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Abstract. The use of group equivariant operators is becoming more
and more important in machine learning and topological data analysis.
In this paper we introduce a new method to build G-equivariant non-
expansive operators from a set Φ of bounded and continuous functions
ϕ : X → R to Φ itself, where X is a topological space and G is a subgroup
of the group of all self-homeomorphisms of X.
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1 Introduction

In the last years the problem of data analysis has assumed a more and more
relevant role in science, and many researchers have started to become interested
in it from several different points of view. Some geometrical techniques have
given their contribute to this topic, and persistent homology has proven itself
quite efficient both for qualitative and topological comparison of data [5]. In
particular, topological data analysis (TDA) has revealed important in managing
the huge amount of data that surrounds us in the most varied contexts [3].
The use of TDA is based on the fact that in several practical situations the
measurements of interest can be expressed by continuous R

m-valued functions
defined on a topological space, as happens for the weight of a physical body or
a biomedical image [2]. However, for the sake of simplicity, in this work we will
focus on real-valued functions. The continuity of the considered functions enables
us to apply persistent homology, a theory that studies the birth and the death
of k-dimensional holes when we move along the filtration defined by the sublevel
sets of a continuous function from a topological space X to the real numbers.
Interestingly, this procedure is invariant with respect to all homeomorphisms
of X, that is if g ∈ Homeo(X), then ϕ and ϕ ◦ g induce on X two filtrations
which have exactly the same topological properties under the point of view of
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persistent homology. For further and more detailed information about persistent
homology, we refer the reader to [6].

The importance of group equivariance in machine learning is well-known
(cf., e.g., [1,4,10,11]). The study of group equivariant non-expansive operators
(GENEOs) proposed in this work could be a first step in the path to establishing
a link between persistence theory and machine learning. The ground idea is that
the observer influences in a direct way the act of measurement, and that our
analysis should be mainly focused on a good approximation of the observer
rather than on a precise description of the data [7]. GENEOs reflect the way the
information is processed by the observer, and hence they enclose the invariance
the observer is interested in. In some sense, we could say that an observer can
be seen as a collection of group equivariant non-expansive operators acting on
suitable spaces of data. The choice of the invariance group G is a key point in
this model. For example, in character recognition the invariance group should
not contain reflections with respect to a vertical axis, since the symbols ‘p’ and
‘q’ should not be considered equal to each other, while this fact does not hold
for the comparison of medieval rose windows.

The use of invariance groups leads us to rely on the concept of natural
pseudo-distance. Let us consider a set Φ of continuous R-valued functions defined
on a topological space X and a subgroup G of the group Homeo(X) of all self-
homeomorphisms of X. We assume that the group G acts on Φ by composition
on the right. Now we can define the natural pseudo-distance dG on Φ by setting
dG(ϕ1, ϕ2) = infg∈G ‖ϕ1−ϕ2◦g‖∞, where ‖·‖∞ denotes the sup-norm. Although
the natural pseudo-distance reflects our intent to find the best correspondence
between two functions of Φ, unfortunately it leads to some practical limitations
since it is difficult to compute, even when the group G has good properties.

However, the theory of group equivariant non-expansive operators makes
available a method for the approximation of the natural pseudo-distance
(cf. Theorem 1 in this paper). Moreover, in [8,9] it has been proven that under
suitable hypotheses the space F(Φ,G) of all GENEOs benefits from good com-
putational properties, such as compactness and convexity. In order to proceed in
the research about this space of operators, we devote this paper to introducing a
new method to construct GENEOs by means of particular subsets of Homeo(X),
called permutants. We underline that in our method we can treat the group of
invariance as a variable. This is important because the change of the observer
generally corresponds to a change of the invariance we want to analyze.

Our work is organized as follows. In Sect. 2 we start explaining the mathe-
matical setting where our research will take place. In Sect. 3 we introduce our
new method for the construction of group equivariant non-expansive operators.
In particular, we show how specific subsets of Homeo(X) called permutants can
help us in this procedure. In Sect. 4 we illustrate our method by giving two
examples. Finally, in Sect. 5 we explore the limits of our approach by proving a
result about permutants.
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2 Our Mathematical Model

In this section we recall the mathematical model illustrated in [8]. Let us consider
a (non-empty) topological space X, and the topological space C0

b (X,R) of the
continuous bounded functions from X to R, endowed with the topology induced
by the sup-norm ‖ · ‖∞. Let Φ be a topological subspace of C0

b (X,R), whose
elements represent our data. The functions in Φ will be called admissible filtering
functions on the space X. We are interested in analyzing Φ by applying the
invariance with respect to a subgroup G of the group Homeo(X) of all self-
homeomorphisms of X. The group G is used to act on Φ by composition on the
right, i.e. we assume that for every ϕ ∈ Φ and every g ∈ G the map ϕ ◦ g is still
in Φ. In other words, we consider the functions ϕ,ϕ ◦ g ∈ Φ equivalent to each
other for every g ∈ G.

