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Abstract. Most of the leading Convolutional Neural Network (CNN)
models for semantic segmentation exploit a large number of pixel–level
annotations. Such a human based labeling requires a considerable effort
that complicates the creation of large–scale datasets. In this paper, we
propose a deep learning approach that uses bounding box annotations
to train a semantic segmentation network. Indeed, the bounding box
supervision, even though less accurate, is a valuable alternative, effective
in reducing the dataset collection costs. The proposed method is based
on a two stage training procedure: first, a deep neural network is trained
to distinguish the relevant object from the background inside a given
bounding box; then, the output of the network is used to provide a weak
supervision for a multi–class segmentation CNN. The performances of
our approach have been assessed on the Pascal–VOC 2012 segmentation
dataset, obtaining competitive results compared to a fully supervised
setting.
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1 Introduction

Image semantic segmentation is one of the fundamental topic in computer vision.
Its goal is to make dense predictions, inferring the label of every pixel within an
image. In the last few years, the use of Convolutional Neural Networks (CNNs)
has lead to an impressive progress in this field [1–3], yet based on the use of
large datasets of fully annotated images. The human annotation procedure for
semantic segmentation is particularly expensive, since it requires a pixel–level
characterization of images. For this reason, the available datasets are normally
orders of magnitude smaller than image classification datasets (f.i. ImageNet
[4]). Such a limitation is important, since the performance of CNNs is largely
affected by the amount of training examples. On the other hand, bounding box
annotations are less accurate than per–pixel annotations, but they are cheaper
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and easier to be obtained. In this paper, we propose a simple method, called
BBSDL – for Bounding Box Supervision with Deep Learning –, to train CNNs
for semantic segmentation using only a bounding box supervision (or a mix of
bounding box and pixel–level annotations). Figure 1 provides a general overview
of our method, that can be sketched as follows.

• A background–foreground network (BF–Net) is trained on a relatively large
dataset with a full pixel–level supervision. The aim of the BF–Net is to rec-
ognize the most relevant object inside a bounding box.

• A multi–class segmentation CNN is trained on a target dataset, in which the
supervision is obtained exploiting the output of the BF–Net.

The rationale behind this approach is that realizing a background–foreground
segmentation, constrained to a bounding box, is significantly simpler than
obtaining a multi–class semantic segmentation on the whole image. Following
this intuition, we consider a scenario in which only bounding box annotations
are available on a target dataset. The pixel–level supervision, on such dataset,
can be produced from the bounding boxes exploiting the BF–Net trained on
a different dataset. In particular, multi–class annotations can be generated in
many ways from the output of the BF–Net and, indeed, a set of different solutions
were tested, in order to produce the best target for the multi–class segmentation
network. The effectiveness of the proposed method has also been compared with
other existing techniques [5,6].

The paper is organized as follows. In Sect. 2, we briefly review the state–of–
the–art research in semantic segmentation and weakly supervised approaches.
Section 3 presents the details of our method, whereas Sect. 4 describes the exper-
imental setup and collects the obtained results. Finally, some conclusions and
future perspectives are drawn in Sect. 5.

2 Related Works

Semantic segmentation describes the process of associating each pixel of an image
with a class label. Over the past few years, impressive results in image semantic
segmentation, so as in many other visual recognition tasks, have been obtained
thanks to deep learning techniques [1–3]. Recent semantic segmentation algo-
rithms often convert existing CNN architectures, designed for image classifica-
tion, to fully convolutional networks. In this framework, semantic segmentation
is generally formulated as a pixel–level labeling problem, which requires hand–
made fully annotated images. Sadly, producing this kind of supervision is highly
demanding and costly. In order to reduce the annotation efforts, some deep
learning methods exploit weak supervision. In contrast to learning under strong
supervision, these methods are able to learn from weaker annotations, such as
image–level tags, partial labels, bounding boxes, etc. In particular, weak super-
vised learning has been addressed through Multiple Instance Learning (MIL) [7].
MIL deals with training data arranged in sets, called bags, with the supervision
provided only at the set level, while single instances are not individually labeled
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Fig. 1. The training scheme. On the top, weak segmentation annotations are generated
from the BF–Net output. At the bottom, the multi–class network is trained based on
the generated weak supervision.

[8]. For instance, in [9], a semantic texton forest approach—based on ensem-
bles of decision trees that act directly on image pixels—, revisited in the MIL
framework, is proposed for semantic segmentation. Instead, a MIL formulation of
multi–class semantic segmentation, by a fully convolutional network, is presented
in [10]. MIL extensions to classical segmentation approaches are also introduced
in [11] and [12]. Finally, the recently proposed WILDCAT method [13] exploits
only global image labels to train deep convolutional neural networks to perform
image classification, point–wise object localization, and semantic segmentation.

