WS-Workspace: Workspace Versioning for Web
Services

Garret Swart

Computer Science Department
University College Cork
Cork, Ireland
g.swart@cs.ucc.ie.

Abstract. When using web services to perform complex data manipulations,
users and administrators need control over how their changes are managed and
seen by other clients of the service. This includes support for undo of changes,
batch publishing of many changes, ‘what if* analysis, the collaboration of sev-
eral people in making and approving a complex change, workspace based ac-
cess control, and the auditing and tracking of changes. We propose taking the
workspace versioning model, used extensively in CAD and CASE products,
and using it to augment web services in a backward compatible way based on
the WS-Coordination protocol. The resulting protocol, which we call WS-
Workspace, facilitates the writing of web services that support applications with
undo, collaboration, and auditing.

1 Introduction

The evolution of data access in web services is following a path that traditional web
applications have already evolved along. At the dawn of the web, web applications
filled their first niche as information navigators, they then adapted to meet the needs
of commerce by developing order entry capability, and now, as the web is being used
as a delivery vehicle for applications of all types, web applications are struggling to
meet the needs of more general online data authoring and manipulation.

Web Services are going through a distributed version of this same evolution. The
first applications for web services were oriented towards distributed information
access, allowing applications like comparison-shopping, contacting many product
sources to find the lowest price; information portals, collecting information from a
variety of information sources and presenting them in the same web page (e.g.);
and application integration (e.g. |20)]), integrating application functionality from vari-
ous vendors onto a provider’s web site. Evolving standards provide support for these
uses of web services.

Distributed order-entry web services are in development, allowing the reliable and
secure placing and accepting of orders, allowing both horizontally distributed appli-
cations, such as booking an itinerary on a variety of carriers and hotels, and vertically
distributed applications, such as automatically matching incoming inventory to out

M.E. Orlowska et al. (Eds.): ICSOC 2003, LNCS 2910, pp. 351-366, 2003.
© Springer-Verlag Berlin Heidelberg 2003

352 G. Swart

going orders. These applications require coordination between the services to ensure

that partial updates are not committed. For example, to make sure that a partial itin-

erary is not booked or that an order for additional inventory is not confirmed before
the order for the finished product is confirmed. Proposals such as WS-Transaction
protocol [E] are addressing these issues.

The next stage of web service evolution is to allow for more general online
authoring and manipulation of data. Complex data types and web-based maintenance
of these values are becoming more common in server-based applications as the com-
plexity and richness of data maintained by web applications is increasing. System
architects would like to use web services for applications with complex authoring
needs such as:

e Resource scheduling: Defining resources, constraints, resource classes, and re-
source demands and allowing the authoring and editing of schedules, either auto-
matically or manually.

e Work-flow management: Defining processes and flows and maintaining the state
of orders, inventories, claims, or sales calls.

e Catalogue maintenance: Authoring online catalogues of all types, for example a
school’s class offerings, a mail order firm’s product offerings, or a service com-
pany’s service offerings.

e Business Rules maintenance: Online authoring of rules that determine how a sys-
tem works, e.g. how it determines pricing, which products to present to the cus-
tomer, how to deal with delinquent customers, or how the work flow should be
routed.

e Online content authoring: From Web Logs to Photo Albums to RFP preparation,
users are authoring complex entities constructed from many components.

In each case, the objects being authored are complex, have interactions with other
objects and the changes need to be tested by humans before they are published
widely. Only the last example is a traditional authoring application, however, taking
an authoring point of view on all these applications can make understanding the
problem and its solution easier. Note that in each case a particular user update may
require changes made to data that is accessed through many different web services
and stored on many different underlying data stores.

Web services underlying such applications would benefit from facilities for:

e Batched Publishing: The ability for a caller to specify that the changes being made
should be held until the entire batch is completed and then published as a unit for
the other callers of the service.

e ‘What if* analysis: The authoring of a possible future state so that it can be ana-
lyzed to determine whether the effort should be rolled back or continued. A cau-
tious management team may want to see a complete picture of a future state before
any steps in that direction are taken.

e Undo: The ability for a caller that has just made a change to issue a subsequent
undo request that would undo the last change.

e Collaborative Workspaces: The ability for a caller to make an update in a work-
space that may be shared and further modified by a select group of other users.

