
Trustworthy Detection and Arbitration
of SLA Violations in the Cloud

Christian Schubert, Michael Borkowski(B), and Stefan Schulte

Distributed Systems Group, TU Wien, Vienna, Austria
{c.schubert,m.borkowski,s.schulte}@infosys.tuwien.ac.at

Abstract. In cloud computing, detecting violations of Service Level
Agreements (SLAs) is possible by measuring certain metrics, which can
be done by both the provider and the consumer of a service. However,
both parties have contradicting interests with regards to these measure-
ments, which makes it difficult to reach consensus about whether SLA
violations have occurred.

Within this paper, we present a solution for measuring and arbitrating
SLA violations in a way that can be trusted by both parties. Further-
more, we show that this solution is not intrusive to the service and does
not incur a significant overhead system load, but nevertheless provides
high accuracy in detecting SLA violations.

1 Introduction

Cloud computing offers a significant increase in flexibility and scalability for
businesses offering their services to customers [2]. While cloud computing enables
features like elasticity and paradigms like Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service (SaaS) [18], all of which
have proven to be highly effective tools in both industry and research [2], it also
features a high level of distribution. This means that software components and
services created and operated by various providers need to inter-operate with
each other. As software development moves towards adopting Service-Oriented
Architectures (SOA) [25], quality and reliability of individual services become
important aspects [11], and parallel to agreeing on the service provided and
consumed, Service Level Agreements (SLAs) are negotiated [30].

SLAs play a major role in cloud computing [8], and find application in grid
computing, SOA, or generic Web services [24]. SLAs, negotiated between the
provider and the consumer of a service, specify the relationship between those
two signing parties regarding functional and non-functional requirements, such
as availability, response time or data throughput. A key aim of SLAs is to pro-
tect the service consumers, as penalties can be defined for non-compliance with
agreed constrains. For instance, the consumer can be awarded with credits by
the provider upon detection of SLA violations [4].

SLA violations can be detected by real-time monitoring of the provided ser-
vices and their runtime environment [25]. While this allows the consumer to

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
K. Kritikos et al. (Eds.): ESOCC 2018, LNCS 11116, pp. 90–104, 2018.
https://doi.org/10.1007/978-3-319-99819-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99819-0_7&domain=pdf


Trustworthy Detection and Arbitration of SLA Violations in the Cloud 91

detect SLA violations and benefit from penalty payments, the provider can use
monitoring to avoid resource over-provisioning and unnecessary cost [6,15].

However, a fundamental problem with SLA monitoring is that both signing
parties have contradicting interests with regards to the outcome. For instance,
the provider might want to conceal an increase in response time, while the con-
sumer is interested in revealing this violation to benefit from a penalty charge.
Therefore, the trust of both parties in the measurements, and the arbitration
whether an SLA violation has occurred, must be preserved to reach consensus.

In this paper, we provide a solution to ensure trustworthy measurement and
arbitration of metrics to detect SLA violations in the cloud. Our solution does not
significantly impact the service performance for either party. It allows to monitor
detailed application-level details instead of only generic system-level metrics. We
propose a hybrid approach, combining dedicated measurement software (agents)
with Aspect-Oriented Programming (AOP). Furthermore, we propose a Trusted
Third Party (TTP) component which uses Complex Event Processing (CEP) to
efficiently handle high-volume data and automatically transforms SLA require-
ments into CEP expressions to utilize the high scalability of CEP engines. The
presented approach does not require modifications to underlying software or
protocols.

In summary, this paper provides the following contributions:

– We present a solution for using a TTP component for reliable and transpar-
ent SLA arbitration. Our solution is a hybrid approach, using AOP as well
as agent-based monitoring, and is transparent for the service as well as its
consumer.

– We propose the usage of CEP, together with an automated SLA-to-CEP
mapping, to detect SLA violations in an effective and scalable manner.

– We provide a reference implementation of our solution, and valuate its accu-
racy and performance impact in a testbed.

The remainder of this paper is structured as follows: In Sect. 2, we provide
background later used in Sect. 3 to describe our approach. We then evaluate the
approach and its implementation in Sect. 4. In Sect. 5, we discuss related work.
Finally, we conclude and give an overview of future work in Sect. 6.

2 Background

SLAs, i.e., contracts between service providers and consumers [19], play a major
role in cloud computing [8], and are also found in the field of grid computing [19].
Conceptually, SLAs are applicable to any kind of service provided from one
stakeholder to another, where not only the functionality, but also non-functional
agreements must be negotiated. While we describe our approach in the context
of cloud services, the work presented in this paper is not limited to any specific
service paradigm.

