Stepwise Refinable Service Descriptions:
Adapting DAML-S to Staged Service Trading*

Michael Klein, Birgitta Koénig-Ries, and Philipp Obreiter

Institute for Program Structures and Data Organization
Universitat Karlsruhe
D-76128 Karlsruhe, Germany
{kleinm,koenig,obreiter}@ipd.uni-karlsruhe.de
http://wuw.ipd.uni-karlsruhe.de/DIANE/en

Abstract. In order for service-oriented architectures to become success-
ful, powerful mechanisms are needed that allow service requestors to find
service offerers that are able to provide the services they need. Typically,
this service trading needs to be executed in several stages as the offer de-
scriptions are not complete in most cases and different parameters have
to be supplemented by the service requestor and offerer alternately. Un-
fortunately, existing service description languages (like DAML-S) treat
service discovery as a one shot activity rather than as a process and
accordingly do not support this stepwise refinement. Therefore, in this
paper, we introduce the concept of partially instantiated service descrip-
tions containing different types of variables which are instantiated suc-
cessively, thereby mirroring the progress in a trading process. Moreover,
we present possibilities how to integrate these concepts into DAML-S
syntactically.

1 Introduction

In distributed environments, services offer an important possibility to enable
cooperation among the participating devices. On the one hand, members can
offer their resources as services and on the other hand, they can use the func-
tionalities offered by other members in order to enable complex applications.
When regarding typical distributed service-oriented systems like internet-based
web services or services in peer-to-peer or ad hoc networks, we notice what they
have in common is the fact that the participating devices are loosely coupled,
only. In these environments, like on a public marketplace, services are traded, i.e.
service offerers publish a description of their service, which are in turn searched
by potential service users.

At first glance, this trading seems to be comparable to “normal” internet
searches, e.g., for certain documents. However, when one takes a closer look, it
becomes obvious that indeed this is not the case. Typically, service offers are

* This work is partially funded by the German Research Community (DFG) in context
of the priority program (SPP) no. 1140.

M.E. Orlowska et al. (Eds.): ICSOC 2003, LNCS 2910, pp. 178-[193] 2003.
© Springer-Verlag Berlin Heidelberg 2003

Stepwise Refinable Service Descriptions 179

not fixed descriptions of all execution details, but contain different categories
of variables which have to be instantiated in subsequent steps of the service
negotiation before the service can be executed properly. Consider, e.g., a printing
service: The description has to be made in a generic way, i.e. leaving space for
a user to specify the resolution and color type of the printout as well as the
document he wants to have printed. Moreover, the service offerer cannot provide
quality of service parameters like the time when printing will finish without
knowing the size and format of the documentd.

Unfortunately, existing service description languages do not support incom-
plete service descriptions which can be successively completed in further steps.
Therefore, in this paper, we present a novel approach to service trading which
takes into consideration that service trading is an interactive process rather than
a one-shot activity. The approach is mainly based on DAML-S [T] and additional
service ontologies that have been developed in our research project DIANE (see
[213]).

In Section 2 we will first analyze existing service description languages and
shoe that most of them are not capable of accurately describing a configurable
service. Therefore, we will examine typical stages of service trading in Section
Bl using the printer example from above. Based on these deliberations, we will
derive a generic state oriented service description language which describes the
initial and resulting state of the service including fixed and variable parts. Each
of these variable parts is expressed by a variable of a certain category exactly
defining who has to instantiate it and when. It will turn out that the variables will
not always be freely instantiatable and independent of one another. Therefore, we
formalize instantiation restrictions for these variables in a next step in Section [l
Finally, in Section[B] we show how the approach could be integrated into DAML-
S using a special valueless RDF construct. The papers ends with a conclusion
and an outlook to future work in Section

2 Related Work

In this section, we want to examine existing service description languages. Be-
sides languages that are explicitly denoted to describe services, we also want
to take a look at languages to describe methods and operation of components
in a middleware environment (sometimes also called component description lan-
guages). Typically, these component services have a finer granularity than com-
mon web services, are often developed for a non-human use, and seldom imple-
ment a self-contained action (see [4]). In the following, we will refer to these
component operations as services, too, and also denote their descriptions as ser-
vice descriptions.