A pseudo-metric that can be used to compare functions in this mathematical
setting is the natural pseudo-distance dG.

Definition 1. We set dG(ϕ1, ϕ2) := infg∈G maxx∈X |ϕ1(x) − ϕ2(g(x))| for
every ϕ1, ϕ2 ∈ Φ. The function dG is called the natural pseudo-distance
associated with the group G acting on Φ.

The previous pseudo-metric can be seen as the ground truth for the compar-
ison of functions in Φ with respect to the action of the group G. Unfortunately,
dG is usually difficult to compute. However, a method to study the natural
pseudo-distance via G-equivariant non-expansive operators is available.

Definition 2. A G-equivariant non-expansive operator (GENEO) for the pair
(Φ,G) is a function

F : Φ −→ Φ

that satisfies the following properties:

1. F (ϕ ◦ g) = F (ϕ) ◦ g, ∀ ϕ ∈ Φ, ∀ g ∈ G;
2. ‖F (ϕ1) − F (ϕ2)‖∞ � ‖ϕ1 − ϕ2‖∞, ∀ ϕ1, ϕ2 ∈ Φ.

The first property represents our request of equivariance with respect to the
action of G, while the second one highlights the non-expansivity of the operator,
since we require a control on the norm. We define F(Φ,G) to be the set of all
G-equivariant non-expansive operators for (Φ,G). Obviously F(Φ,G) is not
empty because it contains at least the identity operator.

Remark 1. The non-expansivity property implies that the operators in F(Φ,G)
are 1-Lipschitz and hence continuous. We highlight that GENEOs are not
required to be linear, even though all the GENEOs exposed in this paper have
this property.

The following key property holds, provided that X has nontrivial homology
in degree k and Φ contains all the constant functions c from X to R such that
there exists ϕ ∈ Φ with c � ||ϕ||∞ [8].
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Theorem 1. If F is the set of all G-equivariant non-expansive operators for
the pair (Φ,G), then dG(ϕ1, ϕ2) = supF∈F dmatch(rk(F (ϕ1)), rk(F (ϕ2))), where
rk(ϕ) denotes the k-th persistent Betti number function with respect to the
function ϕ : X → R and dmatch is the classical matching distance.

Theorem 1 represents a strong link between persistent homology and the
natural pseudo-distance via GENEOs. It establishes a method to compute dG

by means of G-equivariant non-expansive operators. As a consequence, the con-
struction of GENEOs is an important step in the computation of the natural
pseudo-distance. This fact justifies the interest for the result proven in Sect. 3.

3 A Method to Build GENEOs by Means of Permutants

In this section we introduce a new method for the construction of GENEOs,
exploiting the concept of permutant. Let G be a subgroup of Homeo(X). We
consider the conjugation map

αg : Homeo(X) → Homeo(X)

f �→ g ◦ f ◦ g−1

where g is an element of G.

Definition 3. A non-empty finite subset H of Homeo(X) is said to be a per-
mutant for G if αg(H) ⊆ H for every g ∈ G.

Remark 2. The condition αg(H) ⊆ H, the finiteness of H and the injectivity of
αg imply that αg is a permutation of the set H for every g ∈ G. Moreover, it
is important to note that H is required neither to be a subset of the invariance
group G, nor a subgroup of Homeo(X).

Remark 3. If H and K are two permutants for G, then also the union H ∪ K
and the intersection H ∩K are two permutants for G (provided that H ∩K �= ∅).

If H = {h1, . . . , hn} is a permutant for G and ā ∈ R with n|ā| � 1, we can
consider the operator Fā,H : C0

b (X,R) −→ C0
b (X,R) defined by setting

Fā,H(ϕ) := ā

n∑

i=1

(ϕ ◦ hi).

The following statement holds.

Proposition 1. If Fā,H(Φ) ⊆ Φ then Fā,H is a GENEO for (Φ,G).