WS-Workspace: Workspace Versioning for Web Services 353

e Controlled Update: The ability for management to define processes for changing
certain data, e.g. all changes must first be tested by QA, approved by marketing
and signed off by legal before being published on a public site, and making sure
that the web services manipulating the data, enforce those rules.

e Auditing: The ability to see what changes were made and who made them.

e Coordinated Update: The ability to combine changes made through different web
services into one perceived global change to the system state.

Most web services, and in fact most web applications, do not offer any of these fa-
cilities today. Commonly, each valid update a caller performs using a web service is
immediately committed to the database to be seen by all other callers of the web
service. Undo is usually nonexistent: once an update is performed, the previous state
has been lost. Programmers implement auditing on a piecemeal basis. Sharing work
in progress is not a concept in most web services.

In a separate paper

We propose to make the web services world ready for complex object authoring by
introducing the concept of workspace versioning to web services and the data that
they manipulate. Workspace versioning has been used extensively in the CASE [
and CAD industry but it is not generally used in server based applications. This ex-
tension builds on the WS-Coordination extension IIE] It allows changes made by a
web service invocation to create new versions of the updated objects that are part of a
particular workspace.

In this paper we are discussing the versioning of the data being manipulated by a
web service, not the versioning, compatibility issues or configuration of the web
service implementation or its WSDL interface. That is a separate problem that is not
addressed in this paper.

Existing work in making versioned updates via the web has been done primarily in
the context of content and source management. WebDAV ,] provides a proto-
col to allow documents to be versioned and published. The Wiki repository [BO]
allows documents to be added and updated using a web interface. Commercial con-
tent management systems like Interwoven [|0] and Vignette [@I] provide interfaces for
updating objects living in a virtual versioned file system.

Traditional CAD and CASE systems are now also allowing access to their systems
via the web, very commonly for viewing and sometimes for update.

2 Workspace Versioning Concepts

There is a rich literature and practice in versioning, especially for object and docu-
ment systems E,, , . Here we generalize and formalize the traditional
versioning concepts so that they can be applied to arbitrary data objects.

Data Store: A set of data items. This may be a file system, a relational database,
an object store or an ERP system. The operations that may be issued on a data store
and the data items that it supports depend on the type of the data store and the APIs
that it supports. A single web service may use many data stores and a single data store
may be used by many web services.

354 G. Swart

Transactional data store: A data store that supports transactions. To facilitate
transactions that span data stores, data stores typically register themselves as resource
managers with a transaction manager as they are accessed by a transaction. The data
store is then invoked as the transaction manager coordinates a rollback or a commit of
the transaction El .

Data item: A uniquely identified item of data present in a data store. This may be
a row in a relational store, an object in an object store, a file in a file store, or an ac-
count in an ERP system. A data item may have a complex value with many proper-
ties associated with it, including references to other data items. Each data item is
assumed to get a unique identity when the data item is first created and for that iden-
tity never to change even as changes are made to the value of the item. In this way
the item’s identity is distinct from a mutable primary key in a relational database or a
file name in file system.

Data item version: A value of a data item to be made visible in a particular con-
text. More formally it is a node in an acyclic directed graph associated with the data
item, each node in the graph is labeled with a sequence of operations that were used
to create that version. The value of each version is the result of applying that se-
quence of operations. Applying an operation to an existing data item version creates a
new version with an arc between the old version and the new one. The original ver-
sion is called the predecessor and the resulting version is called the successor. The
new version is labelled with the new operation appended to its predecessor’s label.
Since operations may be applied to any version of a data item, a version may have
many successors. The version of a data item that results when a delete operation is
applied has a special value that precludes any additional operations being applied to
it. An insert operation creates a new data item with a single version node.

Versioned data item: A data item that may have more than one version in its data
store. Not all versions of a data item must remain accessible, only those that can be
accessed by active workspaces.

Common ancestor: The first common version that may be reached by following
back through the predecessors of two versions of the same data item. Since all data
items start as a single version, created by the insert operation, any two versions of the
same data item must have a common ancestor.