The most frequently used languages are message oriented service de-
scription languages. They try to describe a service by explaining the values
that are entering and leaving the black box service (see Figure [Th). If the ser-
vice is realized by methods of an object, this can be achieved by exporting the

! We will take a more detailed look at this printer example in Section [3.2

180 M. Klein, B. Ko6nig-Ries, and P. Obreiter

a) message oriented

incoming messages outgoing messages

CO g — > — [[

b) state/message oriented

incoming messages outgoing messages

) 0 —™ — [T [

Service

initial state | —» {resulting state

c) state oriented

placeholders

placeholders
o U o

initial state

Service

—

Fig. 1. Different types of service description languages: (a) Message oriented languages
try to describe services by their incoming and outgoing data, (b) state/message oriented
languages additionally express the functional semantics by describing the initial and
resulting state, whereas (c) purely state oriented languages also omit the messages in
favor of configurable placeholders in the state description.

interface of the class, which defines the ingoing method parameters as well as
the outgoing method result. Well known interface definition languages (IDL) are
used in CORBA (as OMG IDL [B] or Java IDL [6]), Microsoft’s RPC, COM and
DCOM (as Microsoft IDL or MIDL [7]), in the area of web services (as Web IDL
[B]) and also Java RMI [9], Jini [I0] or Enterprise Java Beans [11] (as standard
Java interfaces). On the other hand, languages like WSDL [12], e-Speak (used
within Hewlett Packard’s Web Services Platform [I3]), the Collaboration Proto-
col Profile from ebXML and IBM’s Network Accessible Service Specification
Language (NASSL) more clearly point out the messages that enter and leave
the service.

However, these message centered description languages suffer from one severe
drawback: The semantics of the service is left open, i.e. the description leaves
unspecified how inputs and outputs are connected and what side effects are
performed. This functional semantics can only be guessed by a human user from
the operation’s name or a textual description. Because of their severe problems
with respect to automatic service trading, we will not consider these languages
any further.

This drawback is removed in state/message oriented service descrip-
tion languages. In addition to the flow of information, they try to capture the
functional semantics by describing the state of the world before and after suc-

Stepwise Refinable Service Descriptions 181

cessful service execution (see Figure[Ib). This can be achieved by the use of state
ontologies like in DAML-S [1] (with extensions from [3]), OWL-S [16], and the
Interagent Communication Language (ICL) from the Open Agent Architecture
7).

However, this mixed description consisting of message parts and state parts is
problematic: First, the influence of the parameters stemming from the exchanged
messages on the involved states is left open and therefore uncleaf?. Second, it is
unclear when the messages between service requestor and executor have to be
sent. Generally, the problem arises from the fact that in these descriptions the
abstract service representation is intermixed with a concrete execution realiza-
tion (i.e. by sending messages). On the other hand, the necessary description of
the variable parts of the state is removed from their description and can only be
guessed in the description of the exchanged messages. Other approaches try to
capture the transition of states more accurately with the help of high level logical
programming languages like Golog [I8] or Abstract State Machines [19]. How-
ever, this leads to an non-declarative, but imperative description of the service
action, which prevents a useful comparison with a service request.

As a consequence, the description of messages should be avoided in service
description all together, which leads to purely state oriented service de-
scription languages. Here, the description of the states contains fixed parts,
i.e. parts that are completely defined before service trading starts, as well as vari-
able parts, i.e. placeholders which represent values that have to be negotiated
before service execution can start (see Figure[dlc). Similar ideas are included in
LARKS [20], a language to describe agent capabilities. However, the process of
correctly filling these values remains unclear. It turns out that each placeholder
should be tagged with a label denoting by whom, when and how it should be
filled in order to more clearly specify the process that is necessary to configure
and execute this service. Nevertheless, the technical details of this configuration
process (like the format of exchanged messages etc.) should be left open as they
can be derived from the placeholders automatically. As the goal of this paper
is to find a service description language for staged service trading, we will in-
troduce a generic state oriented service description language by introducing the
concept of states that are configurable with the help of variables and show how
these ideas could be syntactically included into DAML-S.

3 The Process

As pointed out above, in contrast to simple internet or information retrieval
searches, service trading is a complex, interactive process. In this section, we
take a closer look at this process, its different stages, and their respective re-
quirements.

