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8.1 Statistical Hypothesis Testing

A statistical hypothesis is a statement that can be tested by collecting data and mak-
ing observations. Before you start data collection and perform your research, you
need to formulate your hypothesis. An example hypothesis could be for instance:
“If T increase the prescribed radiation dose to the tumor, this will also lead to an
increase of side-effects in surrounding healthy tissues”. The purpose of statistical
hypothesis testing is to find out whether the observations are meaningful or can be
attributed to noise or chance.

The original version of this chapter was revised. The correction to this chapter can be found at
https://doi.org/10.1007/978-3-319-99713-1_15

Frank J. W. M. Dankers (Ix)

Department of Radiation Oncology (MAASTRO), GROW School of Oncology
and Developmental Biology (GROW), Maastricht University Medical Center,
Maastricht, The Netherlands

Department of Radiation Oncology, Radboud University Medical Center,
Nijmegen, The Netherlands
e-mail: frank.dankers @maastro.nl

A. Traverso - L. Wee

Department of Radiation Oncology (MAASTRO), GROW School of Oncology
and Developmental Biology (GROW), Maastricht University Medical Center,
Maastricht, The Netherlands

S. M. J. van Kuijk
Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA),
Maastricht University Medical Center, Maastricht, The Netherlands

© The Author(s) 2019 101
P. Kubben et al. (eds.), Fundamentals of Clinical Data Science,
https://doi.org/10.1007/978-3-319-99713-1_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99713-1_8&domain=pdf
https://doi.org/10.1007/978-3-319-99713-1_8
mailto:frank.dankers@maastro.nl
https://doi.org/10.1007/978-3-319-99713-1_15

102 F. J. W. M. Dankers et al.

The null hypothesis (often denoted H,) generally states the currently
accepted fact. Often it is formulated in such a way that two measured values
have no relation with each other. The alternative hypothesis, H;, states that
there is in fact a relation between the two values. Rejecting or disproving the
null hypothesis gives support to the belief that there is a relation between the
two values.

To quantify the probability that a measured value originates from the distribution
stated under the null statistical hypothesis tests are used that produce a p-value
(e.g., Z-test or student’s t-test). The p-value gives the probability of obtaining a
value equal to or greater than the observed value if the null hypothesis is true. A high
p-value indicates that the observed value is likely under the null assumption, vice
versa a low p-value indicates that the observed value is unlikely given the null
hypothesis, which can lead to its rejection.

There are common misconceptions regarding the interpretation of the p-value

[1]:

* The p-value is not the probability that the null hypothesis is true

* The p-value is not the probability of falsely rejecting the null hypothesis (type I
error, see below)

* A low p-value does not prove the alternative hypothesis

The p-value is to be used in combination with the o level. The o level is a pre-
defined significance level by the researcher which equals the probability of falsely
rejecting the null hypothesis if it is true (type I error). It is the probability (s)he
deems acceptable for making a type I error. If the p-value is smaller than the o level,
the result is said to be significant at the o level and the null hypothesis is rejected.
Commonly used values for a are 0.05 or 0.001 (Fig. 8.1).

Confidence levels serve a similar purpose as the o level, and by definition the
confidence level + « level = 1. So an « level of 0.05 corresponds to a 95% confi-
dence level.

8.1.1 Types of Error

We distinguish between two types of errors in statistical testing [2]. If the null
hypothesis is true but falsely rejected, this is called a type I error (comparable
to a false positive, with a positive result indicating the rejection). The type I
error rate, the probability of making a type I error, is equal to the o level since
that is the significance level at which we reject the null hypothesis. Likewise, if
the null hypothesis is false but not rejected, this is called a type II error (com-
parable to a false negative, with a negative result indicating the failed rejection)
(Table 8.1).
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Fig. 8.1 Tllustration of null hypothesis testing. The p-value represents the probability of obtaining
a value equal or higher than the test value. The « level is predefined by the researcher and repre-
sents the accepted probability of making a type I error where the null hypothesis is falsely rejected.
If the p-value of a statistical test is larger than the o level the null hypothesis is rejected

Table 8.1 The two types of errors that can be made regarding the acceptance or rejection of the
null hypothesis

