], UPnP [12], OSGI
[13], Jini [21], and SIDRAH (with short range networking and failure detection) [8]
define infrastructure and mechanisms at different levels (from networking to services)
for devices to be inter-connected, find each other, and utilize each other’s capabilities.
Embedded Web Servers [3] are able to expose the functionality of devices as Web
services. Embedding micro-servers into physical objects is considered in [15]. Ap-
proaches to modelling and programming such devices for the home have been inves-
tigated, where devices have been modelled as software components [9], as collections
of objects [1], as Web services [14], and as agents [18,6]. However, there has been
little work on specifying at a high level of abstraction (and representing this specifi-
cation explicitly) how such devices would work together at the user-task or applica-
tion level, and how such work can be managed.

In this paper, we address the need for a high level of abstraction to describe how
devices should work together and to manage their interaction. Our perspective is from
workflow, where business processes are managed by a workflow system that assigns
tasks, passes them on, and tracks the progress. We can have device ecologies for
different situations and purposes. Here, we focus on device ecologies within the home
environment. We first provide some background in Section 2. Then, in Section 3, we
illustrate how a workflow model can be applied to describe and manage device
ecologies — in particular, we treat devices as Web services and utilize the Business
Process Execution Language for Web Services (BPEL4WS) [2] for describing
workflows in device ecologies. For short, we call such device ecology workflows
decoflows. The idea of a DecoFlow Engine is outlined in Section 4. We also show, in
Section 5, how the DySCo [17] workflow algebra can be employed to model deco-
flows and discuss how to model the impact of decoflows on devices’ observable
states. We conclude with future work in Section 6.

2 Preliminaries

2.1 Modelling Devices

We model the observable and controllable aspects of devices as Web services as done
in [14]. Such device modeling is not inconsistent with emerging standard models for
appliances such as the AHAM Appliance Models [1], where each appliance (such as
clothes washer, refrigerator, over, room air conditioner, etc) is modelled as a collec-
tion of objects categorized according to subsystems. In this paper, we assume that
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aspects of devices can be directly observed and controlled by means of a collection of
Web services, described using the Web Services Description Language (WSDL) [7].
We note that there will be aspects of the device which are not exposed as Web serv-
ices.

2.2 BPEL4WS

BPEL4WS is an XML language for specifying business process behaviour based on
Web services. Quoting from [22]:

“It (BPEL4WS) allows you to create complex processes by creating and wiring to-
gether different activities that can, for example, perform Web services invocations,
manipulate data, throw faults, or terminate a process. These activities may be nested
within structured activities that define how they may be run, such as in sequence, or
in parallel, or depending on certain conditions.”

BPEL4WS has language constructs for manipulating data, handling faults, compen-
sating for irreversible actions, and various structured activities. BPEL4WS assumes
that there is a central engine which is executing the workflow. A BPEL4WS process
or workflow is viewed as the central entity invoking Web services associated with its
(business) partners and having its own services invoked by partners (e.g., when the
partner initiates the business process or receives results for a previously sent request).
We describe the syntax and semantics of the BPEL4WS constructs together with our
example below.

3 Modelling Device Ecology Workflows
3.1 An Example Decoflow

We consider a decoflow for someone we call Jane involving a television, a coffee-
boiler, bedroom lights, bathroom lights, and a news Web service accessed over the
Internet. Figure 1 describes this decoflow. The dashed arrows represent sequencing,
the boxes are tasks, the solid arrow represents a control link for synchronization
across concurrent activities, and free grouping of sequences (i.e., the boxes grouped
into the large box) represents concurrent sequences.