Data item merge: An operation on two versions of the same data item resulting in
a new data item version created by merging the operations applied to each version
since their common ancestor. The resulting data item version has both data item
versions as its predecessors. The semantics of the merge operation depends on the
data store and the data item; some merges can be done automatically by the data store
— when the operations applied to each version since their common ancestor commute
— while others require program or even human intervention to resolve. Merges that
cannot be resolved automatically are called merge conflicts. The merge operation
itself must be commutative and the merge of a version with any of its ancestors or
itself, results in the same version. That is, given two versions x and y of the same
object with common ancestor z, then

WS-Workspace: Workspace Versioning for Web Services 355

Data Item 1

--- Main WS

Fig. 1. Illustration of three workspaces and two data items. Each workspace contains a version
of each data item. The versions of each data item form a directed graph rooted an initial insert
operation. Two merge operations are also illustrated on the left showing how commutative
operations are merged, and on the right, how a delete operation might take precedence

merge(x,y) = merge(y,x)
merge(x, 7) =x
merge(y,z) =y

Versioned Data Store: A data store that holds versioned data items.

Workspace: A partial function from the set of data items to the corresponding data
item versions. The range represents the data items that are available in the workspace.
The range defines the values that are operated on by transactions executing in the
context of this workspace. For example, above in Fig. 1, the domain of WS1 is the
set consisting of data item 1 and data item 2 while the range is the data item version
labeled “op.(op,(op,(insert)))” associated with data item 1 and the deleted value asso-
ciated with data item 2.

Update: A set of operations to apply to a workspace atomically. More formally it
is a partial function from the set of data items to a sequence of operations that is to be
applied to that data item. An update is applied to a workspace by applying the opera-
tion sequences to the corresponding data item versions from that workspace, creating
new successor versions, and updating the range of the workspace to include those
new versions in place of the old versions. If an operation is an insert, then a new data
item is added to the domain of the workspace. Data store consistency constraints
should be checked in each workspace as operations are applied.

If W, is the version of data item i inside workspace W and domain(W) is the set of
data items which have versions in W, and U is the update whose value for data item i

356 G. Swart

is U, then the range of the workspace W’ that results from applying the update U to
Wis

Next Rev Dev
WS
4 Ui e domain(W) N domain(U) Ux(W)
ST o Ui € domain(U) — domain(W) Ui(insert)
Version Dev
e v U

7? i € domain(W) — domain(U) W

Production | | Pre-production Workspace Branch: A child workspace created by

WS WS making a copy of an existing parent workspace.

Changes in the child or the parent workspace do not

Fig. 2. Workspace Relation- affect each other. This is used to create a context for

ships. making changes that are not seen by users of other

workspaces. It can also be used to implement what

some version management systems call a snapshot or a label. Workspaces are gener-
ally named to allow them to be more easily referenced by users.

Workspace Merge: The workspace that results from computing the union of the
data item merges of the data item versions from one workspace with the correspond-
ing data item versions from a second workspace and any data item versions from
either workspace which do not have corresponding versions in the other. The range
of the merge is of workspaces S and T is:

Ui € domain(S) N domain(7) merge(Si’ Tn)

u U, S

i € domain(S) — domain(7) ~i

u U

i € domain(7) — domain(S) T:

The merged workspace typically replaces one of the original workspace when the
merge is performed in the context of that workspace. The merged workspace should
be verified to satisfy all of the data store’s consistency constraints. A workspace
merge replacing the parent workspace is typically used as the commit mechanism in a
version based long running transaction system. Such a merge would be successful
only if there were no conflicts in any of the individual item merges.

Check out: An exclusive lock held by a child workspace on a data item version in-
side of the parent workspace. A check out lock is acquired to preclude the introduc-
tion of any successor version of the version in the parent. The lock is typically re-
leased when the child merges into the parent workspace. To reduce the chance of
merge conflicts on a change, one should acquire a check out lock for the affected
objects in all the workspaces where merges are anticipated. Note that this does not
preclude parallel activity when that activity is localized in a portion of the workspace
tree unaffected by the check out lock.

WS-Workspace: Workspace Versioning for Web Services 357

Main Workspace: A distinguished primordial workspace that is the parent to all
other workspaces. Note that the version of the data items in the main workspace is
sometimes called the ‘current’ version of a data item.

In practice a more complex strategy with several distinguished workspaces is gen-
erally used. For example, an enterprise may maintain a production workspace being
used by customers, a pre-production workspace getting final approval from manage-
ment, a development workspace holding the latest integrated version of the current
web site, and another development workspace with a partially integrated next release
of the web site. This is illustrated in Fig. 2.

3 Workspace Versioning

Orthogonal versioning refers to the process of taking an existing data access API and
turning it into a versioned data access API while supporting the original API and
defining the default behaviour so that version unaware applications will still behave
naturally. This was the approach that was taken when Microsoft Repository was
upgraded from the version-less Version 1 to the version and workspace supporting
Version 2 [3]] and argued for independently in a manuscript by]. It was also a
guiding principle used more recently in defining the semantics in the Oracle Work-
space Manager [.