On the other hand, following an approach which is something similar to our
proposal, i.e. that of using bounding box labeling to aid semantic segmentation,
in [5], the BoxSup method is proposed, where the core idea is that to iterate
between automatically generating region proposals and training convolutional
networks. Similarly, in [6], an Expectation–Maximization algorithm was used to
iteratively update the training supervision. Nevertheless, while both the above
described methods rely on an iterative procedure, our approach directly produces
the segmentation supervision, exploiting a deep convolutional network.

3 The BBSDL Method

In the following, we delve into the details of the multi stage training algorithm
proposed in this paper (see Fig. 1).
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BF–Net Training. The first step in the proposed approach consists in training
a deep neural network, capable of recognizing the most relevant object inside a
bounding box, thus separating the background from the foreground, called BF–
Net (top of Fig. 1). Our experiments are conducted using the Pyramid Scene
Parsing architecture [3] (PSP, see Fig. 2).

Fig. 2. Scheme of the pyramid scene parsing network, proposed by [3], used in this
paper.

The PSP net is a deep fully convolutional neural network which re–purposes
the ResNet [14], originally designed for image classification, to perform semantic
segmentation. Differently from the original ResNet, a set of dilated convolutions
[2] replaces standard convolutions to enlarge the receptive field of the neural
network. To gather context information, the PSP exploits a pyramid of pooling
with different kernel size. Both upsampling and concatenation produce the final
feature representation, which is fed into a convolutional layer to get the desired
per–pixel predictions. ResNets of different depths (i.e. with a different number
of convolutional layers) were proposed in the original paper [14]. We chose to
use the ResNet50 architecture, due to computational issues.

To train this network a dataset composed by image crops is required. Each
crop should contain only a single relevant object, in which pixels are anno-
tated either as foreground or background; the information about the object
class is not needed and indeed it is not used during training. We employ the
COCO dataset [15], which collects instance–level fully annotated images (i.e.,
in which objects of the same category are labeled separately). Such supervi-
sion can be used to extract the bounding box that encloses each object and
its background–foreground pixel–wise annotation. The images are then cropped,
using the obtained bounding boxes. Moreover, in order to include more context
information, each crop is enlarged by 5%, compared with the corresponding box
dimensions. Image crops are finally used for training and validating the BF–Net.

Multiclass Dataset Generation. Once the BF–Net has been trained, the
pixel–level supervision for the multi–class segmentation network training is gen-
erated (bottom of Fig. 1). All the bounding box annotations in the target dataset
need to be replaced with a multi–class pixel–level supervision. To this aim, the
BF–Net is used to produce predictions over each bounding box. Different strate-
gies can be employed in order to convert such predictions into the final seg-
mentation supervision. In particular, if the näıve approach consists in directly
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replacing each bounding box with the pixel–level classification given by the BF–
Net, a more refined strategy suggests to use the value of the BF–Net output
probability prob(x, y), at position (x, y), to obtain the label l(x, y) for the same
point:

l(x, y) =

⎧
⎨

⎩

background if prob(x, y) < th1

foreground if prob(x, y) > th2

uncertain otherwise
(1)

The thresholds th1 and th2, after a trial–and–error procedure, have been
fixed to 0.3 and 0.7, respectively. If prob(x, y) ∈ (th1, th2), then (x, y) is labeled
as uncertain and will not be considered for the gradient computation.

Based on both these strategies, a problem naturally arises when bounding
box annotations partially overlap. Indeed, in this situation, it is not clear which
prediction should be trusted. To solve the ambiguity, three different heuristic
approaches were used in the experiments, which are sketched in the following.

• Ignore Intersection – Overlapping regions are labeled as “uncertain”, so
that the gradient will not be propagated in these regions.

• Smallest Box – Overlapping regions are considered to belong to the smallest
bounding box, which is supposed to coincide with the foreground object.

• Fixed Threshold – Overlapping regions are considered to belong to the
bounding box with the highest foreground probability prediction.

In Sect. 4.2, we review the experimental results obtained using the three
different strategies.

Multiclass Segmentation Network Training. Once the pixel–level supervi-
sion is provided, the multi–class network can be trained. In all the experiments,
the Pascal–VOC 2012 dataset [16] has been exploited for the PSP training and
validation. Similarly to the BF–Net, we used the PSP50 as the multi–class seg-
mentation network, with 21 probability output maps. The experimental details
are reported in Sect. 4.3.