This decoflow is initiated by a wake-up notice from Jane’s alarm clock which we
assume here is issued to the Device Ecology Workflow Engine (which we call the
Decoflow Engine) when the alarm clock rings. This notice initiates the entire
workflow. Subsequent to receiving this notice, five activities are concurrently started:
retrieve news from the Internet and display is on the television, switch on the televi-
sion, boil coffee, switch on the bedroom lights, and switch on the bathroom lights.
Note the synchronization arrow from “Switch On TV” to “Display News on TV”,
which ensures that the television must be switched on before the news can be dis-
played on it. After all the concurrent activities have completed, the final task is to
blink the bedroom lights, in order to indicate to Jane that the decoflow tasks have
completed. This scenario was inspired by [4].
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Fig. 1. A Device Ecology Workflow

3.2 The Decoflow in BPEL4WS

The above decoflow can be described using BPEL4WS. The process is given in out-
line as follows in Figure 2:

<sequence>
<receive partnerLink="wakingUp"
portType="1ns:wakeUpNoticePT"
operation="sendWakeUpNotice"
variable="WN">
</receive>
<flow>

<links>

<link name="tv-to-news"/>
</links>
<sequence>

<invoke partnerLink="newsRetrieval"
portType="1lns:newsUpdatePT"
operation="requestNews"
inputVariable="newsRequest"
outputVariable="newsInfo'">
</invoke>

<invoke partnerLink="tv"
portType="1ns:tvControlPT"
operation="displayOnTV"



Service-Oriented Device Ecology Workflows 563

inputVariable="newsInfo"
<target linkName="tv-to-news"/>
</invoke>
</sequence>

<invoke partnerLink="tv"
portType="1ns:tvControlPT"
operation="sendTVCommand"
inputVariable="switchOnTVRequest'>
<source linkName="tv-to-news"/>
</invoke>

<invoke partnerLink="coffeeBoiling"
portType="1lns:boilerControlPT"
operation="sendCoffeeBoilerCommand"
inputVariable="boilCoffeeRequest"">
</invoke>

<invoke partnerLink="bathroomLighting"
portType="1lns:bathroomLightControlPT"
operation="sendLightCommand"
inputVariable="switchOnLightRequest">
</invoke>

<invoke partnerLink="bedroomLighting"
portType="1lns:bedroomLightControlPT"
operation="sendLightCommand"
inputVariable="switchOnLightRequest">
</invoke>
</£flow>

<invoke partnerLink="bedroomLighting"
portType="1ns:bedroomLightControlPT"
operation="sendLightCommand"
inputVariable="blinkLightRequest'>

</invoke>

<reply partnerLink="wakingUp"
portType="1ns:wakeUpNoticePT"
operation="sendWakeUpNotice"
variable="WNHandled"/>

</reply>

</sequence>

Fig. 2. Outline of the process in BPEL4WS.

We first note the structure of the decoflow indicated by the following tags in Fig-
ure 2. The outermost <sequence>..</sequence> tags sequences the inner four
activities  encapsulated  within  the tags <receive..>..</receive>,
<flow>..</flow>, <invoke..>..</invoke> and <reply..>..</reply>:

1. The first <receive..>.</receive> activity and the final <re-
ply..>.</reply> activity represents the DecoFlow Engine receiving the
wake-up notice, and informing the alarm clock that the wake-up notice has
been handled.

2. The <flow>..</flow> tags indicate that the five immediately nested ac-
tivities, i.e., the <sequence>..</sequence> activity and the four <in-
voke..>..</invoke> activities are to be carried out concurrently.



564 S.W. Loke

fore replying the alarm clock.

4. The <link>..</1link> from tv to news represents the dependency of the
display news operation on the switch on television operation. Note that the
switch on television operation is the source and the display news operation is
the target, since the target depends on the source, and so, the source must
complete before the target begins.