Proof. First of all we prove that Fā,H is G-equivariant. Let α̃g : {1, . . . , n} →
{1, . . . , n} be an index permutation such that α̃g(i) is the index of the image of
hi through the conjugacy action of g, i.e.

αg(hi) = g ◦ hi ◦ g−1 = hα̃g(i), ∀ i ∈ {1, . . . , n}.
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We obtain that
g ◦ hi = hα̃g(i) ◦ g.

Exploiting this relation we obtain that

Fā,H(ϕ ◦ g) =ā(ϕ ◦ g ◦ h1 + · · · + ϕ ◦ g ◦ hn)
=ā(ϕ ◦ hα̃g(1) ◦ g + · · · + ϕ ◦ hα̃g(n) ◦ g)

=ā(ϕ ◦ hα̃g(1) + · · · + ϕ ◦ hα̃g(n)) ◦ g.

Since
{
hα̃g(1), . . . , hα̃g(n)

}
= {h1, . . . , hn}, we get

Fā,H(ϕ ◦ g) = Fā,H(ϕ) ◦ g, ∀ ϕ ∈ Φ, ∀ g ∈ G.

It remains to show that Fā,H is non-expansive:

‖Fā,H(ϕ1) − Fā,H(ϕ2)‖∞ =

∥∥∥∥∥ā

n∑

i=1

(ϕ1 ◦ hi) − ā

n∑

i=1

(ϕ2 ◦ hi)

∥∥∥∥∥
∞

= |ā|
∥∥∥∥∥

n∑

i=1

(ϕ1 ◦ hi − ϕ2 ◦ hi)

∥∥∥∥∥
∞

� |ā|
n∑

i=1

‖ϕ1 ◦ hi − ϕ2 ◦ hi‖∞

= |ā|
n∑

i=1

‖ϕ1 − ϕ2‖∞

= n|ā|‖ϕ1 − ϕ2‖∞
� ‖ϕ1 − ϕ2‖∞

for every ϕ1, ϕ2 ∈ Φ.

Remark 4. Obviously H = {id} ⊆ Homeo(X) is a permutant for every subgroup
G of Homeo(X), but the use of Proposition 1 for this trivial permutant leads to
the trivial operator given by a multiple of the identity operator on Φ.

Remark 5. If the group G is Abelian, every finite subset of G is a permutant for
G, since the conjugacy action is just the identity. Hence in this setting, for any
chosen finite subset H = {g1, . . . , gn} of G and any real number ā, such that
n|ā| � 1, Fā,H(ϕ) = ā(ϕ ◦ g1 + · · · + ϕ ◦ gn) is a G-equivariant non-expansive
operator for (Φ,G), provided that Fā,H preserves Φ.

Remark 6. The operator Fā,H : Φ → Φ introduced in Proposition 1 is lin-
ear, provided that Φ is linearly closed. Indeed, assume that a permutant
H = {h1, . . . , hn} for G and a real number ā such that n|ā| � 1 are given.
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Let us consider the associated operator Fā,H(ϕ) = ā
∑n

i=1(ϕ ◦ hi), and assume
that Fā,H(Φ) ⊆ Φ. If λ1, λ2 ∈ R and ϕ1, ϕ2 ∈ Φ, we have

Fā,H(λ1ϕ1 + λ2ϕ2) =ā
n∑

i=1

((λ1ϕ1 + λ2ϕ2) ◦ hi)

=ā

n∑

i=1

(λ1(ϕ1 ◦ hi) + λ2(ϕ2 ◦ hi))

=ā
n∑

i=1

λ1(ϕ1 ◦ hi) + ā
n∑

i=1

λ2(ϕ2 ◦ hi)

=λ1

[
ā

n∑

i=1

(ϕ1 ◦ hi)

]
+ λ2

[
ā

n∑

i=1

(ϕ2 ◦ hi)

]

=λ1Fā,H(ϕ1) + λ2Fā,H(ϕ2).

4 Examples

In this section we give two examples illustrating our method to build GENEOs.

Example 1. Let X = R and Φ ⊆ C0
b (X,R). We consider the group G of all

isometries of the real line, i.e. homeomorphisms of R of the form

g(x) = ax + b, a, b ∈ R, a = ±1.