The design of SLAs is usually tightly coupled with service selection, since
it is in the interest of the client to select the provider with the most favorable



92 C. Schubert et al.

SLAs while maintaining a moderate price, and at the same time, it is in the
interest of the provider to avoid defining overly strict SLAs. Several approaches
for SLA negotiation have been presented in literature [7,30]. Therefore, we do
not consider this negotiation phase. Instead, we assume that there is consensus
about the SLAs in effect between the two parties.

Furthermore, there is a gap between non-functional business requirements,
which are often high-level specifications, possibly provided by non-technical staff,
and low-level metrics, which can be directly monitored by software [10]. There
exist several approaches in present literature [28] for performing a mapping
between high-level specifications and low-level metrics. Again, we assume that
this mapping has already been performed, and that the automated measurement
of low-level metrics is sufficient to detect SLA violations.

There is a variety of concrete SLA metrics observed by various solutions.
We refer to the OASIS Open Standard for Web Services Quality Factors (WS-
Quality-Factors) [23], defining quality levels for Web services, e.g., business value
quality, service level measurement quality, manageability quality or security qual-
ity. The service level measurement quality comprises quantitative, dynamically
changing attributes which describe the Quality of Service (QoS) [20]. Conse-
quently, these attributes are highly suitable for real-time SLA monitoring. These
metrics are generally in line with metrics found in other literature [1,12]. Both
metrics experienced by the client as well as metrics observable on the server
are of interest. In detail, we monitor the response time, throughput, availability,
successability, CPU and memory usage of cloud services, since these metrics are
applied in many different cloud solutions in research and practice [17,21].

3 Trustworthy SLA Monitoring

As discussed in the previous sections, we aim to monitor and arbitrate SLAs in
a way that does not require the two signing parties (provider and consumer of a
service) to trust each other. In this section, we discuss the overall architecture
as well as the individual components of our approach.

3.1 Architecture Overview

We present the architecture of our solution in Fig. 1. The service provider is
responsible for providing a certain service to the service consumer running a
client to access the service. To simplify the figure, we depict only the com-
munication path between the service provider and one consumer. However, the
service is not restricted to only one consumer. We use a common message bro-
ker to exchange information between all components in a unified and scalable
way. We employ AOP advices on both sides, i.e., pieces of code injected into the
application, responsible for detecting service requests and responses and trans-
parently monitoring application-level metrics. Furthermore, an agent is used on
the provider side to monitor system-level metrics. Finally, the TTP component
is provided by an entity not associated with the signing parties, i.e., a neutral



Trustworthy Detection and Arbitration of SLA Violations in the Cloud 93

Service Consumer

Client

AOP Advices

Service Provider

Service

AOP Advices
Agent

Neutral Party

TTP Component

Communication Monitoring

Fig. 1. Architecture overview of the proposed approach

party having no stake in the service and its SLAs. We do not define the process
of determining such an entity, but assume that there is consensus between the
two signing parties about the usage of a neutral party as a mediator.

Therefore, our solution consists of three main components, in addition to
the pre-existing service and client: The agent, the AOP advices, and the TTP
component. We describe these components in the following sections.

3.2 Agent

The agent is a stand-alone application hosted by the provider, and is independent
of cloud services and other applications. It is responsible for the monitoring
of metrics which are either impossible or not feasible to measure from within
AOP advices, such as CPU or memory utilization during the execution. We
also allow to extend the agent in a modular way by so-called probes. Probes
act like additional monitoring services, running independently of the agent, but
reporting to it. Such probes can be used to measure values from proprietary data
sources, or to use other software already deployed. The interaction between the
monitored services, the probes, the agent and the TTP is shown in Fig. 2.

Agent

Service Monitor
1..n

Probe Server

Aggregator

Service
1..n

Probe
1..m

collects

collects

monitors

sends to

monitors to TTP

Fig. 2. Architecture of the agent component

The Agent uses Java bindings of the Sigar library1 to retrieve CPU and
memory metrics. Internally, it manages a list of Process Identifiers (PIDs) and
1 Sigar is a software library to access native operation system and hardware activity

information; cf. https://github.com/hyperic/sigar.

https://github.com/hyperic/sigar


94 C. Schubert et al.

monitors their resource usage using Sigar. Furthermore, the agent keeps track of
the tree of sub-processes possibly started by the monitored process. In contrast
to other work [16], where a list is passed between processes and their children,
we obtain the process tree by traversing the system process list, since this does
not require changes in application code. Since our agent is aware of the SLA, it
only monitors applications requiring the observation of CPU or memory usage,
which reduces unnecessary overhead.