BPEL4WS has the notion of partner link, where a partner has a relationship with
the business process, and represents both a consumer of a service provided by the
business process and a provider of a service to the business process. In this context, a
partner relationship between a decoflow and a device signifies that the device is used
in the decoflow. A partner link can be defined by two roles, one to be played by the
partner and the other by the business process. Sometimes only one role is given in a
partner link definition implying that the partner expresses a willingness to link with
the business process without placing any requirements on the business process, or
conversely, i.e. the business process links with other partners without requirements on
the partner. In this context, such roles provide semantics as to the role played by a
device for that decoflow. For example, the following partner link is between the de-
coflow and the television, where the television is viewed as a service.

<plnk:partnerLinkType name="tvLT">
<plnk:role name="tvService">
<plnk:portType name="pos:tvControlPT"/>
</plnk:role>
</plnk:partnerLinkType>

There is only one role in this definition, and it is to be taken up by the television.
The port type given is a communication endpoint for accessing television controls.
Note that only one role is given and is taken up by the device. The decoflow need not
provide any services in this partnership with the television.

Associated with each port type is one or more operations, corresponding to Web
service methods. For example, the tvControl port type has the displayOnTV opera-
tion.

<portType name="tvControlPT">
<operation name="displayOnTV">
<input message="pos:newsInfoMessage"/>
<fault name="cannotCompleteWN"
message="pos:WNFaultType" />
</operation>

</portType>

If there is fault with the invocation of this operation, the fault handler is invoked as
explained later.

Using such partner link types, actual partner links can be defined. For example, the
following partner link is an instance of the tv partner link type, where the partner or
the device’s role is specified as one offering the television service. Since there is
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only one role, no requirements are placed on the decoflow (or the DecoFlow Engine)
in this partner relationship between the decoflow and the television.

<partnerLink name="tv"
partnerLinkType="1ns:tvLT"
partnerRole="tvService"/>

But consider the following partner link type and its instance partner link.

<plnk:partnerLinkType name="wakingUpLT">
<plnk:role name="wakingUpService">
<plnk:portType name="pos:wakeUpNoticePT"/>
</plnk:role>
</plnk:partnerLinkType>

<partnerLink name="wakingUp"
partnerLinkType="1ns:wakingUpLT"
myRole="wakeUpService" />

The partner link type defines only one role but unlike the partner link type defini-
tion for the television, this role is taken up not by a device but by the decoflow in-
stead. Also, since there is only one role, no requirements are placed on a partner de-
vice in this partner relationship between a device (which we have assumed is an
alarm clock) and the decoflow. In other words, the decoflow offers this wakingUp-
Service to any device, or any device can issue a wake up notice to initiate an instance
of this decoflow, but only because we have defined the decoflow in this way.

Partner relationships with the other devices and their port types are similarly de-
fined. We have not assumed an ontology for describing partner relationships and port
types. In practice, device standards such as [1] can be used to specify the operations
and port types for the respective devices. Through the use of such standards, such
operations can be expected of different appliances (even of different manufacturers)
as long as they adhere to the standards. We can view defining such partner relation-
ships between a device and a decoflow as defining an abstraction (of some aspects) of
the device which will be utilized in the decoflow, where this abstraction of the device
is a subset of the device’s capabilities (as accessed by their corresponding opera-
tions).

3.3 A Library of Decoflows

The above decoflow is only one example of how a wake-up routine can be captured.
There could be other routines such as come-home-from-work routines or entertain-
guests routines, etc, which can be captured in decoflows. A library of decoflows can
be constructed, indexed on particular situations.

We also note that some of these decoflows might not be invoked by the user (or
through the user’s initiative) but by devices’ own initiative. For example, a device
might initiate a decoflow to further secure a home if it detects unwanted intruders
when the owners are out for dinner, or initiate a decoflow to replenish (e.g. to order)
certain household items based on a provided budget. A decoflow initiated by a device
can be programmed to seek human approval for more critical tasks.
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4 Decoflow Execution via the Device Ecology Workflow Engine

The above workflow can be executed by the DecoFlow Engine, as Figure 3 illus-

trates.
Devicar - -
- ' va N |
- | DecoFtew | - '
'I' Engine 'I'

Fig. 3. DecoFlow Engine interacting with Device Ecology

The cubes represent devices and the bi-drectional arrows indicate messages ex-
changed with these devices while executing a decoflow specification. We assume the
devices are described and connected to the DecoFlow Engine via some underlying
networking and service infrastructure such as UPnP. The DecoFlow Engine is in
charge of invoking the appropriate Web services on the devices, in order to request
resources to perform tasks and maintaining the execution state of the process.