Null hypothesis truth
True False
Null hypothesis decision Fail to reject Correct Type II error
(false negative)
Reject Type I error Correct
(false positive)

8.2 Creating a Prediction Model Using Regression
Techniques

8.2.1 Prediction Modeling Using Linear and Logistic
Regression

A prediction model tries to stratify patients for their probability of having a certain
outcome. The model then allows you to identify patients that have an increased
chance of an event and this may lead to treatment adaptations for the individual
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Fig. 8.2 Examples of predictive modeling (blue line) for a continuous outcome using linear
regression and for a binary outcome using logistic regression. The predictions in the logistic
regression are rounded to either class A or B using a threshold (0.5 by default)

patient. For instance, if a patient has an increased chance of a tumor recurrence the
doctor may opt for a more aggressive treatment, or, if a patient has a high risk of
getting a side-effect a milder treatment might be indicated.

The outcome variable of the prediction model can be anything, e.g., the risk of
getting a side effect, the chance of surviving at a certain time point, or the probabil-
ity of having a tumor recurrence. We can distinguish outcome variables into con-
tinuous variables or categorical variables. Continuous variables are described by
numerical values and regression models are used to predict them, e.g., linear
regression. Categorical variables are restricted to a limited number of classes or
categories and we use classification models for their prediction. If the outcome has
two categories this is referred to as binary classification and typical techniques are
decision trees and logistic regression (somewhat confusingly, this regression
method is well suited for classification due to its function shape).

Fitting or training a linear or logistic prediction model is a matter of finding the
function coefficients so that the model function optimally follows the data (Fig. 8.2).

8.2.2 Software and Courses for Prediction Modeling

There are many different software packages available for generating prediction
models, all of them with different advantages and disadvantages. Some packages
are code-based and programming skills are required, e.g., Python, R or Matlab.
There are integrated development environments available for improved
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productivity, like RStudio for R, and Spyder for Python. Additionally, they can have
rich open-source libraries tailored specifically towards machine learning, for
instance Caret for R [3] and Scikit-learn for Python [4]. Other packages have graph-
ical user interfaces and being able to program is not mandatory, like SPSS, SAS or
Orange. Some packages are only commercially available, but many are open-source
and have a large user base for support.

Preference for a certain software package over others is very personal and the
best advice is therefore to simply try several and find out for yourself. A special
mention is reserved for the Anaconda Distribution [5], which hosts many of the
most widely used software packages for prediction modeling in a single platform
(RStudio, Spyder, Jupyter Notebook, Orange and more) (Table 8.2).

There is a wealth of freely available information on the Web to help you get
going. Providing a comprehensive overview is therefore an impossible task, but
some excellent online courses (sometimes referred to as Massive Open Online
Courses or MOOC:s) are listed below (Table 8.3).

Table 8.2 A non-exhaustive overview of available software packages for prediction modeling and
some of their features

Coding Development Learn more

Name Reference | required environments Open-source | (books/tutorials)
R [6] Yes RStudio [7] Yes [8]
Python [9] Yes Spyder [10] Yes [12]

Jupyter notebooks

[11]
Matlab [13] Yes Matlab No [14]
SPSS [15] No N/A No [16]
SAS [17] No N/A Partly [18]

(students)

Orange [19] No Visual workflows Yes
Weka [20] No N/A Yes [21]
Rapidminer | [22] No Visual workflows Partly

N/A not applicable

Table 8.3 Free online courses for prediction modeling and machine learning

Course Organizer/link

Machine learning Andrew Ng, Stanford University, Coursera

https://www.coursera.org/learn/machine-learning

Tom Mitchell, Carnegie Mellon University
http://www.cs.cmu.edu/~tom/10701 _sp11/

Yaser Abu-Mostafa, California Institute of Technology
https://work.caltech.edu/telecourse.html

Machine learning

Learning from data

Machine learning Nando de Freitas, University of Oxford

https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/
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8.2.3 A Short Word on Modeling Time-to-Event Qutcomes

Many studies are interested not only in predicting a certain outcome, but addition-
ally take into account the time it takes for this outcome to occur. This is referred to
as time-to-event analysis and a typical example is survival analysis. Kaplan-Meier
curves are widely used for investigation of the influence of categorical variables
[23], whereas Cox regression (or sometimes called Cox proportional hazards
model) additionally allows the investigation of quantitative variables [24].

