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Abstract. The C++11/14 standard offers a wealth of features aimed
at helping programmers write better code. Unfortunately, some of these
features may cause subtle programming faults, likely to go unnoticed dur-
ing code reviews. In this paper we propose four new mutation operators
for C++11/14 based on common fault patterns, which allow to verify
whether a unit test suite is capable of testing against such faults. We
validate the relevance of the proposed mutation operators by performing
a case study on seven real-life software systems.
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1 Introduction

Nowadays, the process of software development relies more and more on auto-
mated software tests due to the developers interest in testing their software
components early and often. The level of confidence in this process depends on
the quality of the test suite. Therefore, measuring and improving the quality of
the test suite has been an important subject in literature. Among many of the
studied techniques, mutation testing is known to perform well for improving the
quality of the test suite [10].

The idea of mutation testing is to help identify software faults indirectly by
improving the quality of the test suite through injecting an artificial fault (i.e.
generating a mutant) and executing the unit test suite to see whether the fault
is detected [19]. If any of the tests fail, the mutant is said to detected, thus killed.
On the other hand, if all the tests pass, the test suite failed to detect the mutant,
thus the mutant survived. However, some mutants result in code which does not
pass the compiler and these are called invalid mutants. And in other situations,
a mutant fails to change the output of a program for any given input hence can
never be detected—these are called equivalent mutants.

A mutant is created by applying a transformation rule (i.e. mutation opera-
tor) to the code that results in a syntactic change of the program [9]. Given an
effective set of mutation operators, mutation testing can help developers identify
the weaknesses in the test suite [1]. Nevertheless, designing effective mutation
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operators requires considerable knowledge about the coding idioms and the com-
mon programming faults often made in the language [9]. More importantly, good
mutation operators should maximize the likelihood of valid and non-equivalent
mutants [4].

The first set of mutation operators were reported in King et al. [12]. They
were later implemented in the tool Mothra which was designed to mutate the
programming language FORTRAN77. With the advent of the object-oriented
programming paradigm, new mutation operators were proposed to cope with
specific programming faults therein [11]. This is a common trend in mutation
testing: languages evolve to get new language constructs; some of these con-
structs cause subtle programming faults; after which new mutation operators get
designed to shield against these common faults. For example, with the evolution
of Java related languages, mutation operators have been designed to account
for concurrent code [2], aspect-oriented programming [7], graphical user inter-
faces [18], and Android applications [6].

The C++11/14 standard (created in 2011 and 2014 respectively) offers a
wealth of features aimed at helping programmers write better code [20]. Most
notably there is more type-safety and compile-time checking (e.g. static assert,
override). Unfortunately, the standard also provides a few features that may
cause subtle faults (e.g. lambda expressions, list initialization, . . . ). Our goal is
to identify these sources of common faults and introduce new mutation operators
that address them. While it is possible that some subset of these faults are
addressed by C++99 mutation operators, previous experience shows targeted
mutation operators prove useful in improving the test suite quality further [3,5].
In this study, we seek to answer the following research questions:

– RQ1. Which categories of C++11/14 faults are most likely to be made by
programmers, and what are the corresponding mutation operators?

– RQ2. To what extent do these mutation operators create valid, non-
equivalent mutants?

The rest of this paper is structured as follows: In Sect. 2 we provide the necessary
background information about this study, and briefly discuss the related work.
In Sect. 3 we discuss our approach to answering our research questions, and show
our results in Sect. 4. Finally, we present our conclusions in Sect. 5 and highlight
the future research directions rooted in this work.

2 Background and Related Work

In this section we provide the necessary background information needed to com-
prehend the rest of the article and discuss the related work. First, we describe
mutation testing and its related concepts. Then, we describe the new C++11/14
features, focusing on subtle faults that may be revealed via mutation testing.
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2.1 Mutation Testing

Mutation testing is the process of inserting bugs into software(Mutants) using a
set of rules(Mutation Operators) and then running the accompanying test suite
for each inserted mutant. If all tests pass, the mutant survived. If at least one test
fails, the mutant is killed. If the mutant causes an error during compilation of the
production code, it is invalid. A valid mutant that does not change the semantics
of the program, thus making it impossible to detect, is called equivalent.