The execution state of the process are recorded in one or more declared variables
such as the following, whose values can be used as inputs to operations or to store
outputs of operations.

<variables>

<variable name="WN" messageType="1lns:WNMessage"/>

<variable name="newsRequest"
messageType="1ns:newsRequestMessage" />

<variable name="newsInfo"
messageType="1ns:newsInfoMessage" />

<variable name="boilCoffeeRequest"
messageType="1ns:boilCoffeeRequestMessage" />

<variable name="switchOnLightRequest"

messageType="1ns:switchOnLightRequestMessage" />
<variable name="blinkLightRequest"
messageType="1ns:blinkLightRequestMessage" />
<variable name="switchOnTVRequest"
messageType="1ns:switchOnTVRequestMessage" />
<variable name="WNHandled"
messageType="1ns:WNHandledMessage" />
<variable name=
"WNFault" messageType="1lns:WNFaultType"/>
</variables>

It is too simplistic to assume that the decoflow will complete without any prob-
lems. BPEL4WS has constructs for defining fault handlers and for throwing excep-
tions. For example, the following description states that if a fault occurs in the invo-
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cation of an operation, i.e., the wake up routine (as defined by the decoflow) cannot

be completed, a reply is sent to the alarm clock that there has been a fault.
<faultHandlers>
<catch faultName="lns:cannotCompleteWN"
faultVariable="WNFault">
<reply partnerLink="wakingUp"
portType="1ns:wakeUpNoticePT"

operation="sendWakeUpNotice"
variable="WNFault"

faultName="cannotCompleteWN" />
</catch>
</faultHandlers>

By including the following declaration in port type definitions
<fault name=
"cannotCompleteWN" message="pos:WNFaultType"/>

operations can be associated with the fault handler by means of the common fault
name.

5 Formal Modelling of Devices’ Decoflow and Changes in
Observable States

To the author’s knowledge, BPEL4WS has not yet been given a formal semantics.
But a basic formalization for workflow is given in a process algebraic manner for the
DySCo framework [17], where the basic tasks in these workflows are Web service
invocations. By modelling the controllable and observable aspects of devices as Web
services, we can employ this formalisation in specifying decoflows.

From a given device’s point of view, assuming that the device has an observable
state, we would also like to model the changes to the device’s observable state as the
decoflow executes. Some of the activities of the decoflow can affect the device’s
observable state (for example, if the activity is one which invokes a Web service of
the device) but there will be activities of the decoflow which does not affect the de-
vice’s observable state (e.g., if the activity invokes a Web service of some other de-
vice). A device can also, with respect to external observers, spontaneously move from
one observable state to another, that is, the device might change its observable state
without sending or receiving any messages. Such spontaneous moves has been mod-
elled in [20], where agents are modelled with observable states and the observable
state of an agent can spontanecously change, spontaneous in the sense that it changed
without the agent receiving any messages. The assumption there is that the spontane-
ous change is due to the agent’s own internal processes, and represents the proactive
nature of these agents. We can similarly model devices with such spontaneous
changes, where spontaneity is with respect to a given decoflow and is in the sense
that the change is not due to any of the activities of the decoflow being considered. In
reality, such changes, thought spontaneous, might be due to some other decoflow that
is concurrently executing, or due to actions of other users directly on the device — for
example, before the decoflow instructs the bathroom lights to turn on, the user might
have already turned it on.