8.3 Creating a Model That Performs Well Outside the
Training Set

8.3.1 The Bias-Variance Tradeoff

The bias-variance tradeoff explains the difficulty of a generated prediction model to
generalize beyond the training set, i.e. perform well in an independent test set (also
called the out-of-sample performance). The error of a model in an independent test
set can be shown to be decomposable into a reducible component and an irreducible
component. The irreducible component cannot be diminished, it will always be
present no matter how good the model will be fitted to the training data. The origin
of the irreducible error can, for instance, be an unmeasured but yet important vari-
able for the outcome that is to be predicted.

The reducible error can be further decomposed into the error due to variance and
the error due to bias [2]. The variance is the error due to the amount of overfitting
done during model generation. If you use a very flexible algorithm, e.g., an advanced
machine learning algorithm with lots of freedom to follow the data points in the
training set very closely, this is more likely to overfit the data. The error in the train-
ing set will be small, but the error in the test set will be large. Another way to look
at this is that a high variance will result in very different models during training if
the model is fitted using different training sets.

Bias relates to the error due to the assumptions made by the algorithm that is
chosen for model generation. If a linear algorithm is chosen, i.e. a linear relation
between the inputs and the outcome is assumed, this may cause large errors (large
bias) if the underlying true relation is far from linear. Algorithms that are more flex-
ible (e.g., neural networks) result in less bias since they can match the underlying
true but complex relations more closely.

In general it can be said that:

* Flexible algorithms have low bias since they can more accurately match the under-
lying true relation, but have high variance since they are susceptible to overfitting.

 Inflexible algorithms have low variance since they are less likely to overfit, but
have high bias due to their problems of matching the underlying true
relationship.
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Fig. 8.3 The bias-variance tradeoff. With increased model complexity the model can more accu-
rately match the underlying relation at the risk of increasing the variance (amount of overfitting).
The bias-variance tradeoff corresponds to minimizing the total prediction error (which is the sum
of bias and variance)

From this we can conclude that the final test set error is a tradeoff between low
bias and low variance. It is impossible to simultaneously achieve the lowest possible
variance and bias. The challenge is to generate a model with (reasonably) low vari-
ance and low bias since that is most likely to generalize well to external sets. This
model might have slightly decreased performance in the training set, but will have
the best performance in subsequent test sets (Fig. 8.3).

8.3.2 Techniques for Making a General Model

As we collect and expand our datasets we often score many features (parameters) so
that we minimize the risk of potentially missing important features, i.e. features that
are highly predictive of the outcome. This means that generally we deal with wide
sets containing many features. However, many of these features are in fact redun-
dant or not relevant for the outcome at all and can be safely omitted. Including a
large number of features during model generation increases the possibility of chance
correlations of features with the outcome (overfitting) and this results in models that
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do not generalize well. Dimensionality reduction [25], reducing the number of
features, is therefore an important step prior to model generation. The main advan-
tages are:

* Lowered chance of overfitting and improved model generalization

e Increased model interpretability (depending on the method of dimensionality
reduction)

e Faster computation times and reduced storage needs

There are many useful dimensionality reduction techniques. The first category of
methods to consider is that of feature selection, where we limit ourselves to a sub-
set of the most important features prior to model generation. Firstly, if a feature has
a large fraction of missing values it is unlikely to be predictive of the outcome and
can often be safely removed. In addition, if a feature has zero or near zero variance,
i.e. its values are all highly similar, this again indicates that the feature is likely to
be irrelevant. Another simple step is to investigate the inter-feature correlation, e.g.,
by calculating the Pearson or Spearman correlation matrix. Features that are highly
correlated with each other are redundant for predicting the outcome (multicollinear-
ity). Even though a group of highly correlated features may all be predictive of the
outcome, it is sufficient to only select a single feature as the others provide no addi-
tional information.

Traditionally, further feature selection is then performed by applying stepwise
regression. In each step a feature is either added or removed and a regression model
is fitted and evaluated based on some selection criterion. There are many choices for
the criterion to choose between models, e.g., the Bayesian information criterion or
the Akaike information criterion, both of which quantify the measure of fit of mod-
els and additionally add a penalty term for complex models comprising more
parameters [26]. In forward selection, one starts with no features and the feature that
improves the model the most is added to the model. This process is repeated until no
significant improvement is observed. In backward elimination, one starts with a
model containing all features, and features are removed that decrease the model
performance the least, until no features can be removed without significantly
decreasing performance.