2 In DAML-S/OWL-S, these connections have to be explicitly listed in a separat part
of the description, the so called Service Model, which normally is not taken into
consideration when matching services within the phase of service trading.

182 M. Klein, B. Konig-Ries, and P. Obreiter

3.1 General Trading Process and Variable Categories

In order to use a service in a loosely coupled, distributed environment, services
have to be explicitly announced by their offerer (Stage 1). After that, from a
client’s point of view, the following three phases (consisting of six stages) can be
noticed:

Phase I — Search
Sending a service request (Stage 2) and gathering service advertisements
(Stage 3).
Phase II — Estimate
Requesting (Stage 4) and comparing estimates (Stage 5).
Phase III — Execution
Choosing a service (Stage 6) and receiving its results (Stage 7).

Typically, the service advertisements gathered in Phase I are not yet complete
as different kinds of parameters are still missing. Therefore, in Phases II and III,
the advertisements are successively specialized by instantiating these variables.
We denote variables that are used within Phase II estimate variables and mark
them with index e. Variables used in Phase III are called ezecution variables and
are marked with an z. Furthermore, we distinguish variables based on the party
that has to instantiate it. Variables that need to be instantiated by the client are
called IN variables, the ones that are instantiated by the server are called OUT
variables. To sum up, we differentiate between four categories of variables: IN,,
0UT,, IN,, and OUT,. Consider as an example the printing service mentioned in
the introduction. IN variables could be the document identifier and the desired
resolution. While the latter needs to be specified during Phase II to allow for e.g.
cost estimates, it is sufficient to provide the former in time for service execution,
that is in Phase I1I. Examples for OUT variables are the printer location and the
estimated completion time. Again, the latter needs to be instantiated for Phase
II, the former is known at execution time, only.

3.2 Details of the Process

With the help of the variables introduced above, we can now take a more
detailed look at the process of service usage. As identified above, we have seven
stages:

(1) Service Announcement
Whenever a device wishes to make a service available to other members of the
network, it needs to provide a service advertisement describing the service it is
willing to offer. This service advertisement has then to be made known to poten-
tial service requestors. This is done by some kind of service discovery mechanism
and is outside of the scope of this paper (see [21] for an overview). In [3], we
have described a process and a tool to develop such service descriptions. In order
for service descriptions to be of any use in a loosely coupled environment, an

Stepwise Refinable Service Descriptions 183

daml-s diane e i INe i
myPrintingService <black-white> e e
- S —— lity T ResT
- G - ColorType QualityType esType
[
presents) color quality resolution
A
diane precondition Gl . effect
: Locally Available thePrintingProfile : Printed
: InformationServiceProfile
time location
diane OouT

x diane

: Document i i
doc : Document PrinterLocation

dc:format filesize dc:identifier

diane
<application/pdf>
: FormatType

IN IN ouTt

e xsd X xsd € daml
Integer String Time

Fig. 2. Advertisement for a printing service.

ontology based approach is needed. In our approach, we distinguish three layers
of service description. The top-layer contains the general structure of service
descriptions. An example for such a top layer description is a modified DAML-
S profile. Here, services are described by the initial states (preconditions) and
the resulting states (effects). The middle layer specializes these general state
descriptions for different service categories, e.g., information services, shopping
services and so on. The specialization is achieved by restricting the types and
cardinalities of the service’s states. Finally, the third layer contains a collection
of domain ontologies. A concrete service description is an instantiation of these
three layers using one service category and one or more domain ontologies. How-
ever, there are certain aspects of a service (or more precisely the involved states)
that cannot be completely instantiated at the time of service description. For
these, the four categories of variables introduced above are used.

Consider as an example the advertisement for the printing service depicted
in Figure 21 Generally, the service transforms the state of a document from
LocallyAvailable (the precondition) to Printed (the effect). Notice that precondi-
tion and effect are connected via a common document instance. As mentioned
above, some of the document’s and state’s attributes are already known and
instantiated, others are undefined and therefore represented by variables. For
example, as the service only allows to print PDF documents, the format of the
document is already set. Also the color of the printout is defined: it will be
black-white. Other values like the document’s file size and its identifier as well

184 M. Klein, B. Konig-Ries, and P. Obreiter

as the printout’s quality, resolution, finishing time, and output locatior] are
unknown yet and will be filled in the subsequent steps.

