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Abstract. We present two observation models based on optical flow
information to track objects using particle filter algorithms. Although,
in principle, the optical flow information enables us to know the dis-
placement of the objects present in a scene, it cannot be used directly
to displace a model since flow estimation techniques lack the necessary
precision. We will define instead two observation models for using into
probabilistic tracking algorithms: the first uses an optical flow estima-
tion computed previously, and the second is based directly on correlation
techniques over two consecutive frames.

1 Probabilistic Tracking

The probabilistic models applied to tracking [1,2,3] enable us to estimate the a
posteriori probability distribution of the set of valid configurations for the object
to be tracked, represented by a vector X, from the set of measurements Z taken
from the images of the sequence, p(X|Z). The estimation in the previous instant
is combined with a dynamical model giving rise to the a priori distribution in
the current instant, p(X). The relation between these distributions is given by
Bayes’ Theorem:

p(X|Z) ∝ p(X) · p(Z|X)

The distribution p(Z|X), known as the observation model, represents the
probability of the measurements Z appearing in the images, assuming that a
specific configuration of the model in the current instant is known.

In this paper, two optical flow based observation models are defined. The first
one uses as evidence an existing estimation of the optical flow of the sequence,
and the second one is based on correlation techniques.
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2 Optical Flow Estimation

The most well-known hypothesis for calculating the optical flow [4] assumes
that the intensity structures found in the image, on a local level, remain approx-
imately constant over time, at least during small intervals of time.

There is no algorithm for estimating the optical flow field which is clearly
superior to the others. Each may have small advantages over the others in par-
ticular situations, but in general it may be said that from a practical point of
view all are equivalent [5,6]. In this paper, we have preferred to use the algorithm
in [7], for the following reasons:

– It does not impose restrictions on the sequence to be analyzed.
– It provides a dense estimation of the optical flow.
– It is designed to preserve discontinuities in the flow, which is necessary for

the observation model proposed in this section to behave appropriately.

3 The Dynamical Model

Other authors have successfully used characteristics such as the gradient [8] or
intensity distributions [3] for tracking tasks. The dynamical model of the object
will provide an a priori distribution on all the possible configurations in the
instant tk, p(X(tk)), from the estimated distributions in the previous instants of
time. In this paper, a second-order dynamical model has been used in which the
two previous states of the object model are considered, and this is equivalent to
taking a first-order dynamical model with a state vector for the instant tk of the
form [8]

Xtk
= [Xtk−1 Xtk

]T

The integration of the a priori distribution p(X) with the set Z of the ev-
idences present in each image, in order to obtain the a posteriori distribution
p(X|Z), is obtained with Bayes’ Theorem. This fusion of information can be
performed, if the distributions are Gaussian, using Kalman’s Filter [1]. However,
in general, the distributions involved in the process are normally not Gaussian
and multimodal [2]. Sampling methods for modeling this type of distribution [9]
have shown themselves to be extremely useful, and particle filter algorithms [10,
11,3] based on sets of weighted random samples, enable their propagation to be
performed effectively.

4 Observation Models

If there is a good optical flow measurement and the object is perfectly localized,
it is possible to slide the points of the model in accordance with the flow vectors,
thereby obtaining a good estimate of its position for the following frame. Un-
fortunately, the small errors in the flow will mount up with each frame, so that
the model gradually separates from the real object, until it loses it completely.
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Nevertheless, it may be supposed that the object to be tracked will move in an
environment that has other displacements, and therefore it may be assumed that
there will be discontinuities in the optical flow on its contour –or at least part
of it. The observation model will be defined in such a way that it not only helps
the flow inside the object to concur with the displacement implied by the value
of X , but also so that discontinuities in the optical flow appear in the contour
of the model.

4.1 Observation Model Based on Optical Flow

Let us suppose that we have an estimation of the flow field v for the image I in
the instant tk. The following error function may be defined, with S ⊆ I being
an area inside the image:

ZS(v;d) =
∑

(x,y)∈S

W (x, y) ‖v(x, y) − d(x, y)‖2 (1)

where W (x, y) is a weight function and d(x, y) is given by the state vector X ,
relating the point on the model in the instant tk−1 with the same point in
the instant tk. This measurement will always be non-negative and will only be
equal to zero when the flow vectors are perfectly adjusted to the displacement
predicted by the model.