We extend the notion of orthogonal versioning to say that versioning should not
only be orthogonal to the applications, but should be orthogonal to the web service
protocol being extended.

Rather than taking each web service protocol and independently extending it with
its own notion of versioning; we use the notion of a coordinator from the WS-
Coordination proposal and extend it to manage versioning and workspaces across all
web services using a single extension. In the calling language, ideally, the workspace
coordinator context is bound to the thread, allowing the workspace to be an implicit
parameter to the web services’ language level access API.

The advantages of this approach are:

. Workspaces and undo can span many web services.

. Having a single versioning approach for all web services reduces the conceptual

load on the programmer.

3. A layered coordination protocol means that web service definitions do not need to
change extensively when versioning is supported; they just have to refer to the
WS-Workspace coordination protocol.

The first advantage is very important as in many applications a single user perceiv-

able change is made up of many updates to many different web services. Just as tra-

ditional distributed transactions and WS-Transaction services allow for short lived
transactions to extend beyond a single data store, so too long lived transactions and
workspaces can be extended to span several data stores. These data sources might
include relational databases, object layers on top of relational databases, Enterprise
Resource Planning (ERP) systems, and content management systems. An example
may include a workspace that contains both changes to a site’s content, stored in a

DN =

358 G. Swart

Table 1. Version Aware Applications and Web Services.

Version Aware | Unversioned
Web Service Web Service
Version Apphc'atlon Special code
Aware specifies
. needed
Application workspace
Version Use distin-
.. . Use current
Oblivious guished
.. state
Application workspace

content management system, and corresponding changes to a site’s database to refer
to that content. Having a workspace containing related changes in several data stores
that can be merged into a production workspace in an atomic action is a new and
powerful capability.

In addition to having version aware and version oblivious applications, an applica-
tion may access versioned and unversioned web services. Consider all four cases
illustrated in Table 1.

A version aware application using a version aware set of web services will specify
the workspace to use and issue any needed branch and merge operations it needs. A
version oblivious application using a version aware set of data stores will need to
execute in the environment of some workspace, the obvious one being the workspace
distinguished by the service or configured when the application is deployed. A more
complex case is when a version aware application is using an unversioned data store.
In this case the application is expecting certain semantics that the data store may not
provide. This is analogous to a transactional program using a data store that does not
provide transactions, e.g. a traditional file system. It can be done, but it has to be
done carefully.

Extending an existing application for versioning can be quite simple. For exam-
ple, an existing web application might store the logged in user in its session state. A
versioned extension of that application might be configured to also store a workspace
context in its session state. To minimally Workspace enable the application, only one
new UI element may be required: A form to trigger the session’s workspace to be
merged into the main application workspace — a long running transaction commit.

4 Workspace Versioning Application Protocol

A sample application protocol for workspace versioning is described below. This
protocol extends the coordination protocol similar to the way that the WS-Transaction
extends the WS-Coordination protocol for the atomic transaction (AT) and business
transaction (BT) protocols.

The operations defined below are the basics needed to meet the requirements of
the web server applications that are the primary target of this effort. Many more entry

WS-Workspace: Workspace Versioning for Web Services 359

(3) Application

Request
Application :-_= Jsar Bl

(6) Application
Response

(1) Create (2) Create

Coordination Coordination (4) Register| | (5) Register

Context Context Update Update
Response Response

: Coordinator :

Fig. 3. Making an update to a Workspace through a Web Service

points could be defined for more complex environments, e.g. allowing data to auto-
matically be updated between workspaces, automatic version check out options,
merging between sibling workspaces, more flexible schemes for backing out com-
mitted operations, or creation of subsetted or time based workspaces. Note that the
‘Application’ in these illustrations may not be a web server application but may be
any process capable of initiating web service calls.

The names of these operations and messages are relative to the base URL, for
which we tentatively propose:

http://schemas.cs.ucc.ie/ws/2003/06/wsws|

The coordination protocol provides for the creation and return of a Coordination-
Context type, the propagation of that type on calls made to other services, and the
registration of services by clients to receive notifications when certain user level
operations are executed.