An equivalent mutant is a mutant that does not change the semantics of
the program, i.e. its output is the same as the original program for any possible
input. Therefore, no test case can differentiate between an equivalent mutant and
the original program, which makes it undesirable. The detection of equivalent
mutants is undecidable due to the halting problem [16]. The only way to make
sure there are no equivalent mutants in the mutant set is to manually inspect
and remove all the equivalent mutants. However, this is impractical in practice.
Therefore, the aim is to generate as few equivalent mutants as possible.

Mutation operators are the rules mutation testing tools use to inject syntac-
tic changes into software. Most operators are defined as a transformation on a
certain pattern found in the source code. The first set of mutation operators ever
designed were reported in King et al. [12]. These mutation operators work on
basic syntactic entities of the programming language such as arithmetic, logical,
and relational operators. Offutt et al. came up with a selection of few mutation
operators that are enough to produce high quality test suites with a four-fold
reduction of the number of mutants [17]. Kim et al. extended the set of mutation
operators for object-oriented programming constructs [11].

Because of the complexity of parsing C++, building a mutation testing tool
for C++ is almost equivalent to building a complete compiler [8]. It is only
with modern tooling, e.g. the Clang/LLVM compiler platform, that it became
possible to write such tools without an internal parser.

Kusano et al. developed CCmutator, a mutation tool for multi-threaded
C/C++ programs that mutates usages of POSIX threads and the C++11 con-
currency constructs, but works on LLVM’s intermediate representation instead
of directly on C++ source code [13]. Delgado-Perez et al. have expanded on the
work done for the C language by adding class mutation operators, and created a
set of C++ mutation operators [5]. In addition, they show that the class muta-
tion operators compliment the traditional ones and help testers in developing
better test suites.

2.2 C++11/14

C++11 was introduced in 2011 with the goal of adapting C++ and its core
libraries to modern use cases of the language (e.g. multi-threading, genetic algo-
rithms, . . . ). This release was followed by C++14 in 2014 with similar goals. The
introduction of C++11/14 has changed the language to the point that earlier
iterations of the language are dubbed the classical C++, and modern C++1

1 http://www.modernescpp.com/index.php/what-is-modern-c.

http://www.modernescpp.com/index.php/what-is-modern-c
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starts with C++11/14. The release of the standard was followed by real-time
adoption in compilers such as Clang and G++.

Unfortunately, the C++11/14 standard also provides a few features that
may cause subtle faults, thus where support in the form of new mutation oper-
ators would be desirable. In this subsection we briefly explain these features of
C++11/14.

Range-Based for Loop. [http://en.cppreference.com/] is syntactic sugar
made to simplify looping over a range of elements. For example, the following
two loops are similar:

for ( int i : v ) {
std : : cout << i << ’ \n ’ ; }

for ( int i =0; i<v . s i z e ( ) ; i++) {
std : : cout << v . at ( i ) << ’ \n ’ ; }

Lambda Expressions. [http://en.cppreference.com/] allow for the definition
of unnamed in-line functions. For example, in the following piece of code, lambda
contains a function which captures a and b (they are available in the body of
lambda as const expressions), takes an input parameter x, and returns a bool.

int a , b ;
auto lambda = [ a , b ] ( int x ) {return x > a + b ;}

It is possible to have a default capture at the start of the capture list, e.g. ’=’
for by-value, or ’&’ for by-reference capture. This causes all variables referenced
in the lambda body to be captured the specified way.

Move Semantics. [http://en.cppreference.com/] are introduced in C++11/14
to address the inefficiencies of copy construction when the copied value is deleted
after the execution of the constructor. For example, the following code would be
inefficient in C++03:

std : : vector<int> v ( ComputeLargeVector ( 1 0 0 0 ) ) ;

In C++03, this code would create the vector in ComputeLargeVector, call
the copy constructor for v, which copies all elements into a newly allocated
buffer, and then destroys the original. With move semantics, v would simply
copy the internal size, capacity, and pointer to the elements in the temporary
vector and set the members of the temporary vector to 0.

To enable this, value categories2 got redefined in C++11. Every expression is
either an lvalue, an xvalue, or a prvalue. The difference between these value
categories lies in two properties: whether or not they have identity (i.e. it is pos-
sible to determine whether two expressions are the same using an address), and
whether they can be moved from (move semantics can bind to the expression).

2 http://en.cppreference.com/w/cpp/language/value category.

http://en.cppreference.com/
http://en.cppreference.com/
http://en.cppreference.com/
http://en.cppreference.com/w/cpp/language/value_category
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lvalues and xvalues have identity, while xvalues and prvalues can be moved
from. All rvalues can bind to rvalue references, which are denoted by &&. For
example, the signature of the move constructor of vector is:

vector<T> ( vector<T>&&);

It is possible to convert an lvalue to an xvalue through std::move, which
casts the object to an rvalue reference type.