We also consider a translation h(x) = x + t and its inverse transformation
h−1(x) = x − t, for some nonzero t ∈ R. If g preserves the orientation, i.e.
a = 1, the conjugation by g acts on H := {h, h−1} as the identity, while for
a = −1 this conjugation exchanges the elements of H. We can conclude that
H is a permutant for G. Therefore, Proposition 1 guarantees that the operator

F 1
2 ,H(ϕ) =

1
2
(ϕ◦h+ϕ◦h−1) is a GENEO for (Φ,G), provided that F 1

2 ,H(Φ) ⊆ Φ.
We observe that the permutant used in this example is a subset but not a sub-
group of Homeo(X).

Example 2. Let X = {(x, y) ∈ R
2 : x2 + y2 = 1} and assume that Φ is the set of

1-Lipschitzian functions from X to [0, 1]. Let G and H be the group generated
by reflection with respect to the line x = 0 and the group generated by the rota-
tion ρ of π/2 around the point (0, 0), respectively. It is easy to check that H =
{id, ρ, ρ2, ρ3} is a permutant for G and F 1

4 ,H(Φ) ⊆ Φ. Therefore, Proposition 1

guarantees that the operator F 1
4 ,H(ϕ) =

1
4

(
ϕ + ϕ ◦ ρ + ϕ ◦ ρ2 + ϕ ◦ ρ3

)
is a

GENEO for (Φ,G). We observe that the permutant used in this example is
a subgroup of Homeo(X) but not a subgroup of G.



A New Method to Build Group Equivariant Operators 271

5 A Result Concerning Permutants

When H contains only the identical homeomorphism, the operator Fā,H is trivial,
since it is the multiple by the constant ā of the identical operator. This section
highlights that in some cases this situation cannot be avoided, since non-trivial
permutants for G are not available. In order to illustrate this problem, we need
to introduce the concept of versatile group.

Definition 4. Let G be a group that acts on a set X. We say that G is versatile
if for every triple (x, y, z) ∈ X3, with x �= z, and for every finite subset S of X,
at least one element g ∈ G exists such that (1) g(x) = y and (2) g(z) /∈ S.

Proposition 2. Let X be a topological space and assume that H = {h1, . . . , hn}
is a permutant for a subgroup G of Homeo(X). If G is versatile, then H = {id}.
Proof. It is sufficient to prove that if H contains an element h �= id, then G is
not versatile. We can assume that h ≡ h1. Since h1 is different from the identity,
a point x̄ ∈ X exists such that h1(x̄) �= x̄. Let us consider the triple (h1(x̄), x̄, x̄)
and the set S = {h−1

1 (x̄), . . . , h−1
n (x̄)}. Suppose that g ∈ G satisfies Property

(1) with respect to the previous triple, that is g(h1(x̄)) = x̄. Since the conjugacy
action of g on H is a permutation, we can find an element h2 ∈ H such that
h2 = g ◦h1 ◦g−1, so that h2(g(x̄)) = g(h1(x̄)) = x̄ and hence g(x̄) = h−1

2 (x̄) ∈ S.
Therefore, g does not satisfy Property (2), for z = x̄. Hence we can conclude
that no g ∈ G exists verifying both Properties (1) and (2), i.e. G is not versatile.

Remark 7. Definition 4 immediately implies that if G,G′ are two subgroups of
Homeo(X), G ⊆ G′ and G is versatile, then also the group G′ is versatile. For
example, it is easy to prove that the group G of the isometries of the real plane is
versatile. It follows that every group G′ of self-homeomorphisms of R2 containing
the isometries of the real plane is versatile. As a consequence of Proposition 2,
every permutant for G′ is trivial.

6 Conclusions

In this paper we have illustrated a new method for the construction of group
equivariant non-expansive operators by means of permutants, exploiting the alge-
braic properties of the invariance group. The procedure enables us to manage in
a quite simple way Abelian groups, but our examples show that we can find per-
mutants, and hence GENEOs, even in a non-commutative setting. The main goal
of our study is to expand our knowledge about the topological space F(Φ,G),
possibly reaching a good approximation of this space and, consequently, a good
approximation of the pseudo-natural distance dG by means of Theorem 1. The
more operators we know, the more information we get about the structure of
F(Φ,G), and this fact justifies the search for new methods to build GENEOs.
Many questions remain open. In particular, a deeper study of the concept of per-
mutant seems necessary, establishing conditions for the existence of non-trivial
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permutants and introducing constructive methods to build them. Furthermore,
an extension of our approach to operators from a pair (Φ,G) to a different pair
(Ψ,H) seems worth of further investigation. Finally, we should check if the idea
described in this paper about getting GENEOs by a finite average based on
the use of permutants could be generalized to “infinite averages” (and hence
integrals) based on “infinite permutants”.
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