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Abstract. Global localization is the problem of determining the posi-
tion of a robot under global uncertainty. This problem can be divided in
two phases: 1) from the sensor data (or sensor view), determine clusters
of hypotheses where the robot can be; and 2) devise a strategy by which
the robot can correctly eliminate all but the right location. In the second
phase, previous approaches consider an ideal robot, a robot with a per-
fect odometer, to predict robot movements. This paper introduces a non
deterministic prediction approach based on a Markov localization that
include an uncertainty model for the movements of the robot. The non
deterministic model can help to solve situations where a deterministic
or ideal model fails. Hypotheses are clustered and a greedy search algo-
rithm determines the robot movements to reduce the number of clusters
of hypotheses. This approach is tested using a simulated mobile robot
with promising results.

1 Introduction

Global localization is the problem of determining the location of the robot under
global uncertainty. This problem arises, for example, when a robot uses a map
that has been generated in a previous run, and it is not informed about its initial
location within the map.

The global localization problem can be seen as consisting of two phases:
hypothesis generation and hypothesis elimination [4]. The first phase is to deter-
mine the set of hypothetical locations H that are consistent with the sensing data
obtained by the robot at its initial location. The second phase is to determine,
in the case that H contains two or more hypotheses, which one is the true loca-
tion of the robot, eliminating the incorrect hypotheses. Ideally, the robot should
travel the minimum distance necessary to determine its exact location.

This paper presents an approach to solve the global localization problem in
a known indoor environment modeled by an occupancy grid map, a two dimen-
sional map where the environment is divided in square regions or cells of the same
size. This approach is an improved version of the global localization approach
given in [10]. We use a Markov localization (see [7,10]) in both phases, to repre-
sent and update the set H of hypotheses, and predict movements of the robot in
order to eliminate hypotheses. The main contribution of this paper is to predict
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movements using a Markov localization that includes an uncertainty model for
the movements of the robot. Previous approaches [8,5,10] only consider a deter-
minist or ideal model for the robot (a robot with a perfect odometer) during the
prediction process.

The rest of this paper is organized as follows. Section 2 describes relevant
issues of our approach to generate hypotheses [10]. Section 3 presents the frame-
work of Markov localization. Section 4 explains our approach to eliminate hy-
potheses. Experimental results using a mobile robot simulator are shown in Sec-
tion 5. We choose a simulator because it is easy to create complex environments,
with many similar places, to test the robustness of our approach. Finally, some
conclusions are given in Section 6.

2 Hypotheses Generation

In this section a simple occupancy grid map is used as an example to show the
ideas behind the proposed approach. Figure 1 (a) shows this simple map built
using a mobile robot simulator. Figure 1 (b) shows a local map view, extracted
from the map for the position of the robot shown in (a), considering that the
robot direction is aligned with a global fixed direction (pointing downwards
in this case). Figure 1 (c) shows the sensor view (generated by the simulator)
considering that the robot is aligned with the global direction. Both views have
an angular resolution of 0.5 degrees, a common value found in laser range sensors,
and include the robot position for reference as a black cell. Perceptual limitations
are taken into account setting a maximum range of 3 meters. The problem consist
in estimating the set H of possible locations that have local map views consistent
with the sensor view.

2.1 Polar Correlation

To have a simple model of robot motion and hence a small state space in the
Markov localization, we assume that the robot should be in one of 8 possible
directions (θi = 45 ∗ i degrees, i = 0, ..7), with respect to the global fixed di-
rection, one for each adjacent cell. A polar correlation, using a sum of absolute

Fig. 1. A simple environment. From left to right: (a) Occupancy grid map. (b) Local
map view computed from the map and the robot location showed in (a). (c) Actual
sensor view
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Fig. 2. Correlation results. Angular displacements are from 0 (left) to 359.5 degrees
(right)

differences, can be used to find the match between a local map view and the
sensor view. Figure 2 shows the correlation results for all the possible angular
displacements of the sensor view against the local map view shown in Figure 1.
From the minimum difference an angular displacement can be computed to align
the robot with one of the directions θi. Obviously, the right angular displace-
ment should be indicated considering the most probable position of the robot.
In the case of Figure 2 the angular displacement corresponds to −21 degres, and
the best estimated direction is 270 degrees. As the Markov localization needs a
probabilistic value p(s|l) of perceiving a sensor view s given that the robot is at
location l = (< x, y >, θi), a difference value d(s, v(l)) can be computed from
the correlation results between the sensor view s and the local map view at the
cell < x, y >, denoted by v(l), and then a probabilistic value can be obtained
from d(s, v(l)). We compute d(s, v(l)) as the minimum difference (in the corre-
lation results) for an angular interval with center at θi. The desired probability
is computed by p(s|l) = e−αd(s,v(l)) where α is a positive real number.