With feature selection we limit ourselves to a subset of features that are already
present in the dataset and this is a special case of dimensionality reduction [27]. In
feature extraction the number of features are reduced by replacing the existing
features by fewer artificial features which are combinations of the existing features.
Popular techniques for feature extraction are principle component analysis, linear
discriminant analysis and autoencoders [25].

More advanced machine learning algorithms often contain embedded methods
for reducing model complexity to improve generalizability. An example is regular-
ization where each added feature also comes with an added penalty or cost [8]. The
addition of a feature may increase the model performance but, if the added cost is
too high, it will not be included in the final model. This effectively performs feature
selection and prevents overfitting. The severity of the cost is a hyperparameter that
can be tuned (e.g., through cross-validation, see paragraph “Techniques for internal
validation”). Popular regularization methods for logistic regression are LASSO (or
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L1 regularization) [28], ridge (or L2 regularization), or a combination of both using
Elastic Net [29]. The main difference between L1 and L2 regularization is that in L1
regularization the coefficients of unimportant parameters shrink to zero, effectively
performing feature selection and simplifying the final model.

8.4 Model Performance Metrics

8.4.1 General Performance Metrics

The performance of a prediction model is evaluated by the calculation of perfor-
mance metrics. We want our model to have high discriminative ability, i.e. high
probabilities should be predicted for observations having positive classes (e.g., alive
after 2 years or treatment) and low probabilities for negative classes (dead after
2 years of treatment). There is no general best performance metric for model evalu-
ation as this depends strongly on the underlying data as well as the intended applica-
tion of the model.

Other often-used overall performance metrics are R-squared measures of good-
ness of fit (or R?, also called the coefficient of determination). The R? can be inter-
preted as the amount of variance in the data that is explained by the model (explained
variation). Higher R%s correspond to better models. Examples are Cox and Snell’s
R? or Nagelkerke’s R% R-squared values are mainly used in regression models; for
classification models it is more appropriate to look at performance metrics derived
from the confusion matrix.

Another popular overall performance measure is the Brier score (or mean
squared error) and it is defined as the average of the square of the difference between
the predictions and observations. A low Brier score indicates that predictions match
observations and we are dealing with a good model.

8.4.2 Confusion Matrix

The confusion matrix is a very helpful tool in assessing model performance. It lists
the correct and false predictions versus the actual observations and allows for the
calculation of several insightful performance metrics. If the output of your prediction
model is a probability (e.g., the output of a logistic regression model), then it needs
to be dichotomized first by applying a threshold (typically 0.5) before the confusion
matrix can be generated. An exemplary confusion matrix is shown in Table 8.4.

True positives, called hits, are cases that are correctly classified. True negatives
are correctly rejected. False positives, or false alarm, are equivalent to a type I error.
False negatives, or misses, are equivalent to a type II error.

Prevalence is defined as the number of positive observations with respect to the
total observations. A balanced dataset has a prevalence close to 0.5, or 50%. Often,
we have to deal with imbalanced datasets and this can lead to difficulties when
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Table 8.4 Confusion matrix showing predictions and observations. Many useful performance
metrics are derived from the values in the confusion matrix

Observation
True False
Prediction = True  True positive False positive ~ —  Positive predictive value (PPV)
(TP) (FP)
False  False negative  True negative =~ —  Negative predictive value
(FN) (TN) (NPV)
! 1
Sensitivity Specificity
(TPR) (TNR)

interpreting certain performance metrics. Performance metrics can be high for poor
models that are trained and tested on imbalanced datasets.

Prevalence = (TP + FN) /(TN +TP+FP+ FN)

8.4.3 Performance Metrics Derived from the Confusion Matrix

Accuracy, defined as the proportion of correct predictions, is often reported in lit-
erature. Care has to be taken when using this metric in highly imbalanced datasets.
Consider a dataset with only 10% positive observations. If the prediction model
simply always predicts the negative class it will be correct in 90% of the cases. The
accuracy is high, but the model is useless since it cannot detect any positive cases.