Perfect Forwarding. [http://en.cppreference.com/] allow for forwarding of
input arguments to other functions as-is. For example, the emplace family of
functions in the standard containers accept any number of arguments and for-
ward them to the constructor of the element type. The following template func-
tion constructs an object of type T with a given argument:

template<typename T, typename Arg>
T cons t ruc t (Arg&& argument ) {

return T{ std : : forward<Arg>(argument ) } ;
}

Because Arg is a template parameter, Arg&& is a forwarding reference [22].
This means that it will resolve to either an lvalue or an rvalue reference
depending on argument. If argument is an lvalue, std::forward is a no-op,
and if argument is an rvalue reference, it behaves the same way std::move
does.

List Initialization. [http://en.cppreference.com/] is a new syntax introduced
in C++11 that allows the initialization of an object from braced initial values.
It expands the ability to construct structs and arrays using braced initializer to
all types in C++. For example, the following is a valid syntax for creating and
initializing an array of int :

int b {1 , 2 , 3 , 4 , 5} ;

Also, a type with a constructor that takes std::initializer list as an
argument can be initialized using this new syntax. For example, the following
declaration of a std::vector creates a vector of integers with 5 elements:

std : : vector<int> v {1 , 2 , 3 , 4 , 5} ;

3 Study Design

In this section, we discuss the design of our study. First, we explain our evalua-
tion criteria, and then we describe the process by which we determine the fault
categories and create mutation operators. Finally, we present the details of our
data set.

http://en.cppreference.com/
http://en.cppreference.com/
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3.1 Evaluation Criteria

RQ1. Which categories of C++11/14 faults are most likely to be made by
programmers, and what are the corresponding mutation operators?
To evaluate the results of this question, the mutation operator needs to fulfill
the following criteria:

– Can the mutation operator simulate a fault from the fault category we iden-
tified?

– Is it reasonable to assume that the software developer can create faulty code
similar to the generated fault?

We look at guidelines provided by experts concerning the new standards and
the common pitfalls mentioned therein. We search for such patterns and select
those that can be reconstructed into a mutation operator.

RQ2. To what extent do these mutation operators create valid, non-equivalent
mutants?

Mutation Operator Score = 1 − E −D

T − I −D
(1)

T = Total Number of Mutants, E = Number of Equivalent Mutants, D = Number
of Easily-Detectable Equivalent Mutants, I = Number of Invalid Mutants

An effective mutation operator generates valid semantic faults. This means
that mutation operators need to generate as few equivalent mutants as possible.
We borrow this criterion from Delgado-Perez et al. who used it in their study [4].
It is also important for each mutant to be valid, i.e. the mutated program com-
piles without errors. To quantify the effectiveness of each mutation operator, we
calculate the percentage of equivalent mutants among the valid mutants after
filtering the easily-detectable equivalent mutants. The mutation operator score
is then calculated by deducting the mentioned percentage from 100% (see Eq. 1).
For each mutation operator, we provide methods to filter easily-detectable equiv-
alent mutants.

To see how our operators work in real-life scenarios, we looked at seven open
source projects that are using C++11/14 (see Table 1). Our analysis consists
of applying our mutation operators to create all possible mutants. We do this
by manually searching for the code patterns that match (using grep). Then,
we manually categorize the resulting mutants into invalid, equivalent, and valid
non-equivalent mutants. If a mutant did not change the semantics of the pro-
gram, we classified it as an equivalent mutant. If the operator created a non-
compilable program, we classified the mutant as invalid. Otherwise, we consid-
ered the mutant as valid non-equivalent.

3.2 Data Set

In this subsection, we present the details of our data set. Our data set is publicly
available in the replication package available at https://www.parsai.net/files/
research/ICTSSRepPak.zip.

https://www.parsai.net/files/research/ICTSSRepPak.zip
https://www.parsai.net/files/research/ICTSSRepPak.zip
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In order to find the common fault patterns related to C++11/14, we looked
at the authoritative sources of fault patterns such as those suggested by Scott
Meyers in his book titled Effective Modern C++ [15], and C++ Core Guidelines
by Bjarne Stroustrup [21]. We also took into account the standard proposal
N3853 by Lavavej [14] which points out problems with range-based for loop
syntax.