Implementation Details. Both the BF–Net and the multi–class segmentation
network are implemented in TensorFlow. All the experiments follow the same
training procedure that will be explained in the following. Actually, the training
phase is composed of two different stages. First, the images are resized at a fixed
resolution of 233×233, using padding to maintain the original aspect ratio; early
stopping is implemented based on the validation set. Then, the training continues
using random crops of 233 × 233 pixels to obtain a more accurate prediction.
The Adam optimizer [17], with learning rate set to 10−6 and a mini–batch of
15 examples, has been used to train the network. The evaluation phase relies on
a sliding window approach. The experimentation was carried out in a Debian
environment, with a single NVIDIA GeForce GTX 1080 Ti GPU, with 128 GB
of RAM. The average inference time for each image is about 1.6 s and depends
on its size.
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4 Experiments and Results

In Sect. 4.1, we describe the datasets used in our experiments, whereas the weak
supervision generation is presented in Sect. 4.2. Finally the experimental results
are discussed in Sect. 4.3.

4.1 The Datasets

COCO–2017. The COCO–2017 dataset [15], firstly released by Microsoft Cor-
poration, collects 115000 training and 5000 validation instance–level fully anno-
tated images. Also a test set of 41000 images is provided. The object categories
are 80, plus the background. However in our experiments, the class supervision
is not used. From the given annotations, 816590 and 34938 bounding boxes have
been extracted, respectively, for training and evaluating the BF–Net.

Pascal–VOC 2012. The original Pascal–VOC 2012 segmentation dataset col-
lects 1464 training and 1449 validation pixel–level fully annotated images. A test
set of 1456 images is also provided, yet without a publicly available labeling. The
object categories are 20, plus the background class and a “don’t care” class, to
account for uncertain regions. Finally, a set of 14212 additional images are pro-
vided, with only bounding box annotations. Following the procedure reported
in [18], an augmented Pascal–VOC segmentation set was also devised, which
provides full pixel–level annotations for 9118 out of the 14212 images originally
weakly annotated, yielding a total of 10582 training images. The Pascal–VOC
dataset is used for training and evaluating the multi–class segmentation network.

4.2 Weak Supervision Generation for Pascal–VOC 2012

The generation of weak supervisions for the Pascal–VOC dataset follows the pro-
cedure described in Sect. 3. First, the BF–Net is trained on the COCO dataset.
All the bounding box annotations of the 10582 augmented Pascal–VOC images
are then replaced with the multi–class pixel–level supervision obtained from the
output of the BF–Net.

Table 1 compares the generated weak supervisions with the strong annota-
tions provided by the Pascal–VOC dataset. Based on the reported results, the
best performances are obtained using the “Fixed Threshold” approach, provid-
ing an improvement of more than 4% of the mean Intersection over Union (mean
IoU)1, compared to the other methods. It is also worth noting that, when the
probability falls between the two thresholds, an uncertainty region is produced.
This region, as depicted in Fig. 3, mostly coincides with the uncertainty class
present in the Pascal–VOC annotations.
1 The Mean Intersection over Union is a common measure used to evaluate the quality

of a segmentation algorithm, and adopted by the Pascal–VOC competitions. The
mean IoU is defined as the average of the ratios |T ∩ P |/|T ∪ P | for all the images
in the test set, where P is the set of pixels predicted as foreground, T is the set of
pixels actually annotated as foreground, and | · | denotes the set cardinality operator.
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Table 1. Comparison between the Pascal–VOC annotations and the annotations gen-
erated by BBSDL.

Supervision generation approach Mean IoU

Ignore intersection 76.22%

Smallest box 78.01%

Fixed threshold 82.32%

(a) (b) (c)

Fig. 3. Qualitative comparison between Ground–Truth segmentation and generated
annotations. (a) Original image. (b) Generated annotations with a fixed threshold. (c)
Ground–Truth segmentation.

Table 2 reports the results obtained by training the multi–class segmenta-
tion network on the Pascal–VOC validation set, confirming the Fixed Threshold
approach as the most effective. For this reason, this setup will be used in all the
following experiments.
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Table 2. Results of the multi–class segmentation on the Pascal–VOC validation set,
obtained with different strategies, for the pixel–level weak supervision generation.

Supervision generation approach Mean IoU

Ignore intersection 60.93%

Smallest box 60.64%

Fixed threshold 65.28%

4.3 Experimental Results

In order to evaluate the proposed framework, we set up the following exper-
iments, that simulate a different availability of pixel–level and bounding box
annotations.

• Mask supervised setting – This is the baseline method, in which all the
10582 pixel–level annotations of the Pascal–VOC training set are used.

• BoundingBox supervised setting – The pixel–wise labeling provided by
the Pascal–VOC dataset is totally disregarded. All the bounding boxes are
replaced with the supervision provided by the BF–Net.

• Semi supervised setting – This simulate the situation in which a relatively
reduced number of pixel–wise annotations is available, whereas it is possible
to rely on a greater set of bounding box annotations. As in [5] and [6], we
used 1464 strongly supervised pixel–level annotations, replacing the bounding
boxes in the remaining 9118 images with the supervision provided by BBSDL.