Note that it is not the agent’s responsibility to interpret data or arbitrate SLA
violations. It merely forwards the measurements to the TTP using the message
broker. The messages consist of a timestamp, an identifier for the agent and the
monitored application, a metric descriptor, and the measured value itself, and is
signed using an SHA-256 Keyed-Hash Message Authentication Code (HMAC).

In order to prevent permanent network load and reduce the relative amount
of overhead, we consolidate measurements into a queue. At an interval of 5 s,
the agent sends the contents of the queue to the message broker. Furthermore,
we do not send messages where the measured values diverge less than a certain
level from the last transferred value. This is especially useful for processes having
long periods of zero or near-zero CPU usage and reduces network traffic as well
as computational load of both the agent and the TTP. In our experiments, we
have found a threshold of 1% to be sufficient to avoid most of the unnecessary
network load. This filtering and aggregation of messages is done in the Aggregator
sub-component depicted in Fig. 2.

3.3 AOP Advices

In addition to the agent component, we use AOP advices on both the service
and the client. AOP advices consist of code injected (weaved) into an applica-
tion, which is executed at well-defined points in the code (pointcuts) and allows
to transparently monitor software without modifying its source code, while still
gaining measurements which would not be possible by the means of agent-based
monitoring alone. As shown in Fig. 3, the AOP advices use pointcuts around the
request procedures on both sides. Whenever a client is about to send a request
to the service, the pointcut triggers the advice, which records the timestamp
and request. Similarly, at the service side, whenever a request is received and
the handling method is about to be called, the pointcut triggers and the service
advice records the timestamp. After the execution of the service, this proce-
dure is repeated for the response in reversed order. The response also contains
information about the success or failure of the service, which is recorded by
the advices. Finally, all advices independently report their measurements to the
TTP component, which then matches the reported measurements, checks them
for reasonability and decides whether an SLA violation has occurred.

The AOP advices only differ slightly for the provider and consumer sides.
Advices on the consumer side must communicate with the message broker
directly, while advices on the provider side are executed on the same machine as
the agent, and can therefore report to this agent using local communication.



Trustworthy Detection and Arbitration of SLA Violations in the Cloud 95

Client

Advice

Advice

Pointcut
Send

Receive
Pointcut

Service

Advice

Advice

Business
Logic

Receive
Pointcut

Pointcut
Send

Request

Response

Fig. 3. Operation of AOP advices within Service and Client

3.4 TTP Component

The TTP component is the main unit responsible for detection and arbitration
of SLA violations, and is hosted by a neutral party. Architecturally, the TTP
component consists of the components shown in Fig. 4. Messages from agents
and clients are received from the message broker using the message receiver
component. They are fed into the CEP engine as events. In our implementation,
we use the Esper2 engine, which is used to process these events in an efficient and
scalable way. For large-scale systems, this allows for easier outsourcing of this
workload onto a distributed CEP system on its own [5]. In our implementation,
we use the WSLA standard [12] to define SLAs. The negotiated SLA is read
by the WSLA reader component. We then map this WSLA instance to CEP
expressions in the SLA-to-CEP mapper. These CEP expressions are then fed
to the CEP engine, which, together with the events from the message receiver,
detects violations.

TTP Component

WSLA

WSLA Reader

WLSA Instance

SLA-to-CEP
Mapper

Expressions

Agents / Clients

Message Receiver

Events

CEP Engine Violations

Violation Retrieval

Retrieval
Endpoint

Query

Database

Fig. 4. Architecture of the TTP Component

We distinguish between simple SLA requirements, i.e., a direct mapping of
SLA parameters to measured values, and complex SLA requirements, composed
2 Esper is an open source event processing and correlation solution;

cf. http://www.espertech.com/products/esper.php.

http://www.espertech.com/products/esper.php


96 C. Schubert et al.

Listing 1.1. Extract of an Exemplary SLA Requirement

1 <Obligations>
2 <ServiceLevelObjective name="AverageResponseTimeSLO">
3 <Obliged>ServiceProvider</Obliged>
4 <Validity>
5 <Start>
6 2017-01-01T14:00:00.000-05:00
7 </Start>
8 <End>
9 2018-01-01T14:00:00.000-05:00