(2) Service Search

If a client wants to use a certain service, it first has to find it. Therefore, it
creates a service request containing at least the wished effects and wished outputs
that should be provided by a suitable service. In some cases, also inputs and
preconditions can be included in the request showing the initial position of the
client before service execution. Like service advertisements, requests consist of
instantiated and undefined parts. These undefined parts are also represented
by variables (so called placeholders) whose instantiation can be restricted to a
certain set of values by specially denoted properties. In Section[d, we will examine
these restrictions in more detail. This request is dismissed to the discovery layer
in order to find service advertisements that could be interesting for the client.

daml-s diane

myPrintingService <600dpi>
: Service : ResType
A
presents resolution

L y effect
thePrintingProfile
: InformationServiceProfile

diane
doc : Document

diane

diane

time

dc:format

diane

<application/pdf> 2003-10-01 17h con:before o
: FormatType Time ime

Fig. 3. Service request: Wants a PDF document to be printed in 600 dpi.

Figure [3] shows such a request. A user wants a PDF document to be printed
in 600 dpi, which he specifies as effect of the requested service. The fixed values
(600 dpi and PDF) are given as instantiated parts. On the other hand, the user
does not want to restrict the finishing time of the output to an exact point in
time, but wants to allow all times before a certain deadline. Therefore, he uses
a placeholder of type Time that represents the finishing time and is restricted to
values before 2003-10-01 17h00 by the special property con:before. Besides this

3 This shows that this printing service automatically and dynamically chooses a device
from a pool of physically distributed printers.

Stepwise Refinable Service Descriptions 185

daml-s diane o 4 diane
myPrintingService <black-white> Qual‘i:n?r pe <600dpi>
: Service : ColorType vy : ResType
A
presents color quality resolution
Y
diane precondition Gl . effect diane
: Locally Available et hgRrof - Printed
: InformationServiceProfile
time location
entity entity
OuUT
X diane
PrinterLocation
dc:format filesize dc:identifier
J out
diane IN IN €
<application/pdf> € | xsd * st_“ dari
: FormatType nteger tring Time

Fig. 4. Estimate Configuration Form.

condition, other instantiation restrictions are thinkable. In the following, we will
denote them with the namespace con.

(3) Service Matching
When the discovery layer receives a request, it determines possibly matching ad-
vertisements for it. Generally, an advertisement possibly matches a request, if (a)
all wished effect instances of the request can also be found in the advertisement
and (b) there could be a variable binding so that the request and the advertise-
ment are not contradictory. All possibly matching advertisements that can be
found are further instantiated according to the restrictions from the requestor
and sent back to it as an estimate configuration form.

In our example, the service request from Figure [possibly matches the
advertisement from Figure 2] because the effect Printed matches and points
to a PDF document in both cases. Moreover, the finishing time could match
but cannot be determined exactly at this stage of service trading. It needs
additional information like the concrete value for the IN. variable standing for
the document size to estimate the ending time. Therefore, this advertisement
is a candidate which is further instantiated to the estimate configuration form
from Figure dl Tt differs from the service advertisements only in two places: the
printout’s resolution is now fixedly set to 600 dpi (as requested by the user)
and the finishing time is restricted to values before a certain deadline with the
condition con:before (also requested by the user).

(4) Estimate Configuration
In this stage, the service requestor collects the found service advertisements and
filters out the ones that are not interesting for him (for instance because of a

186 M. Klein, B. Ko6nig-Ries, and P. Obreiter

precondition that cannot be provided by the client). After that, he instantiates
the missing IN, variables (i.e., he fills out the estimate configuration form) and
sends this filled estimate configuration form back to the offerer to provide him
with the information he needs for calculating an estimate. Notice that some of
the OUT, variables could also be computed on the client side if the calculation
formula was part of the service description.

Figure Bl shows an extract of this filled estimate configuration form. The
user has entered the values for the IN, variables filesize and quality (not shown
in the Figure). To calculate the estimated finishing time, this form is sent back
to the offerer.