Table 1. Project statistics

Project Commit Size (Lines of Code) Number of commits Team size

Production Test

i-score c86cd3d 108K 3.5K 5358 14

C++React 1f6ddb7 11K 2K 417 1

EntityX 6389b1f 9K 1K 296 28

Antonie 59deb0d 9K 0.1K 306 2

Json a09193e 8K 18K 1973 59

Corrade ff3b351 6.5K 9.1K 1898 10

termdb bd0fb4a 783 153 26 2

For the evaluation of the mutation operators, we looked at seven open source
projects that use C++11/14 (Table 1). These projects range from a small, several
hundred lines of code header-only library, to a full application with over 100,000
lines of code with years of active development:

– i-score is an interactive intermedia sequencer, built in Qt.
– C++React is a C++11 reactive programming library, based on signals and

event streams.
– EntityX is an Entity Component System that uses C++11 features.
– Antonie is a processor of DNA reads, developed at the Bertus Beaumontlab

of the Bionanoscience Department of Delft University of Technology.
– Json is a single-header library for working with Json with modern C++.
– Corrade is a C++11/14 utility library, including several container classes, a

signal-slot connection library, a unit test framework, a plugin management
library and a collection of other small utilities.

– termdb is a small C++11 library for parsing command-line arguments.

4 Results

In this section, we present the results of our research. For each mutation operator,
first we give its definition, then we discuss the motivation behind it to answer
RQ1, and finally we provide our analysis of the data set to answer RQ2.
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4.1 For

The range-based “for” reference removal (FOR) operator finds instances of range-
based for loops of the form for (T& elem : range) or for (T&& elem : range),
where T is either auto or a concrete type, and removes the reference qualifier
from the range declaration. Table 2 shows the results for this mutation operator.

Code Excerpt 1.1. Original For

for (auto& elem : range ) { . . . }
Code Excerpt 1.2. Mutated For

for (auto elem : range ) { . . . }

Motivation (RQ1). FOR operator is based on the possibility of confusion over
the default value semantics of the new range-based for loop, whereas previous
methods of looping over containers resulted in reference semantics. This was noted
previously by Stephan Lavavej [14]. In his standard proposal, he lists three prob-
lems with the most idiomatic-looking range-based for loop, for (auto elem :
range), namely:

– It might not compile - for example, unique ptr3 elements are not copyable.
This is problematic both for users who won’t understand the resulting com-
piler errors, and for users writing generic code that’ll happily compile until
someone instantiates it for movable-only elements.

– It might misbehave at runtime - for example, elem = val; will modify the
copy, but not the original element in the range. Additionally, &elem will be
invalidated after each iteration.

– It might be inefficient - for example, unnecessarily copying std::string.

From a mutation testing perspective, the second reason is the main motiva-
tion to create a mutation operator. In the case of a range-based for loop that
modifies the elements of a container in-place, the correct and generic way to
write it is for (auto&& elem : range). For all cases except for proxy objects
and move-only ranges, for (auto& elem : range) works as well.

This operator is only a minor syntactic change that is easily overlooked even
in code review if such fault pattern is not actively looked for. Surviving mutants
of this type can pinpoint the loops whose side effects on container elements are
not tested.

Analysis (RQ2). Invalid Mutants: The invalid mutants are comprised of two
groups. The majority of the invalid loops were over containers of move-only
types. Of the invalid mutants in i-score, 33 were containers of pointers to virtual
interface classes with custom dereferencing iterators, making the mutant try to

3 http://en.cppreference.com/w/cpp/memory/unique ptr.

http://en.cppreference.com/w/cpp/memory/unique_ptr
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Table 2. Results of FOR operator

Project Total Invalid Equivalent Easily detectable Score

i-score 251 101 115 110 87.5%

Corrade 24 1 13 13 100%

Json 1 0 0 0 100%

EntityX 2 0 2 2 N/A

termdb 0 0 0 0 N/A

C++React 8 0 6 6 100%

Antonie 39 10 18 18 100%

instantiate a non-instantiable type. Both of these cases can be easily checked
when generating the mutants.

Equivalent Mutants: In the majority of equivalent cases, the body of the loop did
not mutate the referenced element in the container, thus making it equivalent to a
loop with an added const qualifier. This is relatively easy to verify automatically,
hence such mutants are listed as detectable. Only a handful of equivalent cases
were loops that did mutate the elements of the container, but the container
never gets used after the loop finishes. This would require more complicated
static analysis.