10 </End>
11 </Validity>
12 <Expression>
13 <Predicate xsi:type="LessEqual">
14 <SLAParameter>
15 AverageResponseTime
16 </SLAParameter>
17 <Value>2500</Value>
18 </Predicate>
19 </Expression>
20 <QualifiedAction>...</QualifiedAction>
21 </ServiceLevelObjective>
22 ...
23 </Obligations>

Listing 1.2. EPL Statement Generated by Mapper

1 SELECT AVG(responseTime) AS monitoredvalue,
2 'responseTime' AS metrictype,
3 'avg<=2500.0' AS requirementdesc, *
4 FROM ClientInfoMessage(responseTime >= 0)
5 GROUP BY serviceName
6 HAVING AVG(responseTime) > 2500.0 AND COUNT(*) >= MIN_QUANTITY

from several metrics, possibly applying additional aggregation functions. An
example of a simple SLA requirement is “response time lower than 5 s”. In con-
trast,“average response time lower than 5 s” is a complex SLA requirement.
The WSLA language defines certain aggregation functions. Our implementation
directly translates Average, Median, Sum and Max to equivalent expressions in
the Event Processing Language (EPL) used by Esper.

As an example, an SLA requirement is shown in Listing 1.1, where the average
response time is constrained to 2,500 ms. From this, the mapper creates the EPL
expression shown in Listing 1.2. Note that certain sanity checks are already com-
piled into EPL expressions. For instance, the requirement responseTime >= 0
filters out negative response durations.

Violations detected by the CEP engine, together with the proof, i.e., the
involved events, are then persisted in a database, which enables accountability
and traceability. Finally, the retrieval endpoint can be used to read violations
and their information from the database.

4 Evaluation

In our evaluation scenario, a user can request image manipulation (resizing,
rotating and flipping) of JPG, PNG and GIF images using a REST interface.
The image manipulation service is cloud-based, and the user and provider of the



Trustworthy Detection and Arbitration of SLA Violations in the Cloud 97

service have agreed on a WSLA. We use this scenario for our evaluation since
image manipulation requires a given computational complexity and is therefore a
good placeholder for other possible cloud-based service tasks. For the evaluation
experiments, the testbed environment, including the client, is controlled to allow
automated repeated experiments with given parameters.

We present the testbed environment together with the image manipulation
functionality in this section.

4.1 Testbed Environment

In our testbed, the configuration is provided as a pre-defined WSLA, and the
detected violations are output as CSV logs in order to process the experiment
results. In our experiment, the neutral party also fulfills the role of the component
orchestrating the experiments, i.e., it is responsible for configuring both the
provider and the consumer of the service while initiating the experiment.

The image manipulation service provided by the provider is capable of resiz-
ing, rotating and flipping JPG, PNG and GIF images using a REST interface.
We use this service since this operation represents a given, well-defined compu-
tational complexity, and can therefore represent other computational workloads.
We deploy the service on an Amazon Web Services (AWS) Elastic Compute
Cloud (EC2) instance. EC2 is an IaaS service, which means that we are in con-
trol of the operating system and software. Note that since our approach does
not require operating system-level operations on the client side, it can also be
implemented using an PaaS or SaaS instance for the image service, where the
latter requires that AOP advices are supported by the SaaS provider.

We use four image sizes in our experiments: small (640 × 426, 90 kB),
medium (1280 × 898, 239 kB), large (1920 × 1280, 692 kB) and huge (4896 ×
3264, 2,400 kB). Table 1 shows the employed infrastructure configuration.

Table 1. Testbed environment infrastructure configuration

Instance OS CPU (Core Count) RAM

Provider Ubuntu 16.04 Intel Xeon E5, 2.4 Ghz (1) 1 GB

Consumer Windows 10 Intel Core i5, 3.4 GHz (4) 8 GB

TTP Ubuntu 16.04 Intel Xeon E5, 2.4 Ghz (1) 1 GB

Figure 5 shows an example of an experiment execution by displaying the
measured service response time in a series of 500 executions, demonstrating the
general functionality of our testbed. We performed the experiment successfully
for all metrics, and only show the response time results due to space constraints.
The maximum response time is defined as 1,000 ms, and the observed average
execution time is slightly higher than 200 ms. We injected deliberate delays of
a random duration between 1,000 and 1,100 ms, all 12 of which were detected.



98 C. Schubert et al.

0 50 100 150 200 250 300 350 400 450 500

500

1,000

1,500

2,000

Request No.