The following operations are operations of the Workspace Coordinator’s Activa-
tion service. This port type is for use by applications to manipulate the workspace.
The communication pattern is for making an update is illustrated in Fig. 3.

e CreateCoordinationContext Operation: When called to create a context with the
wsws coordination type, it either creates a new workspace or looks up an old
workspace depending on the arguments. The CreateCoordinationContext message
includes the following elements:

— WorkspaceName: The name of the workspace to be created or modified

— ParentWorkspace: The optional name of the parent for the new workspace. If

the WorkspaceName is new and this is not given, the new Workspace will be a
child of the application default workspace.

— User: The optional user name of the user performing the operation. This user is

to be associated with any update made using this Context for auditing or undo.

http://schemas.cs.ucc.ie/ws/2003/06/wsws

360 G. Swart

In addition, if there are any access rules for this workspace, the user will have to
meet those requirements. If the user is missing, there is no user associated with
the context. The user being set here is a representation of the end user that is
using the application either directly or indirectly, not the data store user that is
used to make the connection to the data store. A typical web application runs
using a single data store user per data store even while providing service to
thousands of authenticated end users. The recipient of this operation may trust
that its caller has already authenticated this user. Alternately the user name may
be replaced with a signed delegation so that the coordinator knows that the end
user has authorized the caller to act on its behalf.

The response to this operation is a CreateCoordinationContextResponse message

that contains a CoordinationContext that should be sent passed on to all operations

that are to act in the context of this workspace.

e Refresh Operation: Called with a WorkspaceCoordinationContext. Merges updates
from the parent workspace into this workspace. Responds with a Refresh Re-
sponse message which contains a ConflictList if there were any conflicts, that is,
data items that were changed both in the parent and this workspace since the last
successful Refresh. Data item versions that could not be merged are left unchanged
in this workspace. While conflicts remain unresolved, the workspace may be in an
invalid state and must not be published.

e GetConflicts Operation: Called with a WorkspaceCoordinationContext. Responds
with the list of unresolved conflicts in this workspace, similar to that returned by
Refresh Operation. Conflicts are created by the Refresh operation, above, and are
resolved using the resolve operation below.

e Publish Operation: Called with a WorkspaceCoordinationContext. Merges this
workspace into the parent workspace and returns a Publish Response message. If
there are any conflicts, the operation fails making no updates to the parent work-
space. If this happens, the client should perform the Refresh operation, resolve the
conflicts, and then invoke Publish again.

e Undo Operation: Undoes the last update that was performed by this user in this
workspace. If the user was not set as part of this WorkspaceCoordinationContext,
it will undo the last update committed by any user in this workspace. If there were
any subsequent incompatible changes to those objects, a ConflictList is returned as
part of the response and the objects are left unchanged]. The undo operation
never undoes an undo; it instead undoes the previous committed update. Use the
Redo operation below, to undo an undo. Note that the changes instigated by the
Undo and Redo must be committed before any other client can see them. This op-
eration may also fail due to the data for the user’s last operation being unavailable.

e Redo Operation: Undoes the effects of the last Undo operation done by this user in
this workspace. Returns any conflicts caused by changes made to this workspace
by other users that conflict with changes that the redo wants to perform. If there is
any such conflicts, the Redo operation fails having made no changes. Note that
undo and redo are most effective if they are done in a workspace that is private to a
single user, as in that case no conflicts will ever arise.

WS-Workspace: Workspace Versioning for Web Services 361

A ConflictList object contains a list of data item Conflict elements. Each Conflict
element contains a set of WorkspaceCoordinationContexts that when included with a
web service request to read the given data item, allow all three versions of the con-
flicted object to be read, the parent version, the child version, and the ancestor ver-
sion.

In addition the Conflict element provides a port reference to a service end point
implementing the ConflictResolution port type. This port type provides an operation
for marking the conflict as resolved.

e Resolve Operation: Marks this conflict as being resolved. This should normally be
called after making any needed updates to the conflicted data item version in this
Workspace.

5 Workspace Coordination Protocols

In addition to the application level protocols, additional port types are needed to al-
low the web services performing updates to communicate with the coordinator, to
register their updates with the coordinator and to be called back in response to the
high level application operations. A publish operation is illustrated in Fig. 4.