Below, we present a basic formalization of decoflow including synchronization
between concurrent activities based on the DySCo formalization in [17]. Other for-
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malizations for service-oriented workflows might also be used. We need only con-
sider global state in decoflows. We also provide transition rules that can be used to
model changes in a device’s observable state.

5.1 Decoflows with DySCo

The grammar for decoflows are given as follows.

W i=c¢ empty decoflow
| T task where
| W.W sequence T i:==t,(0).A(n)
| W+ W choice | A'(n).t,(o)
| W || W concurrency | ty(o)
| W loop

where W represents a decoflow, A(n) and A’(n) represents the source of a synchroni-
zation link named n and the target of the synchronization link, respectively, ti(c)
represents a task utilising device d with actual parameters given by 6: N —>V (where
N is a set of variable names and V is a set of values), T is a task suffixed by a source
of a synchronization link, a task prefixed by a target of a synchronization link, or a
task without any synchronization links. The condition ¢ for choice is a binary func-
tion with domain N. This formulation of workflows is the same as that in DySCo but
with a definition of task that includes synchronization links, and resource is, in our
case, a device. The task, in our case, assuming we use BPEL4WS operations, is an
operation on a device, which is either an invoke, receive or reply.

The labelled transition system comprises the following rules of the form

remises
(label) L%
conclusion
taken from [17]:

o'=p(td,Q>0)
Q:ut,(0)——>Q<o':e

(step)

where @ represents information to be made externally visible as a result of the action.
In decoflows, we can interpret this to mean a signal given to the user that the task has
been carried out. € represents the global state of the workflow. The functions (®) and
() are used to extract information from the global state and to feed information into

the global state respectively. p is a function representing the results of the execution
of a task.

I
(OOP)Q::!W—T>Q::W(!W)

where T represents null visible information.
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Sequence is represented as follows:
Q:Wl—— QW'
(seql)
Q:WI.W2——5Q"WI1'"W2

(seq2)

Qe W2—5Q:: W2

The symbol o represents visible information. Choice depends in the binary func-
tion ¢ whose evaluation determines which alternative to execute. Two rule are given
which represents the non-determinism.

(choicel) eval(©)=1
QWi+ W2——Q::W1
(choice2) eval(c)=2

QWi+ W2——Q:W2

Concurrency is given by the following four rules:

(concl)

Q:A(n).W1[|A'(n).W2——> Q::W1||[W2
Q:Wl—— QW'
Q:WI[[W2——=Q":W1'|W2
Q:W2——-Q":W2'
Q:WI[[W2——>Q":W1||W2'
Q:WI——Q"W1' and Q:W2—>Q":W2'
Q:WI[W2—5QVQ":W1|[W2'

(conc?)

(conc3)

(conc4)

The four rules represent the different possibilities in concurrent execution, either
we resolve a synchronization link, W1 executes first, W2 executes first, or both exe-
cutes at the same time. The operator Gcombines the two resulting states, perhaps
serializing the updates. Note that concurrent access to Q has not been represented
explicitly. The first rule (concl) is not in DySCo, but the rest are. (conc3) is not nec-
essary since the concurrency operator is commutative (but is added for comparison
with [17]). In addition, as observed from (concl), execution cannot continue if the
workflow is such that there is no matching source and target for each synchronization
link.

The example decoflow given earlier can be expressed using the following expres-
sion:
rev,. ((inv,.(A(tn).inv,)) || (inv,.A(tn)) || inv, || inv, || inv,) . inv,. rep,

where rcv, is a receive via the sendWakeUpNotice operation,
invy is an invocation of the requestNews operation,
inv, is an invocation of the displayOnTV operation prefixed by the link target,
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invy is an invocation of the switchOnTVRequest operation
suffixed by the link source,

inv, is an invocation of the sendCoffeeBoilerCommand operation,

invy is an invocation of the sendLightCommand operation for the bathroom,

inv, is an invocation of the sendLightCommand operation for the bedroom,

invy, is an invocation of the sendLightCommand operation

to blink the bedroom lights,

and rep, is a reply to the sendWakeUpNotice operation. A(tn) and A'(tn) corresponds
to the source and target of the “tv-to-news” link.