4.2 LMB

The lambda reference capture (LMB) operator changes a default value capture to
a default reference capture. Table 3 shows the results for this mutation operator.

Code Excerpt 1.3. Original Lambda

[= ] ( int x ) { return x + a ; } ;

Code Excerpt 1.4. Mutated Lambda

[& ] ( int x ) { return x + a ; } ;

Motivation (RQ1). This operator is based on the warnings on default capture
modes in Core Guideline F53 and Meyers’ 31st item [15,21]. This mutation oper-
ator results in code that leads to undefined behavior if the lambda is executed in
a non-local context, because the references to local variables are not valid. This
can happen when the lambda is pushed up the call stack or sent to a different
thread for asynchronous execution.

Just like the FOR operator, this operator is only a minor syntactical change
that can easily be overlooked, and results in faults that are not necessarily easy to
detect; thus it is worth testing for its absence. Mutants created by this operator
are not easy to detect either, because they invoke undefined behavior which is
highly dependent on compiler optimization levels and runtime circumstances.
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Table 3. Results of LMB operator

Project Total Invalid Equivalent Easily detectable Score

i-score 189 0 113 101 86.3%

Corrade 0 0 0 0 N/A

Json 0 0 0 0 N/A

EntityX 0 0 0 0 N/A

termdb 0 0 0 0 N/A

C++React 1 0 0 0 100%

Antonie 0 0 0 0 N/A

Analysis (RQ2). Invalid Mutants: We did not witness any invalid mutants
generated by this operator in our data set.

Equivalent Mutants: All undetectable equivalent mutations were ones where the
lambda gets passed into a function that executes it within its own scope. While it
is theoretically possible to detect them, we classify them as undetectable because
it would require complicated non-local reasoning. The other equivalent mutants
are detectable by taking into account what the capture list actually captures.
For example, in Code Excerpt 1.5, the minimal capture list is empty, whereas in
Code Excerpt 1.6 the minimal capture list is [a] and in Code Excerpt 1.7 the
minimal capture list is [this]. In the first and third examples, replacing the
default value-capture with reference-capture changes nothing about the capture
list. In i-score, these made up the majority of equivalent cases, hence the high
percentage of detectable equivalent mutants.

Code Excerpt 1.5. Empty Capture

[= ] ( int x ) {return x < 1 ; } ;

Code Excerpt 1.6. Local Capture

int a ; [= ] ( int x ) {return x < a ; } ;

Code Excerpt 1.7. ‘this‘ Capture

struct Foo {
int a ;
auto g e t F i l t e r ( ) {

return [= ] ( int x ) {return x < a ; } ;
}

} ;

4.3 FWD

The forced rvalue forwarding (FWD) operator replaces std::forward instances
with std::move to force moving from forwarded arguments. Table 4 shows the
results for this mutation operator.
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Code Excerpt 1.8. Original Forwarding

template<class T>
void wrapper (T&& arg )
{

f oo ( std : : forward<T>(arg ) ) ;
}

Code Excerpt 1.9. Mutated Forwarding

template<class T>
void wrapper (T&& arg )
{

f oo ( std : : move( arg ) ) ;
}

Motivation (RQ1). There are often two possible errors in relation to for-
warding semantics (which Meyers warns about in his items 24 and 25 [15]):
forgetting to use std::forward (and thus passing both lvalues and rvalues
on as lvalues) or moving instead of forwarding (and thus passing lvalues on
as rvalues to be moved from).

As an example, the following function constructs an object of type T using
uniform initialization by forwarding the variadic list of arguments using perfect
forwarding:

template<typename T, typename . . . Args>
T cons t ruc t ( Args &&.. . a rgs ) {

return T{ std : : forward<Args>( args ) . . . } ;
}

We then use the following type, chosen because std::string has a destruc-
tive move constructor and std::unique ptr is a move-only type:

struct Widget
{

std : : s t r i n g text ;
s td : : unique ptr<int> value ;

} ;

Then the following code constructs two Widgets with the same text and
different values:

std : : s t r i n g text {64 , ’ a ’ } ; //Long enough to d i s a b l e SSO
auto w1 = construct<Widget>( text , s td : : make unique<int > (0) ) ;
auto w2 = construct<Widget>( text , s td : : make unique<int > (1) ) ;