R
es
po

ns
e
T
im

e
[m

s]

Response Time
Threshold
Detected Violations

Fig. 5. Example of an experiment execution

For the following experiments, we used 600 experiment runs. Preliminary
testing has shown that the system needs a certain amount of time to settle, i.e.,
to create reproducible results. This is most likely due to effects like the Java
VM start-up and initial memory allocation. In order to avoid biasing our results
with these implementation-dependent artifacts, in our statistical tests, we do not
include all observations, but skip a fixed number of observations at the beginning
of the experiment (7 for the experiments shown).

4.2 Accuracy: CPU and Memory Usage

We verify the accuracy of our measured CPU and memory usage. We perform
t-tests (with a significance level of α = 0.05) to verify significant equality of the
baseline (see below) and results for the approaches presented in the work at hand.
For both tests, the null hypothesis H0 states equal means of both measurements
(baseline and our result), while the alternative hypothesis H1 states significant
deviation between the data sets.

We use the Linux top tool in batch mode as a baseline. This tool displays
CPU and memory-related information of running processes, which we log and
compare to the measurements of our solution. We first measure the CPU usage
using an interval of 1,000 ms, since this is the lowest resolution reliably supported
by the baseline. We use a batch of 2,000 image resizing requests to create contin-
uous load on our system. Figure 6 shows the overlay of the baseline measurement
and the measurement provided by our solution. We also perform a paired t-test
for 593 observations, with means of 9.177 and 9.156, and variances of 76.548 and
75.823. The results of the t-test supports our H0 (p value 0.885 < 1.964).

From the same datasets, we verify our memory usage measurement. The
results are shown in Fig. 7. A paired t-test for 593 observations, with means of
17.162 and 17.161, and variances of 1.484 and 1.485, results again in the support
of H0 (p value 0.693 < 1.964).

4.3 Successability

For verifying the successability, we inject failures into the service and observe
the monitoring outcome. We use a likelihood of 3% of a failure injection, and



Trustworthy Detection and Arbitration of SLA Violations in the Cloud 99

0 50 100 150 200 250 300 350 400 450 500 550
0

20

40

60

80

100

Time [sec]

C
P
U

U
sa
ge

[%
]

Agent Measurement
top (Baseline)

Fig. 6. CPU Usage: Baseline (Red) and Measurement (Blue) (Color figure online)

0 50 100 150 200 250 300 350 400 450 500 550
0

10

20

30

Time [sec]

M
em

or
y
U
sa
ge

[%
] Agent Measurement

top (Baseline)

Fig. 7. Memory Usage: Baseline (Red) and Measurement (Blue) (Color figure online)

use 500 successive requests in this experiment. Figure 8 gives an overview of this
experiment. The requests, together with their response times (shown on the left
axis) are shown in red or green, depending on the outcome. The successabil-
ity (shown on the right axis) is shown in blue. The effect of each failed request
on the successability value can be observed. Also, the successability converges
to a value of roughly 97%, corresponding to the 3% failure injection likelihood.

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1,000

Request No.

R
es
po

ns
e
T
im

e
[m

s]

Response (Success)
Response (Fail)
Successability

92

94

96

98

100

Su
cc
es
sa
bi
lt
y
[%

]

Fig. 8. Successability experiment (Color figure online)



100 C. Schubert et al.

Note that if the first few invocations happen to fail, the measured successabil-
ity fluctuates subsequently due to the low number of measurements, and possibly
incorrect SLA violation are reported. For instance, after around 30 observations,
we measure a successability value of 95%, even though the actual baseline value
is 97%. We conclude from this experiment that in practice, a lower bound should
be set for the total number of observations. We therefore suggest the inclusion
of an additional condition to the SLA to restrict the total observation number.

4.4 Performance Impact

Another key aspect, apart from measurement accuracy, is the impact of our
monitoring solution on the performance of the service itself. We therefore perform
experiments to measure the difference in response time experienced on the client,
both with and without our monitoring approach enabled.

When performing the traditional t-tests used in the previous experiments, we
encounter the problem that the network between our instances has a significant
impact on the response time, seemingly much higher than the monitoring itself.
This is indicated by the fact that the executed t-test yield varying results, even
for experiment runs with the same configuration, and are therefore inconclusive.

For this experiment, we therefore use a purely local setup with all instances
running on a single machine. We use a batch of 1,000 requests per image size and
record response times. These results conclusively show that the impact of our
monitoring on the response time is negligible. An overview is shown in Table 2.
We see that the impact of our solution is well within the standard deviation σ,
and never exceeds 3%.