For this purpose we define the following port types. The Workspace Register port
type supports the following operations:

e Register Update Operation: A specialization of the Coordinator Register Operation
to allow an update made by a web service to be registered. The message includes
a port reference to a port implementing the Update Manipulation port type. This
information is used to implement the application level Undo and Redo operations.
The Register Update message can contain arbitrary service specific elements that
are also recorded, to identify the update and to make undo and redo of the update
more efficient. The Register Update operation should either be made as part of an
atomic transaction along with the actual update operation, or it should be done be-
fore the update and the implementation of the registered Undo Operation should be
able to deal with the fact that the update may not actually have been performed.

e Register Data Store: A specialization of the Coordinator Register Operation to
allow a data store used by a web service to be registered. The message includes a
port reference to a port implementing the Data Store port type. The coordinator
maintains stably the set of data stores used by the workspace so that they can be
invoked to implement workspace level operations.

The Data Store protocol contains an operation for each of the Workspace wide appli-
cation operations. In each case, these operations do the operation, but only on the
subset of the data items residing on this data store.

362 G. Swart

Refresh Operation: Merges updates from the parent workspace in this data store
into this workspace. Returns a list of conflicts which the coordinator unions with
the result of the Update operations on the other data sources.

Get Conflicts Operation: Returns all conflicts in this workspace in this data store.
The coordinator unions the result of this operation over all data stores registerd for
the workspace.

Publish Operation: Merges the changes made in this workspace onto its parent’s
workspace.

The Update Manipulation protocol has operations corresponding to the Undo opera-
tions and is used by the coordinator to perform user level undo operations. Note that
the Register Undo operation

Undo Operation: Undoes the indicated operation. Takes as an argument the Reg-
ister Update operation that was used to log this event. If the Register Update and
the actual update were not done as atomic transactions, then the implementation of
this operation has to be ready

Redo Operation: Redoes the indicated operation. Takes as an argument the Reg-
ister Update operation that is to be redone. This operation can only be executed
after an Undo Operation with the same argument has been executed in this work-
space, or a workspace branched from it.

6 Relationships with the WS-Transaction Protocols

The WS-Transaction protocol [EI] provides two sets of protocols, a tightly coupled
protocol for atomic transactions and a less tightly coupled protocol for coordinating
business activities. The workspace protocol proposed here lies halfway between
these two protocols, matching the tightly structured format of the atomic transaction

Aoplication User Web User Web
PP Servicel Service2
(1) Publish (4) Publish
Response (2.1) Publish (2.2) Publish
(3.1) Publish (3.2) Publish
Response Response

: Coordinator

Fig. 4. Performing a publish operation

WS-Workspace: Workspace Versioning for Web Services 363

protocols, but supporting the long running, lock-free activities of the business activity
protocol.

The three protocols solve different problems and are complementary. For exam-
ple, one could layer the workspace protocols on top of the atomic transaction proto-
col. Each atomic transaction could then be used to bracket a set of changes, perhaps
from different data stores, that make up a workspace update. This allows the scope of
an update to be defined by the application rather than by each web service. This
allows the notion of an update and thus of undo to be defined in an application spe-
cific, rather that service specific, way.

Similarly the business activity approach can be used to specify the required
workflow to be used in publishing a set of changes made in a workspace, or to spec-
ify a compensation to be performed when undoing an update in a particular work-
space that refers to data that is stored in an unversioned data store.

For certain data, architects will have to decide whether to model a particular user
action as a compensateable update in the primary workspace, or as a regular change
in a secondary workspace. The decision will typically hinge on visibility. The up-
date in the secondary workspace will be effectively hidden, while the update in the
primary workspace will be seen by all, even though it may later be undone by a busi-
ness-process compensation.

Consider putting together an academic department’s schedule of classes for next
year. For some time the users might consider themselves to be in authoring mode and
would be happy for there to be no actual rooms or instructors assigned to schedule.
However at some point, the users want to start collecting real rooms and get approval
for hiring additional instructors. By that point the itinerary would need to be pub-
lished to a primary workspace shared by all of the departments and by the facilities
department, which is responsible for assigning classrooms, and the finance depart-
ment, which is responsible for approving budgets. Of course the academic depart-
ment may continue to make changes to the schedule even after it has had classrooms
assigned and job requisitions approved. In this case, the changes may invalidate the
work done by the other department and may need to trigger business process actions,
automated or otherwise, to reassign the resources.