Both calls result in Args being [std::string&,std::unique ptr<int>&&],
which makes std::forward correctly forward the first argument as lvalue and
the second as rvalue. Forgetting to use std::forward results in both arguments
being forwarded as lvalues, which fails to compile since std::unique ptr is
a move-only type. When forgetting to forward, code will always either compile
and default to copying the types, or fail to compile because a move-only type is
used. Since for all types, the only visible effect of doing a copy instead of a move
is a performance degradation, this would not be a useful operator for testing
purposes.
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Table 4. Results of FWD operator

Project Total Invalid Equivalent Easily detectable Score

i-score 71 13 18 9 81.6%

Corrade 5 0 0 0 100%

Json 14 0 14 6 0%

EntityX 7 0 1 1 100%

termdb 0 0 0 0 N/A

C++React 160 0 17 15 98.6%

Antonie 0 0 0 0 N/A

Replacing the std::forward with std::move, however, does has the poten-
tial to change program behavior. With construct mutated as in the code sample
above, the string text will be moved from in the first call, and the second call
results in unspecified behavior. In most standard library implementations, w2
will end up with an empty text. Meyers argues that it is easy to confuse rvalue
and forwarding references because of their identical syntax, making this a likely
fault for developers to make.

A large part of these mutants can be targeted by using forwarding on a non-
const lvalue argument, since it cannot bind to an rvalue reference. Another
way of testing these is to use a type with a destructive move, and test the state
of the original object after passing it into the function as an lvalue.

Analysis (RQ2). Invalid Mutants: The invalid mutants were comprised of two
groups: fixed template argument and non-const lvalue reference callee argu-
ments. The first group forwards to another template function while explicitly
stating the template argument as seen in Code Excerpt 1.10. This causes the
code to not compile when called with a non-const lvalue. If it is called with
const lvalues or rvalue references it will have the same runtime behavior as
the original.

Code Excerpt 1.10. Fixed Template Argument Forwarding

template<typename T>
void f oo (T&&);

template<typename T>
void bar (T&& t ) {

foo<T>( std : : forward<T>( t ) ) ;
}

The second group forwards into a function with fixed arguments, at least one
of which is a non-const lvalue reference, as seen in Code Excerpt 1.11 which
defines a function that calls another with a prepended integer argument. Because
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the second argument is a non-const lvalue reference, applying the operator here
results in an invalid mutant because it cannot bind to an rvalue reference.

Code Excerpt 1.11. Forwarding into Non-Const Lvalue Reference

void f oo ( int , int&, int ) ;

template<typename . . . Args>
void bar ( Args &&.. . a rgs ) {

f oo (1 , std : : forward<Args>( args ) . . . ) ;
}

Equivalent Mutants: There are three categories of equivalence for this operator.
The first is where std::forward gets used within a decltype or noexcept context,
where the operator either changes nothing, or makes the code fail to compile.
This is why we classify these as detectable equivalent mutants. The second case
is where the forwarded argument never gets stored, which makes irrelevant the
difference between std::forward, std::move, and passing by reference. The
third and final category is where the callees are guaranteed to not take rvalue
references or value parameters of movable types. Of these three categories, the
first is easily detectable by filtering out mutants within a decltype or noexcept
expression. The second would require sophisticated flow analysis which is why
we listed them as not easily-detectable. The last category can be detected if
it is feasible to find all possible callees and see whether they take any rvalue
references or value parameters of movable types. This is only feasible for mutants
calling functions that cannot be overloaded by external code, since it is otherwise
theoretically possible to introduce a new overload of the called function that
takes a parameter of a type with a destructive move, making the mutant non-
equivalent. The mutants for which this analysis is possible are listed as detectable
in our analysis.

4.4 INI

The initializer list constructor (INI) operator checks constructor calls of types
with an initializer list constructor and changes to/from uniform initialization in
order to provoke calling a different constructor. Table 5 shows the results for this
mutation operator.