Table 2. Comparison of response times in ms (σ in Brackets)

Workload With Monitoring Without Monitoring

Small 27.054 (4.375) 26.524 (3.524)

Medium 53.537 (18.943) 53.383 (17.664)

Big 97.540 (32.987) 95.732 (25.026)

Huge 483.707 (36.481) 482.326 (36.443)

4.5 Maintaining Trustworthiness

Trust into the SLA arbitration approach of both signing parties is crucial in
situations where signing parties have contradicting interests. We consider how
to maintain trustworthiness on three levels:

Trust in Measurement: The first element of trust is built on the aspect of
the accuracy of the measurements. Our solution employs the software archi-
tecture described above, which provides reliable and accurate measurements



Trustworthy Detection and Arbitration of SLA Violations in the Cloud 101

according to the experiments shown in Sects. 4.1 through 4.4. Ensuring that
no measurement is knowingly manipulated on-site can be achieved by using
open-source software together with code signing (e.g., by the neutral party
hosting the TTP component).

Trust in Communication: Messages exchanged between the components pose
potential for deliberate or accidental manipulation. We use ActiveMQ, a well-
established open-source broker [27]. In order to further strengthen the trust,
we use HMACs to sign our measurement messages, which can be verified by
the TTP.

Trust in Arbitration: Finally, both parties must trust the TTP to perform
a neutral and fair arbitration. While this trust can be increased again by
making the TTP software open-source and by using code signing, in our
current implementation, we ultimately rely on the neutrality of the entity
hosting the TTP.

5 Related Work

The topic of SLAs has been discussed extensively in existing work. We there-
fore provide a short overview of the most relevant literature, some of which
presents concepts we have adapted in our solution, and conclude by discussing
the differences between our work and the two approaches which come closest. We
generally classify approaches by their measurement technique, and distinguish
between agent-based, middleware-based, and AOP-based monitoring techniques.

A large body of work is found for the mapping of high-level SLA objectives
to low-level system metrics. [16] provides an exhaustive overview of this topic,
without focusing on the detection of SLA violations, and only takes into account
provider-side metrics. Similarly, [22] proposes such a mapping, also taking into
account SLA violation detection. The authors evaluate their work in private and
public clouds. Again, they do not take into account measurements performed on
the client side. Both of these solutions use agent-based monitoring. [13] extends
this by using CEP for the detection of SLA violations, a concept we have adopted
for our approach.

Instead of using agents, [26] uses a middleware on both sides of the connec-
tion. While this enables monitoring of client-side metrics, the authors do not
discuss how to use these metrics to verify plausibility, leading to trust increase
on both sides, like the checks for reasonable measurements performed by our
TTP component. Also, their approach does not provide transparency (non-
intrusiveness) to the client and service software. This transparency is provided,
however, by works like [29], which provides agent-based monitoring on multiple
levels, is extensible and uses a rule language. The authors evaluate their approach
using public and private clouds and prove its scalability. [9] also uses agents for
measurement, but focuses on predicting SLA violations in the cloud before they
happen. [17] uses AOP instead of agents, and also provides transparency.

All of the mentioned approaches, however, do not take into account the trust-
worthiness of the resulting measurements. Adding a neutral party has been dis-
cussed by two approaches which, to the best of our knowledge, come closest to



102 C. Schubert et al.

our solution. [3] suggests a third party similar to our TTP component. How-
ever, neither an implementation nor an evaluation is presented. Their solution
is using a monitoring agent and is not transparent to the existing code. Fur-
thermore, the solution is limited to the monitoring of communication data, and
system resources are not taken into account. [14] also proposes an entity similar
to our TTP component, but merely discusses a conceptual framework without
providing an implementation or evaluation. Also, this approach is purely agent-
based and as such, not transparent to existing code.

6 Conclusion and Future Work

In this paper, we have presented a solution allowing the provider and the con-
sumer of a cloud service to detect violations of defined SLAs, and to allow mutual
agreement on the outcome of this detection, without any of the two parties hav-
ing to trust the other. For this, we have proposed the usage of a neutral third
party, which is in charge of the collection of measured values, and the subsequent
arbitration of SLA fulfillment.

The neutral third party is hosting the TTP component, which uses a hybrid
of agent-based, as well as AOP-based data collection. The TTP component uses
CEP to maintain scalability by evaluating the SLA fulfillment using CEP expres-
sions automatically generated from the SLA requirements. Using experiments
run in a testbed environment, we have shown that this solution does not only
provide accurate measurements, but also does not significantly impact the perfor-
mance of the service. We have also provided a discussion about various additional
aspects of maintaining trust in such a multi-stakeholder scenario.