Given that this procedure is expensive, the next section shows a fast way to
find a small set of candidate cells to apply this procedure, instead of all the free
cells in the map.

2.2 Roadmap

Following the ideas described in [9], the set of possible cells where the robot is
allowed to move, tries to keep a fixed distance k to obstacles. Figure 3 (a) shows
the full set of free cells where the robot can be as white pixels, while Figure
3 (b) shows the cells that form the roadmap. There is a significant reduction
in the number of cells. To get a robust procedure, our approach considers a
thick roadmap (see Fig. 3 (c)) which include the cells in the neighborhood of the
thin roadmap (see Fig. 3 (b)). The idea is to use the thin roadmap to predict
movements of the robot (in the case of more than one group of hypotheses)
and to use the thick roadmap to restrict the possible locations where the robot
can be. The following section describes the process to update the probability of
hypotheses after the robot senses or moves.

3 Markov Localization

Following [5], the key idea of Markov localization is to compute a probability
distribution over all possible locations in the environment. p(Lt = l) denotes the
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Fig. 3. A roadmap. From left to right: (a) Full set of free cells. (b) Thin roadmap for
k = 1 m. (c) Thick roadmap

probability of finding the robot at location l at time t. Here, l is a location in
x − y − θi space where x and y are Cartesian coordinates of cells and θi is a
valid orientation. p(L0) reflects the initial state of knowledge and it is uniformly
distributed to reflect the global uncertainty. p(Lt) is updated whenever:

1. The robot moves. Robot motion is modeled by a conditional probability,
denoted by pa(l|l′). pa(l|l′) denotes the probability that motion action a,
when executed at l′, carries the robot to l. pa(l|l′) is used to update the
belief upon robot motion:

p(Lt+1 = l)←
∑

l′ pa(l|l′)p(Lt = l)
p(s)

(1)

Here p(s) is a normalizer that ensures that p(Lt+1) sums up to 1 over all l.
An example of pa(l|l′) is shown in Figure 4, considering that the robot moves
forward in the thick roadmap, and the orientation of the robot is aligned to
one of the possible 8 directions θi. Circles denote grid cells and the most
probable transition in Figure 4 is labeled with 4/10.

2. The robot senses. When sensing s,

p(Lt+1 = l)← p(s|l)p(Lt = l)
p(s)

(2)

Here p(s|l) is the probability of perceiving s at location l. In order to get an
efficient procedure to update the probability distribution, cells with proba-
bility below some threshold u are set to zero.

2/10
1/10

2/10 1/10

4/10

Fig. 4. Robot motion for one direction
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4 Hypothesis Elimination

Locations, l, with p(Lt = l) ≥ u are clustered into n clusters or groups according
to their location l using AutoClass [3], a Bayesian clustering technique.

The idea to eliminate hypotheses is to move the robot through the thin
roadmap trying to reduce the number of clusters.

To get an efficient procedure, our approach considers that the mobile robot is
at the most probable location and then considers all the cells of the thin roadmap
as valid movements for the robot. If we assign to locations of the thin roadmap
the number of possible groups of hypotheses, a good movement to eliminate
hypotheses is to direct the robot toward the nearest cell with less than n groups.
Let this cell be called the goal cell.

To compute the similarity between local map view associated to two cells of
the thin roadmap we introduce a similarity matrix. Let ci, (i = 1, .., m) denote
the m cells of the thin roadmap, and sim(ci, cj) be the similarity between the
local map views associated to cells ci and cj . A similarity measure sim can be
computed using the correlation technique previously presented,

sim(ci, cj) = maxi=0,..,7{P (s = v(ci)|l = (cj , θi))} (3)

sim(ci, cj) for all i, j = 1, ..., m form a similarity matrix S that can be computed
from the map and the roadmap, before the localization process starts.

If there are more than one group of hypotheses, we can predict a robot
movement in two different ways: 1) using an ideal model for the robot movements
and 2) using a model that include uncertainty. Let these types of prediction be
called deterministic and non deterministic prediction respectively.