7 Management Protocols

In addition to the protocols needed to implement the application level functionality,

versioning systems have need of management protocols to support:

e Version browsing: Viewing the version tree of a particular data item.

e Auditing: Finding all the updates performed by a given user or in a specific time
period.

e Workspace Access Control: In addition to having access control on individual data
items, there can be access control on workspaces. Sometimes the access control
on a workspace may override the access control on an individual data item. For
example, a marketing researcher may not have write permission into the discount
rules in the production workspace, but the researcher may have write permission

364 G. Swart

into these rules in a development workspace. Often a workspace may be locked so
that no one can make any changes so that a particular snapshot of the environment
may be saved

e Workspace browsing: Browsing and pruning workspaces. Unused workspaces can
tie up lots of storage unnecessarily.

e Cache rule manipulation: Infrequently accessed data item versions may be repre-
sented by deltas from some base versions, so fast access means that these versions
need to be cached.

8 Future Work

The author is evaluating this protocol and interfacing it with data stores that already

implement workspace versioning. The implementation of the coordination protocol is

similar to that of a transaction manager in its integration with the data stores. Ver-
sioned data stores that support the workspace model include Oracle’s relational

Workspace Manager , Microsoft’s Repository object store , and IBM’s

Clearcase file store , as well as various research efforts .

While undoubtedly there will be many issues that will arise during the implemen-
tation of the system, the most interesting question to be answered is the usefulness of
the distributed workspace model to application programmers. Just as the proof of a
pudding is in the eating, the proof of a new data model is in the using. For this reason
we will also be building several significant applications where the authoring, collabo-
ration and data manipulation component are important. Applications and scenarios
we are considering include:

e Catalogue and business rules maintenance in an e-commerce system. This exam-
ple is examined in more detail in . It involves a team building the autumn
catalogue for an e-commerce system: inserting new content in the content man-
agement system, new products in the product database, new business rules in the
rule system, and new accounts in the ERP system. The catalogue is constructed in
a set of private workspaces and then merged into the main workspace on the ‘go
live’ date.

e Work-flow maintenance. In this example, we devise a simple data driven system
for routing and approving insurance claims. We then postulate that a revised claim
processing workflow is to be implemented, tested and deployed. This change in
policy is implemented by a member of the IT staff who tests it on a set of fake
claims. The claims processing manager, after seeing who the new system in a
mock up environment, agrees to try use it for all new claims initiated in the Seattle
office, while existing claims and claims initiated in other offices continue to use
the old policy. Eventually, after some tweaking and an ill advised change made to
the Seattle test environment and then undone, the new workflow is released to the
whole company.

Since this paper was written, the WS-CAF @ E] protocols have been introduced to

complete with the WS-Coordination protocol discussed here. It appears that this work

is largely independent of the underlying coordination framework and that WS-

Workspace can be built on top of either framework.

WS-Workspace: Workspace Versioning for Web Services 365

9 Conclusion

As web services evolve to handle more complex problems, they will also need to
support the authoring of more complex data. This will drive user requests for web
services that can support full featured authoring environments for their data including
features like

e Undo

e Batch Publishing

e (Collaboration

e Auditing and Change Tracking

While it is possible for each web service to implement these notions in its own sepa-
rate way, a coordination protocol allows the same approach to be used for all ver-
sioned web services and allows for workspaces and updates to span many different
web services and their associated data stores.

We have introduced a coordination protocol that allows a simple way of manipu-
lating workspaces and an application protocol that allows web services to allow their
callers to control their workspace environment. The WS-Workspace protocol takes
the lessons learned from configuration management in CASE and CAD products and
makes it available to business applications by allowing the integration of disparate
web services into a uniform workspace model.

References

1. BEA Tuxedo ATMLI, http://e-docs.bea.com/tuxedo/tux80/interm/atmi.htm

2. Bergstraesser, T., P.A. Bernstein, S. Pal, D. Shutt, “Versions and Workspaces in Micro-
soft Repository,” Proc. SIGMOD 99, pp. 532-533.

3. Bernstein, P.A., T. Bergstraesser, J. Carlson, S. Pal, P. Sanders, D. Shutt, “Microsoft
Repository Version 2 and the Open Information Model,” Information Systems 24(2),
1999, pp. 71-98.