Let us now consider a point x = (x, y) of the image belonging to the outline
of the model in the instant tk. This point will be given by the expression

x = f(Xtk
;m)

where Xtk
defines the specific configuration of the object model, and m is the

parameter vector which associates each point within the model with a point on
the image plane. The displacement vector can be calculated for the same point
on the model between two consecutive instants of time as

d(Xtk
,m) = f(Xtk

;m) − f(Xtk−1 ;m) (2)

Considering S as a 2D region centered at f(Xtk−1 ;m), the measurement (1)
would be:

ZS(Xtk
,m) =

∑

(x,y)∈S

W (x, y) ‖v(x, y) − d(Xtk
,m)‖2 (3)

The flow field is expected to present discontinuities on the boundaries of
the moving objects –otherwise, it would be impossible to locate the object only
from the flow vectors–, which is why if we subdivide S into two areas Si and Se,
corresponding respectively to the parts of S interior and exterior of the object
contour. If the model’s prediction is good enough, the adjustment must be much
better in Si than in Se, so that the point in question may be considered to
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be placed on the contour. In order to detect that, we compute ZSi(Xtk
,m),

ZSe
(Xtk

,m), and the following measurement:

Z(Xtk
,m) =

ZSe
(Xtk

,m)
ZSe(Xtk

,m) + ZSi(Xtk
,m)

(4)

The value of Z(Xtk
,m) satisfies the following properties:

– 0 ≤ Z(Xtk
,m) ≤ 1

– If ZSe(Xtk
,m) � ZSi(Xtk

,m), then Z(Xtk
,m) → 1, which indicates that the

adjustment is much better in Si than in Se, and therefore the point must
be situated exactly in a flow discontinuity, in which the inner area coincides
with the displacement predicted by the model.

– If ZSe(Xtk
,m) � ZSi(Xtk

,m), then Z(Xtk
,m) → 0. The adjustment is worse

in the inner area than it is in the outer area, and therefore the estimated
flow does not match the model’s prediction.

– If ZSe(Xtk
,m) = ZSi

(Xtk
,m), then the adjustment is the same in the inner

area as it is in the outer area, and therefore the flow adequately matches the
displacement predicted by the model, but it is impossible to guarantee that
it is situated on a flow discontinuity –nor, therefore, on the contour of the
object. In this case, Z(Xtk

,m) = 1/2.

Assuming that the values of ZSe and ZSi are bounded, it may be assumed
that the probability of a point on the image corresponding to the point on the
outline of the model given by the vectors Xtk

and m is proportional to Z(Xtk
,m):

p(Z|Xtk
,mi) ∝ Z(Xtk

,mi) (5)

Finally, assuming statistical independence, we may obtain the expression for the
observation model based on optical flow vectors, as the product of the values
obtained for each individual point on the contour:

p(Z|Xtk
) ∝

∏

i

Z(Xtk
,mi) (6)

with mi being the vector which identifies the i–nth point on the contour of the
model.

When it comes to partitioning the neighborhood S corresponding to a point
x of the contour of the model into two halves, one (Si) inside and the other
(Se) outside the model, respectively, a good approximation consists in using the
tangent to the contour in x as the dividing line between Si and Se.

The difficulty in determining a dense flow [12] has led us to establish that
those points with a more reliable flow measurement are of more use when calcu-
lating the internal and external values for the measurement Z –expression (1).
This is easily achieved by calculating the value of W (x, y) in this expression from
any of these reliability measurements of the calculated flow. In the experiments
carried out for this paper, the magnitude of the intensity gradient has been used,

W (x, y) = ‖∇I(x, y)‖
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4.2 Observation Model Based on Similarity Measures

In the model defined in this section, in order to estimate the observation proba-
bility of each point of the contour, similarity measurements shall be used. If the
prediction which the model makes is good and the intensity maps corresponding
to the neighborhood of each point are superimposed, the inner part of the model
must fit better than the outer part.

Let x = f(Xtk
;m) be a point belonging to the model contour at the in-

stant tk, let S be a neighborhood of x subdivided in turn into Si and Se, let
d(Xtk

,m) be calculated from expression (2), and let I(k−1) and I(k) be images
corresponding to the instants of time tk−1 and tk. The quadratic errors are
therefore calculated in the following way:

ZSi(Xtk
,m) =

∑
Si

W (x)
(
I(k−1)(x) − I(k)(x − d(Xtk

,m))
)2

ZSe
(Xtk

,m) =
∑

Se
W (x)

(
I(k−1)(x) − I(k)(x − d(Xtk

,m))
)2

(7)

where W (x) is a weighting function. Two non negative magnitudes are ob-
tained, that may be combined using expression (4), in order to obtain a value of
Z(Xtk

,m). Since the magnitudes ZSi
and ZSe

are restricted, Z(Xtk
,m) may be

considered to be proportional to the observation density p(Z|X ), and therefore
we again have:

p(Z|Xtk
,mi) ∝ Z(Xtk

,mi) (8)

Supposing the measurements on each point are statistically independent, we
can use the expression (6) to compute the final observation probability.