In both cases we use a Markov localization representation p′(L), to track
groups of hypotheses under the possible set of virtual movements of the robot;
and p(L) to represent the set of hypotheses of the location of the robot, given the
set of real movements. When a prediction process starts, p′(L) and p(L) are the
same. Once a goal cell in p′(L) is computed, assuming that the robot location
is given by the most probable hypothesis, the robot can move towards the goal
cell, updating p(L). The prediction process is repeated if there are more than
one group of hypotheses, until there is only one group.

4.1 Deterministic Prediction

If the movements of the robot are considered deterministic or ideal, they can
be represented like a rotation followed by a translation [5]. Let cb be the most
probable location where the robot can be. After a given virtual movement v from
cb to a cell ci of the thin roadmap, the transformation given by v can be applied
to all locations of the probability distribution. Let cj be the new position for
one hypothesis, after transformation v. After this virtual movement, a virtual
sensing is applied. Here we use the similarity matrix to estimate p(s|l), assuming
that the robot is at location l =< cj , θj >, and that s corresponds to the local
map view from cell ci (the most probable):
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P (s|l)) =
{

sim(ci, c
′
j) if cj ∈ thick roadmap

0 otherwise
(4)

where c
′
j is the cell of the thin roadmap closest to cj .

4.2 Non Deterministic Prediction

An improvement over the deterministic prediction is to include an uncertainty
model for the virtual movements of the robot (e.g. the model illustrated in Figure
4). A virtual movement from a cell cb to ci (as in the deterministic prediction) is
split in a sequence of < (m1, s1), (m2, s2)... >, where mi indicates a motion step
to an adjacent cell, and si is a sensing step. In other words, instead of considering
only a target cell where the robot can be, there will be a set of cells (limited by
the trimming process after the sensing step). The sensing step is the same as in
the deterministic prediction.

Considering that the thin roadmap is usually of one or two cells wide, re-
sults from an adjacent cell can be used to compute further results, giving a fast
algorithm. In the implementation we use a breadth first search over the thin
roadmap.

5 Experimental Results

This section presents preliminary results obtained using a mobile robot simula-
tor. The robot simulates sonars and a low cost laser range sensor, implemented
with a laser line generator and a camera. The laser sensor gives good measure-
ments within a range of 3 m. The simulated robot has an uniform random error
on displacements of ±10% and ±5% on rotations. We present two experiments
to test the deterministic and non deterministic prediction for two complex envi-
ronments.

Fig. 5. A complex environment

Figure 5 shows a complex simulated environment of 17.5 × 10 m. At the
beginning there were 6 groups of hypotheses, one per room except in the two
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rightmost rooms. After moving through 5 cells (of 10× 10 cm) towards the pre-
dicted goal cell, a sensing step is inserted and the prediction process is repeated
until there is only a group of hypotheses. At the end of the path followed by
the robot, there is only a group of hypotheses, the right one. In this case, both
types of predictions, deterministic and non deterministic, solved the localization
problem and lead to similar paths.

Figure 6 shows another simulated environment of 12 × 15.5 m where the
corridor on the left is slightly longer than corridor on the right. At the begin-
ning there were 2 groups of hypotheses, C0 and C1. The deterministic prediction
computes a goal cell Pd near the intersection of corridors, while the non deter-
ministic prediction indicates a cell Pnd in the bottom part of the roadmap. In
this case, the non deterministic prediction solves the localization problem and
the deterministic prediction fails. The deterministic prediction is faster (2 sec-
onds versus 6 seconds on a PC Pentium III 733Mhz) but it fails to solve the
global localization problem.

C 0

P

P
d

C1

nd

Fig. 6. (left) The simulator. (right) Roadmap with clusters C0 and C1 and results from
the deterministic (Pd) and non deterministic prediction (Pnd)

6 Conclusions

A robust approach to solve the global localization problem in indoor environ-
ments has been presented. It can be seen as the application of two Markov
localization representations: one to track probable locations of the robot; an an-
other to predict movements of the robot when there is more than one group of
hypotheses. The second Markov representation can use a deterministic or a non
determinist model for the movements of the robot. As the experiments confirm,
a non deterministic prediction is more robust than a deterministic one, specially
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when the odometer of the robot or its sensors are not very accurate, or there are
long corridors in the environment. In these cases the non deterministic prediction
(using a model for the uncertainty of the robot), succeeds while a determinist
prediction (modeled by a single rotation followed by a translation) can fail.

In the future, we plan to test this approach using real robots and environ-
ments with long corridors and similar places.
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