4. Bunting, Doug, et al., Web Services Composite Application Framework (WS-CAF). July
2003. http://developers.sun.com/techtopics/webservices/wscaf/primer.pdf

5. Bunting, Doug, et al., Web Services Transaction Management (WS-TXM). July 2003.
http://developers.sun.com/techtopics/webservices/wscaf/wstxm.pdf

6. Cabrera, Felipe, et al., Web Services Coordination (WS-Coordination). August 2002.
http://www.ibm.com/developerworks/library/ws-coor

7. Cabrera, Felipe, et al., Web Services Transaction (WS-Transaction). Aug 2002.
http://www.ibm.com/developerworks/library/ws-transpec/

8. Cellary, W., and J. Rykowski, “Multiversion Databases - Support for Software Engi-
neering.” Proc. of the 2nd World Conference on Integrated Design and Process Technol-
ogy, pp. 415-420, Austin, Texas, 1996

9. Cheung, Susan, and Vlada Matena, Java Transaction API (JTA), Version 1.0.1, Sun
Microsystems Inc., April 1999

10. Chou, Hong-Tai, Won Kim. “A Unitying Framework for Version Control in a CAD
Environment.” VLDB 1986: 336-344

366

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

G. Swart

Clamm, G., J. Amsden, T. Ellison, C. Kaler, J. Whitehad, Versioning Extensions to
WebDAV (Web Distributed Authoring and Versioning). March 2002. RFC 3253.
http://www ietf.org/rfc/rfc3253.txt

Dart, Susan, Spectrum of Functionality in Configuration Management Systems,
CMU/SEI-90-TR11.

Diaz, Angel Luis, Peter Fischer, Carsten Leue, Thomas Schaeck, Web Services for Re-
mote Portals (WSRP). http://www.ibm.com/developerworks/library/ws-wsrp/

Goland, Y., J. Whitehead, A. Faizi, S. Carter, D. Jenson, HTTP Extensions for Distrib-
uted Authoring — WEBDAYV, RFC 2518. February 1999.

http://www ietf.org/rfc/rfc2518.txt

Interwoven Inc., TeamSite 5.5, http://www.interwoven.com

Jomier, G., W. Cellary, The Database Version Approach, Networking and Information
Systems Journal, Hermes Science Publishing 2000, Vol. 3, pp. 177-214, January 2000
Katz, R.H. “Toward a Unified Framework for Version Modeling in Engineering Data-
bases,” ACM Computing Surveys 22, 4 (Dec. ‘90).

Klahold, Peter, Gunter Schlageter and Wolfgang Wilkes, A General Model for Version
Management in Databases, VLDB'86 Twelfth International Conference on Very Large
Data Bases, August 25-28, 1986, Kyoto, Japan

Marquez, A., Orthogonal Object Versioning in an ODMG compliant Persistent Java,
Department of Computer Science, Australian National University,
http://www.cs.adelaide.edu.au/~idea/idea7/PDFs/marquez.pdf

Microsoft Corporation, Microsoff Mappoint WebService. |
http://www.microsoft.com/mappoint/net/

Microsoft Corporation, Microsoft Transaction Server.
http://www.microsoft.com/com/tech/MTS.asp

The Open Group, Distributed TP: The XA Specification, C193 UK ISBN 1-872630-24-3,
February 1992

Oracle Corp. Oracle Workspace Manager,
http://technet.oracle.com/products/workspace_mgr/content.html

Prakash, A. and Knister, M.J., “A Framework for Undoing Actions in Collaborative
Systems,” ACM Trans. on Computer-Human Interaction, Vol. 1, No. 4, pp. 295-330,
Dec. 1994.

Rational Software. Rational Clearcase. http://www.rational.com/products/clearcase
Sciore, E., “Versioning and Configuration Management in an Object-Oriented Data
Model,” VLDB Journal 3, 1994, pp. 77-106

Soules, Craig A.N.. Garth R. Goodson, John D. Strunk, Gregory R. Ganger. Metadata
Efficiency in a Comprehensive Versioning File System, May 2002 CMU-CS-02-145
School of Computer Science Carnegie Mellon University

Swart, Garret, Collaboration and Undo: The Web Workspace Paradigm, Fourth Interna-
tional Conference on Web Information Systems Engineering, 2003.

Vignette Inc., Vignette V7, http://www.vignette.com

WikiWeb, Web Based Collaboration Tools. http://www.wikiweb.com/

http://schemas.cs.ucc.ie/ws/2003/06/wsws

	1 Introduction
	2 Workspace Versioning Concepts
	3 Workspace Versioning
	4 Workspace Versioning Application Protocol
	5 Workspace Coordination Protocols
	6 Relationships with the WS-Transaction Protocols
	7 Management Protocols
	8 Future Work
	9 Conclusion
	References