Table 3 shows the results obtained by BBSDL on the Pascal–VOC 2012 val-
idation set, with the three different experimental setups, compared with other
state–of–the–art methods, namely BoxSup [5] and Box–EM [6]. A qualitative
evaluation is reported in Fig. 4.

Training with strong annotations produces the best mean IoU on the vali-
dation set (70.41%). Instead, the mean IoU drops to 65.28%, using only weak
bounding box annotations. On the other hand, the semi–supervised setup allows
to obtain a mean IoU of 69.20%2, which is just 1.21 point worse than the strongly
supervised setup. As expected, the performance achieved by using only bound-
ing box annotations is less than that obtainable with a strong supervision. How-
ever, the produced results show that BBSDL is viable to be used in practical
applications, where strong annotations are not available or, in general, are too
expensive to be produced. On the validation set, the difference in performance

2 We report the results of the semi–supervised approach just for the sake of complete-
ness, since the real purpose of this paper is to present a method that can work on a
dataset where no strong supervision is available.
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(a) (b) (c) (d) (e)

Fig. 4. Qualitative comparison of the results obtained with the three different super-
vision strategies. (a) Original image. Segmentation obtained by weak bounding box
annotations (b), based on the semi–supervised setting (c), and by pixel–level annota-
tions (d). (e) Ground–Truth segmentation.

of BBSDL compared to the strong–supervised (Mask) and the weakly super-
vised (BoundingBox) cases is 5.13%. This result outperforms that obtained by
the Box–EM approach (with a difference of 7%), but it is worse with respect to
BoxSup. However, BoxSup employs the MCG segmentation proposal mechanism
[19], previously trained on the pixel–level annotations of the Pascal–VOC train-
ing set. In Table 4, the results on the Pascal–VOC test set are reported, which
look similar to those obtained on the validation set. Unfortunately, the baseline
results for BoxSup on the test set are not reported in [5], whereas Box–EM uses
a different number of training images—differently from BBSDL and BoxSup,
Box–EM also uses the validation images to train the model. For this reason, the
comparative evaluation is possible only on the validation set.
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Table 3. Comparative results on the Pascal–VOC 2012 validation set.

Method Supervision Num. of strong tag Num. of weak tag Mean IoU

BoxSup [5] Mask 10582 - 63.80%

BoxSup [5] BoundingBox - 10582 62.00%

BoxSup [5] Semi 1464 9118 63.50%

Bbox–EM [6] Mask 10582 - 67.60%

Bbox–EM [6] BoundingBox - 10582 60.60%

Bbox–EM [6] Semi 1464 9118 65.10%

BBSDL Mask 10582 - 70.41%

BBSDL BoundingBox - 10582 65.28%

BBSDL Semi 1464 9118 69.20%

Table 4. Comparative results on the Pascal–VOC 2012 test set.

Method Supervision Num. of strong tag Num. of weak tag Mean IoU

BoxSup [5] Mask 10582 - -

BoxSup [5] BoundingBox - 10582 64.4%

BoxSup [5] Semi 1464 9118 66.2%

Bbox–EM [6] Mask 12031 - 70.3%

Bbox–EM [6] BoundingBox - 12031 62.2%

Bbox–EM [6] Semi 1464 10567 66.6%

BBSDL Mask 10582 - 70.36%

BBSDL BoundingBox - 10582 66.24%

BBSDL Semi 1464 9118 70.25%

5 Conclusions and Future Perspectives

This paper explores the use of bounding box annotations for the training of a
state–of–the–art semantic segmentation network. The output of a background–
foreground network, capable of recognizing the most relevant object inside a
region, has been used to deduce pixel–wise annotations. A fixed threshold strat-
egy has been employed in order to convert the background–foreground network
output into the final segmentation supervision. Actually, the obtained weak
supervision allowed to train a multi–class segmentation network, whose perfor-
mances are competitive with respect to approaching the semantic segmentation
problem in a strongly–supervised framework. In perspective, how to avoid the
use of predefined thresholds for the multi–class dataset generation represents
an important issue to deal with, in order to improve the BBSDL performances.
Moreover, also training the BF–Net based on unsupervised data should be a mat-
ter of future work, capturing images from videos and exploiting the temporal
information related to successive frames.
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19. Arbeláez, P., Pont-Tuset, J., Barron, J.T., Marques, F., Malik, J.: Multiscale com-
binatorial grouping. In: Proceedings of IEEE CVPR 2014, pp. 328–335 (2014)

https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48

	Generating Bounding Box Supervision for Semantic Segmentation with Deep Learning
	1 Introduction
	2 Related Works
	3 The BBSDL Method
	4 Experiments and Results
	4.1 The Datasets
	4.2 Weak Supervision Generation for Pascal–VOC 2012
	4.3 Experimental Results

	5 Conclusions and Future Perspectives
	References