We currently assume the two parties to trust the neutral third party. In
our future work, we plan an extension to our approach using signatures in the
verdict of the TTP component, which, coupled with code signing, could remote
this requirement and allow for completely trust-less operation. Instead of using
a centralized third party, we are currently also observing the possibility of using
decentralized consensus, e.g., a blockchain, to increase trust.

Acknowledgment. This work is partially funded by COMET K1, FFG – Austrian
Research Promotion Agency, within the Austrian Center for Digital Production.

References

1. Ameller, D., Franch, X.: Service Level Agreement Monitor (SALMon). In: 7th
International Conference on Composition-Based Software Systems (ICCBSS), pp.
224–227. IEEE (2008)

2. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58
(2010)

3. Balfagih, Z., Hassan, M.F.B.: Agent based monitoring framework for SOA appli-
cations quality. In: International Symposium on Information Technology (ITSim),
vol. 3, pp. 1124–1129. IEEE (2010)



Trustworthy Detection and Arbitration of SLA Violations in the Cloud 103

4. Baset, S.A.: Cloud SLAs: present and future. ACM SIGOPS Oper. Syst. Rev.
46(2), 57–66 (2012)

5. Borkowski, M., Fdhila, W., Nardelli, M., Rinderle-Ma, S., Schulte, S.: Event-based
failure prediction in distributed business processes. In: Information Systems (2018)

6. Borkowski, M., Hochreiner, C., Schulte, S.: Moderated resource elasticity for stream
processing applications. In: Heras, D.B., Bougé, L. (eds.) Euro-Par 2017. LNCS,
vol. 10659, pp. 5–16. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75178-8 1

7. Brandic, I., Music, D., Leitner, P., Dustdar, S.: VieSLAF framework: enabling
adaptive and versatile SLA-management. In: Altmann, J., Buyya, R., Rana, O.F.
(eds.) GECON 2009. LNCS, vol. 5745, pp. 60–73. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03864-8 5

8. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: vision, hype, and reality for delivering computing as
the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

9. Emeakaroha, V.C., Ferreto, T.C., Netto, M.A.S., Brandic, I., Rose, C.A.F.D.:
CASViD: application level monitoring for SLA violation detection in clouds. In:
IEEE 36th Annual Computer Software and Applications Conference (COMPSAC),
pp. 499–508. IEEE (2012)

10. Emeakaroha, V.C., Brandic, I., Maurer, M., Dustdar, S.: Low level metrics to
high level SLAs-LoM2HiS framework: Bridging the gap between monitored metrics
and SLA parameters in cloud environments. In: International Conference on High
Performance Computing and Simulation (HPCS), pp. 48–54. IEEE (2010)

11. Islam, S., Lee, K., Fekete, A., Liu, A.: How a consumer can measure elasticity
for cloud platforms. In: 3rd ACM/SPEC International Conference on Performance
Engineering, pp. 85–96. ACM (2012)

12. Keller, A., Ludwig, H.: The WSLA framework: specifying and monitoring service
level agreements for web services. J. Netw. Syst. Manag. 11(1), 57–81 (2003)

13. Leitner, P., Inzinger, C., Hummer, W., Satzger, B., Dustdar, S.: Application-level
performance monitoring of cloud services based on the complex event processing
paradigm. In: International Conference on Service-Oriented Computing and Appli-
cations (SOCA), pp. 1–8. IEEE (2012)

14. Maarouf, A., Marzouk, A., Haqiq, A.: Towards a trusted third party based on
multi-agent systems for automatic control of the quality of service contract in
the cloud computing. In: International Conference on Electrical and Information
Technologies, pp. 311–315. IEEE (2015)

15. Mao, M., Humphrey, M.: Auto-scaling to minimize cost and meet application dead-
lines in cloud workflows. In: International Conference for High Performance Com-
puting, Networking, Storage and Analysis. Article number 49. ACM (2011)

16. Mastelic, T., Emeakaroha, V.C., Maurer, M., Brandic, I.: M4Cloud - generic appli-
cation level monitoring for resource-shared cloud environments. In: International
Conference on Cloud Computing and Services Science (CLOSER), pp. 522–532.
Springer (2012)

17. Mdhaffar, A., Halima, R.B., Juhnke, E., Jmaiel, M., Freisleben, B.: AOP4CSM:
an aspect-oriented programming approach for cloud service monitoring. In: IEEE
11th International Conference on Computer and Information Technology (ICCIT),
pp. 363–370. IEEE (2011)