Accuracy = (TN + TP) /(TN +TP+FP + FN)

Another option is to look at the proportion of correct positive predictions for the
total number of positive observations. This is called the Positive Predictive Value
(PPV) or precision. Similarly, the proportion of correct negative predictions for the
total number of negative observations is called the Negative Predictive Value
(NPV), respectively. These metrics are of interest to patients and clinicians as they
give the probability that the prediction matches the observation (truth) for a patient.
PPV and NPV are dependent on the prevalence in the dataset making their
interpretation more difficult. A high prevalence will increase PPV and decrease
NPV (while keeping other factors constant).

PPV =TP /(TP +FP)
NPV =TN/(TN+FN)

If we want to consider characteristics not of the population but of the prediction
model when applied as a clinical test, we can evaluate sensitivity and specificity.
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Sensitivity, or True Positive Rate (TPR, or sometimes called recall or probability of
detection), is defined as the probability of the model to make a positive prediction
for the entire group of positive observations. It is a measure of avoiding false nega-
tives, i.e. not missing any diseased patients.

Similarly, specificity is defined as the probability of the model to make a negative
prediction for the entire group of negative observations. It is a measure of avoiding
false positives, i.e. not including non-diseased patients.

TPR=TP/(TP+FN)  (sensitivity)
TNR =TN/(TN+FP)  (specificity )

Additionally, we can determine the False Positive Rate (FPR), or fall-out, and the
False Negative Rate (FNR), which are the opposites of TPR and FPR, respectively.
Note that FPR is used in the next paragraph for the construction of the Receiver
Operating Characteristic curve.

FNR =1-TPR =1-sensitivity
FPR =1-TNR =1 —specificity

The F1-score, or F-score, is a metric combining both PPV (precision) and TPR
(recall or sensitivity). Unlike PPV and TPR separately, it takes both false positives
and false negatives into account simultaneously. It does however still omit the true
negatives. It is typically used instead of accuracy in the case of severe class imbal-
ance in the dataset.

FI=2-(PPV-TPR)/(PPV + TPR)

8.4.4 Model Discrimination: Receiver Operating
Characteristic and Area Under the Curve

The performance of a prediction model is always a tradeoff between sensitivity and
specificity. By changing the threshold that we apply to round our model predictions
to positive or negative classes, we can change the sensitivity and specificity of our
model. By decreasing this threshold, we are making it easier for the model to make
positive predictions. The number of false negatives will go down but false positives
will go up, increasing sensitivity but lowering specificity. By increasing the thresh-
old, the model will make fewer positive predictions, the number of false negatives
will go up and false positive will go down, decreasing sensitivity and increasing
specificity (Fig. 8.4).

By evaluating different thresholds for rounding our model predictions, we can
determine many sensitivity and specificity pairs. If we plot the sensitivity versus
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Fig. 8.4 Influence of the threshold that is used to round model prediction probabilities to O or 1.
By using a low threshold the model will detect most of the patients with the outcome (high sensi-
tivity), but many patients without the outcome will also be included (low specificity). For each
value of the threshold sensitivity and specificity values can be calculated

(1 — specificity) for all these pairs, i.e. the true positive rate versus the false positive
rate, we obtain the Receiver Operating Characteristic curve (ROC) [30]. This
curve can give great insight into model discrimination performance. It allows for
determining the optimal sensitivity/specificity pair of a model so that it can support
decision making, and also allows comparison of different models with each other.
Powerful models have ROC curves that approach the upper left corner, which
indicates that the model achieves the maximum of 100% sensitivity and 100% spec-
ificity simultaneously. Conversely, a poor model with no predictive value will have
an ROC curve close to the y = x or 45 degree line. This has led to the use of the Area
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Under the Curve (AUC) of the ROC curve (or concordance statistic, ¢) as a widely
used metric for interpreting individual model performance but also for comparing
between models. Strong performing models have higher ROC curves and thus larger
AUC values. A perfect model making correct predictions for every patient has an
AUC of 1, whereas a useless model giving random predictions results in an AUC of
0.5. The AUC can be interpreted as the probability that the model will give a higher
predicted probability to a randomly chosen positive patient than a randomly chosen
negative patient (Fig. 8.5).