Code Excerpt 1.12. Original Initializer

std : : vector<int> v ( 3 , 2 ) ;

Code Excerpt 1.13. Mutated Initializer

std : : vector<int> v {3 ,2} ;

Motivation (RQ1). While initializer list constructors are helpful in defining
container contents, they are possible sources of faults as well. For example, when
using uniform initialization one needs to pay attention to the correct syntax,
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Table 5. Results of INI operator

Project Total Invalid Equivalent Easily detectable Score

i-score 1 0 0 0 100%

Corrade 0 0 0 0 N/A

Json 0 0 0 0 N/A

EntityX 0 0 0 0 N/A

termdb 1 0 0 0 100%

C++React 0 0 0 0 N/A

Antonie 18 0 0 0 100%

since using {} instead of () by mistake changes the semantics of the expression
drastically. A prominent example of this problem is std::vector of integer
types, which Meyers points out in his 7th item [15]. The non-mutated version in
Code Excerpt 1.12 defines a vector of three elements with value 2, whereas the
mutated vector in Code Excerpt 1.13 has only two elements: 3 and 2.

Analysis (RQ2). Invalid Mutants: This operator has no way of creating invalid
mutants by design, because it checks whether or not a different constructor is
called when it is applied. This includes checking for narrowing conversions; e.g.
when trying to mutate std::vector<char>(10,’a’);.

Code Excerpt 1.14. Equivalence Cases for INI

struct Defaul t1 {
int f oo = 1 ;
Defau l t ( ) = default ;
De fau l t ( int f ) : f oo ( f ) {} ;
} ;

s td : : vector<Default1> v1 ( 1 ) ; //v1{1}
std : : vector<int> v2 ( 2 , 2 ) ; //v2 {2 ,2}

Equivalent Mutants: There are only a few corner cases for std::vector where
this operator results in equivalence (e.g. Code Excerpt 1.14).

In both of these cases, the mutated initializer results in the same vector as
the original. Given the number of times this pattern was observed in our data
set (20 instances in all projects), it is unlikely that such equivalent mutants are
found in any significant number.

4.5 Discussion

We have aggregated the number of all generated mutants per kind for each
mutation operator in Fig. 1. The FOR operator generates the highest number
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of mutants, most of which are either invalid or easily detectable equivalent.
Hence, it is possible to filter most of these mutants easily. This is why this
mutation operator is promising. The most promising mutation operator is INI,
which generated no invalid or equivalent mutants in our data set. However, the
low number of mutants generated by this mutation operator means that it might
not be applicable in every case. FWD is the operator that generates the most
valid, non-equivalent mutants along with a low number of equivalent and invalid
mutants, while LMB generates no invalid mutants at all but has a slightly higher
ratio of equivalent mutants that are hard to detect.

Fig. 1. Generated mutants Fig. 2. Mutation operator scores

Figure 2 shows the mutation operator score for each mutation operator. It is
clear that all mutation operators are within reasonable boundaries regarding the
percentage of generated hard to detect equivalent mutants when compared to
other C++ mutation operators (e.g. Delgado-Perez et al. [4]). Overall, we found
that these mutation operators have a high mutation operator score, with all of
them generating very few equivalent mutants (13.5% or less of the total number
of mutants).

One of the noticeable trends among these mutation operators is their ten-
dency to generate lots of mutants in a single project, and few in others. For
example, INI generated 18 mutants in Antonie, and 2 in all other projects, while
LMB generated 189 mutants in i-score and only 1 in others. Other than the
size of the projects, we found that the adoption of the new syntax has not been
uniform in all of the projects, i.e. some projects make use of mostly a single new
syntactic feature and not all of them.
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5 Conclusions and Future Work

In this study, we created a set of mutation operators that target the com-
mon faults introduced by C++11/14 syntactic features. We collected advice
about the new C++11/14 syntax from authoritative sources, and created four
new statement-level mutation operators (FOR, LMB, FWD, and INI). For each
mutation operator, we discussed the motivation behind its creation and the type
of faults they generate. We used Mutation Operator Score as a way to mea-
sure the effectiveness of each mutation operator. For this, we selected 7 real-life
C++11/14 projects, and counted the number of valid, invalid, easily detectable
and hard to detect equivalent mutants generated by each mutation operator for
each project. Our results show that all of the introduced mutation operators
generate at most 13.5% hard to detect equivalent mutants. The high operator
scores indicate that these mutation operators are a useful addition to the muta-
tion operators suggested previously in literature.

Several aspects of this study can be researched further. In particular, the
use of our proposed mutation operators alongside traditional and class mutation
operators may result in finding multiple redundancies among these mutation
operators. In addition, a comparative study similar to Delgado-Perez et al. [5]
between these mutation operator sets would provide more insight into the use-
fulness of each set of operators depending on the context.
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5. Delgado-Pérez, P., Medina-Bulo, I., Palomo-Lozano, F., Garćıa-Domı́nguez, A.,
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