(5) Estimate Calculation
When the service offerer receives a filled estimate configuration form, it computes
the complete estimate by filling out the missing OUT, values. Typically, this com-
putation takes into account (a) the parameters of the client (like the document’s
size or the wished quality of the printout in our example) which are specified in
the estimate configuration form and (b) the current state of the service offerer
(like for example the current length of the printing queue). If these values fulfill
possibly attached condition properties, this service estimate is sent back to the
service requestor who also understands it as an ezecution configuration form.

Figure [0 shows the estimate for our example printing service computed from
the values in the estimate configuration form. The only change is the value for
the finishing time, which has been set to 2003-10-01 16h51 by the service of-
ferer. As it is conform to the condition con:before, it is sent back to the requestor.

(6) Execution Configuration
In this stage, the service requestor collects the estimates and selects one of it.
Typically, the main criteria for the selection are the values of the variables that
had been placeholders in the service request. As these values have not been
specified explicitly, the incoming estimates generally differ in these values and
get comparable by them as a result. The chosen estimate serves as execution
configuration form at the same time. The client specifies the IN, variables that
are necessary for a proper execution of the service. Often, IN, variables are filled
with values that should be known to the actual service executor only, in contrast

effect diane ‘ entity - diane
s : Printed ‘ 1doc : Document
»A me \jcation dciidentifier
OouT, con: y

before | 2003-10-01
-

OUTx diane INx xsd 1,500,000
PrinterLocation String

daml
Time

Fig. 5. Part of the Filled Estimate Configuration Form.

Stepwise Refinable Service Descriptions 187

effect GIEmD ‘ entity
- : Printed ‘

diane
doc : Document

location dc:identifier
daml
2003-10-01 2003-10-01 ouT IN
16h51 17h00 X dane x o xd
- Time Time PrinterLocation String

Fig. 6. Service estimate = Execution Configuration Form.

to IN. variables, which can be freely disseminated to all possible service offerers.
Then, the filled execution configuration form is sent back to the chosen service
offerer.

In our printing example, the client has specified the IN, variable dc:identifier,
i.e. the location of the document to be printed (see Figure [7). Notice that for
privacy reasons this URL should not be disseminated to every service offerer,
especially as it is not necessary for service search and estimate calculation.

(7) Result Generation
The last step occurs after service execution. Then, the service executor instan-
tiates the OUT, variables. These contain values that can be determined not until
the service execution starts. The resulting service receipt is sent back to the
service requestor. In the case of our printing service, as soon as the executing
printer is determined, the offerer fills in the location of this so that the user can
fetch its printout there.

In Figure[8, the service executor has inserted the location of the printout as
<room335>. The service description is now fully instantiated as it contains no
variables anymore.

3.3 Conclusion

To sum up, service trading does not only consist of sending out a service request
and picking the best from a list of received service offers, but the service offers

effect diane ‘ entity diane
: Printed ‘ doc : Document

location

dc:identifier

daml|

16h51
: Time

2003-10-01

daml|

17h00
: Time

2003-10-01

ouT

X

diane

PrinterLocation

Fig. 7. Filled Execution Configuration Form.

,c:\docs\paper.pdf*

188 M. Klein, B. Ko6nig-Ries, and P. Obreiter

effect diane ‘ entity
s : Printed ‘

location

diane
doc : Document

dc:identifier

daml .
2003-10-01 e | 2003-10-01
16h51 17h00
: Time : Time

diane

<room335> ,c:\docs\paper.pdf*
: Printerl ocation

Fig. 8. Service Receipt.

(or more clearly the states involved in them) are developing in several steps. At
the beginning, the descriptions contain different categories of variables, which
are instantiated in each of the trading stages. Finally, the descriptions (and its
states) are completely specified. Notice, that the realization of this instantiation
process is explicitly left open. Typically, it is accomplished by sending messages
containing the values of the instantiated variables.