The execution proceeds as follows:

rev,. ((inv,.(A'(tn).inv)) || (inv,.A(tn)) || inv, [ inv, [[inv,) . inv, . rep,

— (using seq)

((inv,.(A'(tn).inv ) || (inv,.A(tn)) || inv, || inv, || inv,) .inv,.rep,

—> (using conc repeatedly, and by commutativity of ||)

(A(tn)|| (A'(tn).inv, ) || € || € || €) . inv, . rep,

—> (using concl)

(€ llinv, [ €] €] €) . inv,. rep,

—> (using seq, and since € || W = W)

inv, . rep,

—> (using seq)
rep,

—> (using seq)
£

5.2 Modelling Changes in Devices’ Observable States

Now we turn to the modelling of a device’s observable state. Given a device d, we
can model d’s possible changes in observable states as a decoflow is being executed.
Suppose D represents d’s initial observable state. Then, after executing a decoflow
W, we would like to compute the series of observable states that d goes through when

W is executing, i.e. D', D> D°, D, ..., D", where D —Y 5D". Note that not all
the operations in W will affect d. Suppose that only two operations in W affects d,
namely tq(0) and £4(0’), and that these two operations are sequenced in W, i.e. W =
W’ . () W’ . £¢(0’) . W, for some W’, W”’, and W’”’. Also, suppose we have

D —42 5D and D' —+“>5D". Then, D ——D".
If we now consider a set of devices (d1, d2, d3, ..., dk), we can work out the effect

of a decoflow W on the collective observable state of the devices:

(D,,D,, ..,D,) —¥—(D,,D,, .., D,)



Service-Oriented Device Ecology Workflows 571

If we perform analysis on (D,', D,', ..., D,"), we can predict particular effects of
the decoflow W. For example, we can define a function num_lights on on the collec-
tive observable states of the devices, where num_lights_on(D|', D,', ..., D,") is the

number of lights which have been switched on in the given state (D,', D), ..., D,").
By simulating the execution of W on the devices, we can determine if W will produce
a collective observable state where num_lights_on(D/', D,', ..., D,") >20. A simi-

lar analysis technique can also be used to determine if a decoflow will ever switch a
device on or off, and what circumstances will prevent a device from being switched
off.

In reality, the problem is more complex. One complexity is due to two avenues by
which a device can be controlled. One is via the system, and the other is direct control
by a human user. For example, a light can be switched on manually by the user or
automatically by the system in one or more decoflows. Thus, with respect to a deco-
flow, not all the changes in a device’s observable state is due to actions of that deco-
flow. A user or another concurrently executing decoflow might have changed the
device’s observable state. To model changes in state not due to a given decoflow, we
introduce the idea of spontaneous state changes analogous to the spontaneous moves
mentioned earlier. With such spontaneous state changes, using the example of the

effect of W on D above, we might not have D —Y 5D" anymore, but

D —Y D" for some D" # D", due to spontaneous state changes apart from
the actions of W on d. Because it is practically impossible to predict when such
spontaneous state changes might occur, when we analyse the effect of W, we do so
with an assumption about the set of possible spontaneous moves that might occur
during the execution of W, i.e. this set of spontaneous moves become a parameter to
the analysis.

For example, suppose we have the following transition rule that defines only one
possible spontaneous move of a device, which in this example, is a lamp with two

observable states (“off’, denoted by D, and “on”, denoted by D’):

D' —werswittholf s 1y The user can only switch off the lamp but the system can

switch it on or off automatically. The device can be switched on or off via a Web
sendLightCommand(on) Dv and Dv sendLightCommand(off) D ‘

service invocation: D
Given a decoflow W which includes these invocations, the transition rule for the
user’s possible action, and that the initial state of the lamp is “off”, we can determine
what possible states the lamp can be in at any point in the execution of W. Suppose,
at a given point in time, W has partially executed, and so far, has not invoke any
services on the lamp, then the lamp must be in the “off” state at this point, since the
user cannot switch it on.