18. Mell, P., Grance, T.: The NIST definition of cloud computing recommendations
of the national institute of standards and technology. In: National Institute of
Standards and Technology, Information Technology Laboratory 145 (2011)

https://doi.org/10.1007/978-3-319-75178-8_1
https://doi.org/10.1007/978-3-319-75178-8_1
https://doi.org/10.1007/978-3-642-03864-8_5


104 C. Schubert et al.

19. Menascé, D.A., Casalicchio, E.: QoS in grid computing. IEEE Internet Comput.
8(4), 85–87 (2004)

20. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: Comprehensive QoS mon-
itoring of web services and event-based SLA violation detection. In: 4th Interna-
tional Workshop on Middleware for Service Oriented Computing, pp. 1–6. ACM
(2009)

21. Mirobi, G.J., Arockiam, L.: Service level agreement in cloud computing: an
overview. In: International Conference on Control, Instrumentation, Communi-
cation and Computational Technologies (ICCICCT), pp. 753–758 (2015)

22. Moustafa, S., Elgazzar, K., Martin, P., Elsayed, M.: SLAM: SLA monitoring frame-
work for federated cloud services. In: International Conference on Utility and Cloud
Computing (UCC), pp. 506–511. IEEE/ACM (2015)

23. OASIS Open. Web Services Quality Factors Version 1.0. Candidate OA- SIS Stan-
dard 01 (2012). http://docs.oasis-open.org/wsqm/WS-Quality-Factors/v1.0/WS-
Quality-Factors-v1.0.html

24. Repp, N., Eckert, J., Schulte, S., Niemann, M., Berbner, R., Steinmetz, R.: Towards
automated monitoring and alignment of service-based workflows. In: IEEE Inter-
national Conference on Digital Ecosystems and Technologies (DEST), pp. 235–240.
IEEE Computer Society, Washington, DC (2008)

25. Rosen, M., Lublinsky, B., Smith, K.T., Balcer, M.J.: Applied SOA: service-oriented
architecture and design strategies. Wiley (2012)

26. Al-Shammari, S., Al-Yasiri, A.: MonSLAR: a middleware for monitoring SLA for
RESTFUL services in cloud computing. In: IEEE International Symposium on the
Maintenance and Evolution of Service-Oriented and Cloud-Based Environments
(MESOCA), pp. 46–50. IEEE (2015)

27. Souto, E., Guimarães, G., Vasconcelos, G., Vieira, M., Rosa, N., Ferraz, C.: A
message-oriented middleware for sensor networks. In: Workshop on Middleware
for Pervasive and Ad-Hoc Computing, pp. 127–134. ACM (2004)

28. Theilmann, W., Yahyapour, R., Butler, J.: Multi-level SLA management for
service-oriented infrastructures. In: Mähönen, P., Pohl, K., Priol, T. (eds.) Service-
Wave 2008. LNCS, vol. 5377, pp. 324–335. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-89897-9 28

29. Trihinas, D., Pallis, G., Dikaiakos, M.D.: JCatascopia: monitoring elastically adap-
tive applications in the cloud. In: 14th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), pp. 226–235. IEEE/ACM (2014)

30. Wu, L., Garg, S.K., Buyya, R., Chen, C., Versteeg, S.: Automated SLA negotiation
framework for cloud computing. In: 13th IEEE/ACMInternational Symposium on
Cluster, Cloud, and Grid Computing, pp. 235–244. IEEE/ACM, May 2013

http://docs.oasis-open.org/wsqm/WS-Quality-Factors/v1.0/WS-Quality-Factors-v1.0.html
http://docs.oasis-open.org/wsqm/WS-Quality-Factors/v1.0/WS-Quality-Factors-v1.0.html
https://doi.org/10.1007/978-3-540-89897-9_28
https://doi.org/10.1007/978-3-540-89897-9_28

	Trustworthy Detection and Arbitration of SLA Violations in the Cloud
	1 Introduction
	2 Background
	3 Trustworthy SLA Monitoring
	3.1 Architecture Overview
	3.2 Agent
	3.3 AOP Advices
	3.4 TTP Component

	4 Evaluation
	4.1 Testbed Environment
	4.2 Accuracy: CPU and Memory Usage
	4.3 Successability
	4.4 Performance Impact
	4.5 Maintaining Trustworthiness

	5 Related Work
	6 Conclusion and Future Work
	References