4 Instantiation Restrictions on Variables

When a variable is instantiated, in principle, each value from its domain is legal
and can be chosen. Often, this behavior is not desirable: (1) A service offerer
might want to express that his service only allows, supports or provides certain
values for the parameters. In the printer example, only resolutions from 150
to 300 dpi could be offered or the location of the printout could be restricted
to rooms of the university. (2) A service requestor might want to express that
placeholders in his request should only match certain values in advertisements.
In the example in Figure Bl the ending time of the printout is restricted to time
values before 2003-10-01 17h00.
Generally, two types of instantiation restrictions can be distinguished:

— Restrictions concerning a single variable. Restrictions of this type nar-
row the instantiation possibilities of one variable independently from other

<1200dpi>

diane
ResType <600dpi>
f <300dpi>
own INe diane COTI:
a) | MyResType <150dpi> b) ResType smater <600dpi>

Fig. 9. Technical possibilities to restrict the instantiation of a single, independent vari-
able.

Stepwise Refinable Service Descriptions 189

IN
e

QualityType ResType Integer

2q| |IN 2| [N 2fs
diane diane xsd

Instantiation constraints

quality i resolution filesize ?fs > 1,000,000 prohibits ?r = <600dpi>

?q = <draft> implies ?r = <150dpi>

diane entity diane

: Printed doc : Document

Fig. 10. Restricting several non-orthogonal variables by introducing variable names
and an external dependencies list.

5

variables. Technically, this can be done with two different methods: (1) Intro-
ducing own user-defined classes and using them as type for the variable. This
new class should be a subclass of the original class and narrow its domain.
An example is depicted in Figure [Oh. Here, the superclass ResType is an enu-
meration type describing general printer resolutions. It comprises the values
<1200dpi>, <600dpi>, <300dpi>, and <150dpi>. The specialized subclass
MyResType is also an enumeration type, but comprises only <300dpi> and
<150dpi>. In a service description of a low resolution printer, MyResType
could be used as class for the IN variable representing the resolution. (2)
Inserting special properties that restrict the instantiation of the appropriate
variable. In Figure[@b, the IN variable of type ResType is restricted with the
property con:smaller to resolutions that are smaller than <600dpi>. Notice
that these restricting properties can be recognized by their prefix con for
constraint.

Restrictions concerning several variables. Restrictions of this type
limit the instantiation possibility of one variable with respect to the in-
stantiation of another variable. This becomes necessary if the parameters of
a service are not orthogonal, but partially exclude each other. In our printer
example, the resolution variable could only be instantiable to <600dpi> if
the file size is smaller than 1 MB. Moreover, the printing quality <draft>
could always lead to a resolution of <150dpi>. As these restrictions can
become very complex (by containing mathematical and logical formulae),
they should be separated from the service description graph and collected in
an additional constraint listf]. As an additional requirement, variables with
external instantiation dependencies need to have a unique name. Figure [0
shows a possibility to describe the above-mentioned dependencies of our
printing service.

Syntactical Integration into DAML-S

The most important representative of ontology based service description lan-
guages is DAML-S (and its OWL-based pendant OWL-S) [I/16]. In the follow-

4 Another possibility in RDF based service description would be reification.

190 M. Klein, B. Ko6nig-Ries, and P. Obreiter

ing, we will concentrate on DAML-S together with the state ontologies from [3].
We will examine how to enhance it with the possibility to express incomplete
service descriptions, which can be completed successively. As pointed out in the
previous section, this can be achieved by using variables. Unfortunately, the con-
cept of variables is not provided in DAML-S and the standards it is based on:
DAML, RDFS, RDF, XML Schema, and XML. Therefore, in this section, we
propose a syntactical construct for enriching DAML-S based service descriptions
(and also other DAML instance graphs) with variables.

Before presenting the construct, we want to explain some important require-
ments for it: First, as service descriptions are instance graphs, variables should
also be regardable as instances of their domain without having been assigned a
concrete value yet. This would avoid a mixture of classes and instances, which
often leads to unclear semantics. Second, the construct needs to offer the pos-
sibility to express the name, the type, the category (i.e. IN., OUT. etc.), and
possible instantiation constraints of the variable. When looking back to the vari-
ables used in the printing example, we observe that only variables of primitive
XML schema datatypes (like xsd:integer or xsd:string, see [22]) as well as
DAML enumeration types (like diane:QualityType) have been used. Therefore,
we will concentrate on these two groups in the following, leaving out variables
for general object types (which are not necessary in general as they can be com-
posed of other types) and collection types (which we will have to examine more
closely in future).