5 Experiments

The observation models proposed have been incorporated into the Condensa-
tion algorithm [8], and its performance has been compared with that of the
observation model based on normals as proposed in [8]. Two image sequences
are used, lasting 10 seconds, with 25 frames per second, 320×240 pixels, 8 bits
per band and pixel, corresponding to the movement of a hand over an uniform
and non uniform background.

5.1 Tracking an Object over an Uniform Background

For modelling the hand, a contour model based on a closed spline with 10 control
points and a Euclidean similarity deformation space were used.

For the observation model based on contour normals, 20 normals were sket-
ched for each sample. The observation model was applied with parameters α =
0.025 and σ = 3, incorporated into the Condensation algorithm with 200
samples. The initialization was carried out manually, indicating the position
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a)

b)

c)
Frame 50 Frame 100 Frame 150 Frame 200

Fig. 1. a) Results obtained with the observation model for the contour normals. b)
Results obtained with the observation model based on optical flow. c) Results obtained
with the observation model based on similarity measures. The distribution average
appears in solid line in the current frame, and the averages in some previous frames
appear in dashed line.

of the object in the first frame. Figure 1.a shows the weighted average of the
distribution obtained.

For our first observation model, the algorithm of [7] was used on the images
to obtain an optical flow map between each two consecutive frames. The size
of the area centered on each point was 5×5 pixels. As a reliability measure
W (x, y) when it comes to weighting the quadratic differences in expression (3),
the magnitude of the intensity gradient ∇I was used on each point.

The Condensation algorithm was applied in exactly the same conditions
as for the previous model, obtaining the results showed in figure 1.b.

In order to apply the observation model based on similarity measures, the
same conditions were used as in previous experiments (200 samples and 20 points
along the contour, considering a neighborhood of 5×5 pixels for each point). The
result obtained is illustrated in Figure 1.c.

5.2 Tracking an Object over a Non Uniform Background

In order to use the observation model based on contour normals, 18 normals
were sketched to each contour, and the same technique was used to detect the
boundaries as the one used in the previous series of experiments, with a slightly
lower threshold (0.04). The number of samples is still 200, and the parameters
for the observation model in this case were σ = 3 and α = 0.055. The results
can be seen in Figure 2.a.

For the observation models based on optical flow, the algorithm in [7] was
used once again, areas of 5×5 pixels, and W (x, y) = ‖∇I‖. With the same
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Fig. 2. a) Results obtained with the observation model for the contour normals. b)
Results obtained with the observation model based on optical flow. c) Results obtained
with the observation model based on similarity measures. The distribution average
appears in solid line in the current frame, and the averages in some previous frames
appear in dashed line.

number of samples as in the previous experiment (200), and the same 18 points
on the contour, the results (Figure 2.b) are clearly better for this observation
model.

For the observation model based on similarity measures, neighborhoods of
5×5 pixels and 200 samples for the Condensation algorithm were also used.
The results obtained are shown in Figure 2.c.

6 Discussion and Conclusions

The experimental results obtained by the two proposed observation models on
the sequence with an uniform background are satisfactory, although at one mo-
ment the distribution average strays slightly below and to the right of the hand,
covering its shadow. This is due to the fact that, since there is no texture on
the background, the shadow appears as a small grey patch which moves around
with the hand, which is why the flow boundary can be placed on the contour of
the hand-shadow set.

In the second sequence, there were significant differences in the results ob-
tained in the tracking according to which observation model was used. With
the observation model for the contour normals, as there are many edges on the
background, samples emerge with a significant likelihood value, although they
are not placed on the object. Consequently, the distribution average strays from
the real position of the object in some frames, although at no time does it lose
it completely.
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With the two new observation models, it can be seen how the model never
loses the object, and that it is not affected by the presence of clutter outside the
real object, since the only discontinuities in the flow map will be given by the
contour of the hand.

As can be seen, in a non uniform background, the observation models pro-
posed here perform better than the model based on contour normals. In a uni-
form background, the absence of texture means that the model based on normals
behaves better. This suggests that the proposed model and the contour normals
model can be considered, in some way, complementary.
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