Receiver Operating Characteristic curve
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Fig. 8.5 ROC curve indicating discriminating performance of the model. Model predictions are
rounded to 0 or 1 using many different thresholds resulting in the sensitivity and specificity pairs
that form the curve. AUC is indicated by the gray area under the curve. Higher values correspond
to better model discrimination performance



114 F. J. W. M. Dankers et al.
8.4.5 Model Calibration

Historically, the focus in evaluating model performance has primarily been on dis-
criminative performance, e.g., by calculating R? metrics, confusion matrix metrics
and performing ROC/AUC analysis. Model calibration is however as important as
discrimination and should always be evaluated and reported. Model calibration
refers to the agreement between subgroups of predicted probabilities and their
observed frequencies. For example, if we collect 100 patients for which our model
predicts 10% chance of having the outcome, and we find that in reality 10 patients
actually have the outcome, then our model is well calibrated. Since the predicted
probabilities can drive decision-making it is clear that we want the predictions to
match the observed frequencies.

A widely-used (but no so effective) way of determining model calibration is by
performing the Hosmer-Lemeshow test for goodness of fit of logistic regression
models. The test evaluates the correspondence between predictions and observa-
tions by dividing the probability range [0-1] into n subgroups. Typically, 10 sub-
groups are chosen, but this number is arbitrary and can have a big influence on the
final p-value of the test.

A better approach is to generate a calibration plot [31-33]. It is constructed by
ordering the predicted probabilities, dividing them into subgroups (again, typically
10 is chosen) and then plotting the average predicted probability versus the average
outcome for each subgroup. The points should lie close to the ideal line of y = x
indicating agreement between predictions and observed frequencies for each sub-
group. Helpful additions are error bars, a trend line (often a LOESS smoother [34]),
individual patient predictions versus outcomes and/or histograms of the distribu-
tions of positive and negative observations (the graph is then sometimes called a
validation plot) (Fig. 8.6).

8.5 Validation of a Prediction Model

8.5.1 The Importance of Splitting Training/Test Sets

In the previous paragraphs different metrics for evaluation of model performance
have been discussed. As briefly discussed in paragraph “The bias-variance tradeoff”
it is important to compute performance metrics not on the training dataset but on data
that was not seen during the generation of the model, i.e. a test or validation set. This
will ensure that you are not mislead into thinking you have a good performing model,
while it may in fact be heavily overfitted on the training data. Overfitting means that
the model is trained too well on the training set and starts to follow the noise in the
data. This generally happens if we allow too many parameters in the final model. The
performance on the training set is good, but on new data the model will fail.
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Fig. 8.6 Calibration plot indicating agreement between model predictions and observed frequen-
cies. Data points are subdivided into groups for which the mean observation is plotted against the
mean model probability. Perfect model calibration corresponds with the y = x line. Additionally,
individual data points are shown (with some added y-jitter to make them more clear), as well as
histograms for the positive and negative classes [0,1]

Underfitting corresponds to models that are too simplistic and do not follow the

underlying patterns in the data, again resulting in poor performance in unseen data.
Properly evaluating your model on new/unseen data will improve the generaliz-

ability of the model. We differentiate between internal validation, where the data-
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set is split into a training set for model generation and a test set for model validation,
and external validation, where the complete dataset is used for model generation
and separate/other datasets are available for model validation.

8.5.2 Techniques for Internal Validation

If you only have a single dataset available you can generate a test set by slicing of a
piece of the training set. The simplest approach is to use a random split, e.g., using
70% of the data for training and 30% for evaluation (sometimes called a hold-out
set). It is important to stratify the outcome over the two sets, i.e. make sure the
prevalence in both sets remains the same. The problem with this method is that we
can never be sure that the calculated performance metric is a realistic estimate of the
model performance on new data or due to a(n) ‘(un)lucky’ randomization. This can
be overcome by repeating for many iterations and averaging the performance met-
rics. This method is called Monte Carlo cross-validation (Fig.8.7) [35].

Another approach is the method of k-fold cross-validation [36]. In this method
the data is split into k stratified folds. One of these folds is used as a test set, the
others are combined and used for model training. We then iterate and use every fold
as a test set once. A better estimate of the true model performance can be achieved
by averaging the model performances on the test set. Typically, k =5 or k = 10 is
chosen for the number of folds (Fig. 8.8).