The construct we propose satisfies these requirements. It is based on the
fact that the creation of a new DAML instance can be expressed indirectly with
the RDF constructs rdf :Description and rdf:ID. Therefore, we can create a
instance as follows:

<rdf:Description rdf:ID="filesizevalue"/>

Generally, the type of an instance can be denoted with rdf :type. As XML
schema datatypes are accessible within DAML via the class daml:Datatype, we
could specify an integer instance as follows:

<rdf:Description rdf:ID="filesizevalue">
<rdf:type>
<daml:Datatype rdf:about="xsd:integer"/>
</rdf:type>
</rdf :Description>

Notice that this is an instance of an integer, but its value has not been
specified yet. Therefore, this construct can be regarded as a variable and its
value could be added in a later stage by inserting an rdf :value statement:

<rdf:Description rdf:ID="filesizevalue">
<rdf:type>
<daml:Datatype rdf:about="xsd:integer"/>
</rdf :type>

Stepwise Refinable Service Descriptions 191

<rdf:value>1500000</rdf:value>
</rdf:Description>

To be able to express the category of such a variable, we introduce a new
class and a new property:

<daml:Class rdf:ID="VariableCategory">
<daml:oneOf rdf:parseType="daml:Collection">
<Thing rdf:resource="#INe"/>
<Thing rdf:resource="#0UTe"/>
<Thing rdf:resource="#INx"/>
<Thing rdf:resource="#0UTx"/>
</daml:one0f>
</daml:Class>

<daml:0ObjectProperty rdf:ID="varCat">
<daml:range rdf:resource="#VariableCategory"/>
</daml:0bjectProperty>

This allows us to express that filesizevalue is an IN. variable:

<rdf:Description rdf:ID="filesizevalue">
<rdf:type>
<daml:Datatype rdf:about="xsd:integer"/>
</rdf :type>
<diane:varCat rdf:resource="#INe"/>
</rdf:Description>

Figure [Tl shows a complete example by expressing the diagram from Fig-
ure [0 in DAML using the above-mentioned constructs. Besides XML schema
datatype variables also variables with enumeration types are presented. Notice
that the constraint restrictions concerning a single variable can be simply in-
serted into the description as DAML construct whereas restrictions concerning
several variables are written down in a external file.

6 Conclusion and Future Work

In this paper, we have analyzed a typical process of service trading, which gen-
erally does not consist of a simple request/response step only, but more interac-
tively extents to several stages. As the existing message and state/message ori-
ented service description are not capable of accurately describing a configurable
service, we have presented a generic state oriented service description, which de-
scribes the initial and resulting state of the service including fixed and variable
parts. Each of these variable parts is labelled showing who should instantiate it,
and in which stage and under what restrictions. However, the description explic-
itly lacks a concrete explanation of the exchanged messages as this can be derived

192 M. Klein, B. Konig-Ries, and P. Obreiter

(01) <diane:Printed>
(02) <diane:quality>

(03) <rdf:Description rdf:ID="7q"/>

(04) <rdf:type>

(05) <daml:Class rdf:about="diane:QualityType"/>
(06) <rdf:type>

o7 <diane:varCat>

(08) <diane:VariableCategory rdf:resource="#INe"/>
(09) </diane:varCat>

(10) </rdf:Description>

(11) </diane:quality>
(12) <diane:resolution>

(13) <rdf:Description rdf:ID="7r"/>

(14) <rdf :type>

(15) <daml:Class rdf:about="diane:ResType"/>

(16) <rdf:type>

an <diane:varCat>

(18) <diane:VariableCategory rdf:resource="#INe"/>
(19) </diane:varCat>

(20) </rdf:Description>

(21) </diane:resolution>
(22) <diane:entity>

(23) <diane:Document rdf:ID="doc">

(24) <diane:filesize>

(25) <rdf:Description rdf:ID="7fs">

(26) <rdf :type>

27) <daml:Datatype rdf:about="xsd:integer"/>
(28) </rdf:type>

(29) <diane:varCat>

(30) <diane:VariableCategory rdf:resource="#INe"/>
(31) </diane:varCat>

(32) </rdf :Description>

(33) </diane:filesize>

(34) </diane:Document>

(35) </diane:entity>
(36) </diane:Printed>

Fig. 11. DAML based description for the diagram from Figure [ITL

automatically. Finally, we have presented a construct that allows a syntactical
integration of the concepts into the service description language DAML-S.