The above example is intentionally simple. More generally, analysis can be done to
determine if a given decoflow will cause undesirable effects on the device ecology as
a whole, i.e. to verify safety properties of the decoflow with respect to a device ecol-
ogy, or whether the decoflow will result in intended effects, i.e. to ensure liveness
properties. Liveness properties include the property of a decoflow completing, but
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also that it completes with intended effects. The user can pose “what-if” questions to
the DecoFlow System situated between the user and the device ecology to examine
properties of decoflows before executing them.

6 Conclusions and Further Issues

We have shown by example how BPEL4WS can be used to model device ecology
workflows where devices are modelled as a collection of Web services. Note that
these means that any other Internet based Web service can be integrated into the same
workflow with these devices and existing Web service technology can be applied to
interact with these devices. BPEL4WS is a practical language but has not been given
a formal semantics. Hence, we have also adapted the DySCo algebraic workflow
model for device ecology workflows or decoflows. Lastly, we have outlined how to
analyse the effect of a decoflow on a collection of devices’ observable states. We note
that state space explosion can potentially occur and will require further experimenta-
tion to determine what size of device ecologies and device complexity can be tracta-
bly tackled. The result of this work is a basis for a workflow based programming
model for device ecologies. Another contribution of this work is the proposal of a
technique to analyze (e.g., by simulation) or to prove properties of decoflows, where
a property of a decoflow is about an effect that a decoflow can have on a device or a
collection of devices. We are currently investigating a prototype implementation over
UPnP. A number of outstanding issues need to be addressed:

1.  When should a decoflow be triggered and stopped? A decoflow may start a
process involving a number of devices and have long lasting effects. Hence,
there should not only be facilities to terminate a decoflow but perhaps also to
compensate for a cancelled decoflow.

2. How can the user perceive the progress of the workflow, and intervene
freely? This is as much a Human-Computer Interaction issue as it is a dis-
tributed computing one. Even non-technically minded users should be able
to flexibly intervene, e.g., to terminate or alter, a decoflow.

3. How can the decoflow deal with faults? This is related to the problem of de-
fining and executing compensations as stated above.

4. How can we integrate event reporting with decoflows? A spontaneous state
change might result in the emission of an event message which should be
handled by the DecoFlow Engine.

5.  We have also not considered preconditions for tasks in a decoflow, in order
to deal with situations where the task to perform is redundant.

Some devices might also exhibit more autonomous, proactive, and intelligent be-
haviour — we would like to see if such devices can be adequately modelled with
spontaneous state changes. Also, we plan to identify further properties of decoflows
and employ Petri net analysis techniques to analyze properties of decoflows as often
used for analyzing workflows and multiagent interactions.

We have so far considered only a centralized engine for executing decoflows.
Multiagent distributed workflows using a decentralized peer-to-peer model provides
greater flexibility and facilitates on-the-fly just-in-time ad hoc workflows directly
between devices without the mediation of a heavy-weight central engine. This would
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be another avenue of investigation. Lastly, recent work have considered Semantic
Gadgets [11], using the Semantic Web framework to describe the semantics of de-
vices, to discover new devices and to dynamically compose device coalitions. It
would be interesting to consider semantics based extensions to dynamically compose
decoflows, or less ambitious is, given an abstract description of a decoflow, dynami-
cally bind the tasks mentioned in the decoflow to devices’ Web services, thereby
reducing the burden of composing a detailed decoflow prior to runtime, and provid-
ing flexibility by allowing alternative devices or resources to be selected and inte-
grated into the decoflow at runtime.
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