The advantage of k-fold cross-validation is that each data point is used in a test
set only once, whereas in Monte Carlo cross-validation it can be selected multiple
times (and other points are not selected for a test set at all), possibly introducing
bias. The disadvantage of k-fold cross-validation is that it only evaluates a limited
number of splits whereas Monte Carlo cross-validation evaluates as many split as
you desire by increasing the number of iterations (although you could iterate the
entire k-fold cross-validation procedure as well which is commonly called repeated
k-fold cross-validation).

Note that in both Monte Carlo cross-validation and k-fold cross-validation we
are generating many models instead of a single final model, e.g., because the feature

Monte Carlo cross-validation

Repeat for multiple splits

Create random

stratified split
I—’l Train |

Dataset | Learn maodel

Calculate metrics

Stored
metrics

Apply model

Fig. 8.7 Schematic overview of a Monte Carlo cross-validation. A random stratified split is
applied to separate a test set from the training set. A prediction model is trained on the training set
and performance metrics on the test set are stored after which the process is repeated
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Fig. 8.8 Schematic overview of k-fold cross-validation. The dataset is randomly split into k strati-
fied folds. Each fold is used as a test set once, while the other folds are temporarily combined to
form a training set for model generation. Performance metrics on the test set are calculated and
stored, and the process is repeated for the number of folds that have been generated

selection algorithm might select different features or the regression produces differ-
ent coefficients due to different training data. Cross-validation is used to identify the
best method (i.e. data pre-processing, algorithm choice etc.) that is to be used to
construct your final model. When you have identified the optimal method you can
then train your model accordingly on all the available data.

A common mistake in any method where the dataset is split into training and test
sets is to allow data leakage to occur [37]. This refers to using any data or informa-
tion during model generation that is not part of the training set and can result in
overfitting and overly optimistic model performance. It can happen for example
when you do feature selection on the total dataset before applying the split. In gen-
eral it is advised to perform any data pre-processing steps after the data has been
split and using only information available in the training set.

8.5.3 External Validation

The true test of a prediction model is to evaluate its performance under external vali-
dation, or separate datasets from the training dataset. Preferably, this is performed
on new data acquired from a different institution. It will indicate the generalizability
of the model and show whether it is overfitted on the training data. If this can be
performed on multiple external validation sets, this further strengthens the accep-
tance of the prediction model under evaluation.

It has to be noted that if the datasets intended to be used for external validation
are collected by the same researchers that built the original prediction model, this is
still not an independent validation. Independent external validation, by other
researchers, is the ultimate test of the model generalizability. This requires open and
transparent reporting of the prediction model, of inclusion and exclusion criteria for
the training cohort and of data pre-processing steps. Additionally, it is encouraged
to make the training data publicly available as this allows other researchers to verify
your methodology and results and greatly improves reproducibility.
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8.6 Summary Remarks

8.6.1 What Has Been Learnt

In this chapter you have learnt about the importance of the bias-variance tradeoff
in prediction modeling applications. You have learnt how to generate a simple
logistic regression model and what metrics are available to evaluate its perfor-
mance. It is important to not limit the evaluation to model discrimination only, but
also include calibration as well. Finally, we have discussed the importance of
separating training and test sets so that we protect ourselves from overfitting.
Internal validation strategies such as cross-validation are discussed, and the ulti-
mate test of a prediction model, independent external validation, has been
emphasized.

8.6.2 Further Reading

The field of prediction modeling and machine learning is extremely broad and in
this chapter we have only scratched the surface. A good place to start with further
reading on the many aspects of prediction modeling is the book “Clinical Prediction
Models — A Practical Approach to Development, Validation, and Updating” by
Steyerberg [38]. If you are looking to improve your knowledge and simultane-
ously improve your practical modeling skills the book “An Introduction to
Statistical Learning — with Applications in R” by James et al. is highly recom-
mended [8]. Finally, if you want to go in-depth and understand the underlying
principles of the many machine learning algorithms the go-to book is “The
Elements of Statistical Learning — Data Mining, Inference, and Prediction” by
Hastie et al. [39].
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