In the future, we will examine possibilities how to automatically construct
graphical user interfaces from such a configurable service description. Moreover,
more complex dependencies between variables (e.g. those including time) and de-
pendencies between several services (e.g. those between a storage and a retrieval
service) will be analyzed.

Stepwise Refinable Service Descriptions 193

References

1.

2.

o

12.

13.
14.
15.

16.

17.

18.

19.

20.

21.

22.

Defense Advanced Research Projects Agency: DARPA agents markup language -
services (DAML-S). (http://www.daml.org/services/)

Institute for Program Structures and Data Organization, Universitat Karlsruhe:
DIANE project. (http://www.ipd.uni-karlsruhe.de/DIANE /en)

Klein, M., Koénig-Ries, B.: A process and a tool for creating service descriptions
based on DAML-S. (http://www.ipd.uni-karlsruhe.de/DIANE /docs/KKO03.pdf,
submitted to 4th VLDB Workshop on Technologies for E-Services (TES’03))

. Dumas, M., O’Sullivan, J., Heravizadeh, M., Edmond, D., Hofstede, A.: Towards

a semantic framework for service description. In: 9th International Conference on
Database Semantics, Hong-Kong, Kluwer Academic Publishers (2001)

Object Management Group: OMG IDL syntax and semantics.
(http://www.omg.org/docs/formal /02-06-39.pdf)

Sun Microsystems: Java IDL. (http://java.sun.com/products/jdk/idl/)
Microsoft: Microsoft interface definition language.
(http://msdn.microsoft.com/library/en-us/midl/midl/midl_start_page.asp)

World Wide Web Consortium: Web interface definition language.
(http://www.w3.org/TR/NOTE-widl)

. Sun Microsystems: Java RMIL. (http://java.sun.com/products/jdk/rmi/)
10.
11.

Sun Microsystems: Jini. (http://www.jini.org/)

Sun Microsystems: Enterprise JavaBeans technology.
(http://java.sun.com/products/ejb/)

World Wide Web Consortium: Web service description language (WSDL).
(http://www.w3.org/TR/wsdl)

Hewlett Packard: HP web services platform. (http://www.hp.com/go/espeak)
ebXML: Collaboration protocol profile and agreement specification.
(http://www.ebxml.org/specs/ebCCP.pdf)

Curbera, F., Weerawarana, S., Duftler, M.J.: Network accessible service speci-
fication language: An XML language for describing network accessible services.
(http://www.cs.mu.oz.au/ eas/subjects/654 /nassl.pdf)

Web-Ontology Working Group: Web ontology language - services (OWL-S).
(http://www.daml.org/services/daml-s/0.9/)

Martin, D.L., Cheyer, A.J., Moran, D.B.: The open agent architecture: A frame-
work for building distributed software systems. Applied Artificial Intelligence 13
(1999) 91-128

Mecllraith, S., Son, T.C.: Adapting golog for composition of semantic web ser-
vices. In: 8th International Conference on Knowledge Representation and Reason-
ing (KR2002). (2002) 482-493

Gurevich, Y.: Evolving algebras: An attempt to discover semantics. In Rozenberg,
G., Salomaa, A., eds.: Current Trends in Theoretical Computer Science. World
Scientific, River Edge, NJ (1993) 266-292

Sycara, K., Widoff, S., Klusch, M., Lu, J.: Larks: Dynamic matchmaking among
heterogeneous software agents in cyberspace. Autonomous Agents and Multi-Agent
Systems 5 (2002) 173-203

Klein, M., Konig-Ries, B., Obreiter, P.: Service rings — a semantical overlay
for service discovery in ad hoc networks. In: The Sixth International Workshop
on Network-Based Information Systems (NBIS2003), Workshop at DEXA 2003,
Prague, Czech Republic. (2003)

World Wide Web Consortium: XML schema part 2: Datatypes.
(http://www.w3.org/TR/xmlschema-2/)

	Introduction
	Related Work
	The Process
	General Trading Process and Variable Categories
	Details of the Process
	Conclusion

	Instantiation Restrictions on Variables
	Syntactical Integration into DAML-S
	Conclusion and Future Work

