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Abstract. A whole genome metabolic model (GEM) is essentially a
reconstruction of a network of enzyme-enabled chemical reactions repre-
senting the metabolism of an organism, based on information present in
its genome. Such models have been designed so that flux balance anal-
ysis (FBA) can be applied in order to analyse metabolism under steady
state. For this purpose, a biomass function is added to these models as
an overall indicator of the model’s viability.

Our objective is to develop dynamic models based on these FBA mod-
els in order to observe new and complex behaviours, including transient
behaviour. There is however a major challenge in that the biomass func-
tion does not operate under dynamic simulation. An appropriate biomass
function would enable the estimation under dynamic simulation of the
growth of both wild-type and genetically modified bacteria under differ-
ent, possibly dynamically changing growth conditions.

Using data analytics techniques, we have developed a dynamic
biomass function which acts as a faithful proxy for the FBA equivalent for
a reduced GEM for E. coli. This involved consolidating data for reaction
rates and metabolite concentrations generated under dynamic simulation
with gold standard target data for biomass obtained by steady state anal-
ysis using FBA. It also led to a number of interesting insights regarding
biomass fluxes for pairs of conditions. These findings were reproduced in
our dynamic proxy function.

1 Introduction

A large amount of publicly available information, regarding whole genome
metabolic reaction networks in e.g. Escherichia coli (E. coli), has been encoded
as constraint-based flux-balance analysis (FBA) models. This forms a very useful
resource, especially when combined with genome information, as in the BiGG
collection [13]. Our overall aim is to build on this knowledge to make whole
genome metabolic models (GEMs) available for dynamic simulation in order to
be able to observe new and complex behaviours including, for example, under
dynamically changing growth conditions. In previous work we have reported our
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methodology to convert FBA models into dynamic models [7], as the first steps
that we have already made in this direction.

Constraint-based FBA models are designed to analyse metabolism activity
under steady state. For this purpose a biomass function is added, implemented
as an abstract reaction over metabolites and serving as an overall indicator of
the model’s viability. However this artificial function is very complex and highly
tuned in that it comprises many substrates and products, with a wide range of
specific non-integer stoichiometries [22]. This tuned complexity means that we
have found it impossible to directly use the existing FBA biomass function as
an indicator of viability in the simulation of dynamic models.

The work reported in this paper describes a data analytics approach to derive
a proxy biomass function for dynamic GEMs, relying on averaged stochastic
simulation traces of both metabolite concentrations and reaction rates. This
proxy has been developed to be both highly robust and accurate with respect
to a wide variety of growth conditions. Such a biomass proxy will enable the
estimation by dynamic simulation of the growth of both wild-type and genetically
modified bacteria under different growth conditions.

Our contributions include: the development of a well-defined general
method, organised as a workflow which provides guidance to derive a biomass
function for any GEM. We demonstrate our method for the well-established
reduced E. coli core model for the K12 strain [21] available in SBML format. Our
workflow exploits a number of well recognised data analytics methods, including
regression analysis and machine learning. The gold standard FBA data on which
our work is based was generated using the Cobra software [25], and the dynamic
simulation data was generated with the stochastic simulation algorithm Delta
Leaping [23] using the Marcie software [11]. For this purpose, we converted the
SBML model into a stochastic Petri net by help of the Snoopy software [10]. The
robustness of our results was ensured by the use of a large number of observations
generated by single and combined growth conditions. An additional unexpected
result was the observation of the non-linear additive effects of certain paired
growth conditions which were found in the FBA results and faithfully preserved
in the predictions of our biomass proxy.

This paper is organised as follows. In the next section we review some
related work, followed by a section on the data used, its generation and prepara-
tion. Next we describe the data analytics methods deployed and their appli-
cation in our workflow. We then evaluate the key results, followed by con-
clusions and outlook. Some additional information is provided as Supplemen-
tary Materials, available at http://www-dssz.informatik.tu-cottbus.de/DSSZ/
Software/Examples.

2 Related Work

A genome scale metabolic model (GEM) is essentially a reconstruction
of a network of enzyme-enabled chemical reactions representing the metabolism
of an organism, based on information present in its genome. It can be used to
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understand an organism’s metabolic capabilities. The reconstruction involves a
number of steps, including the functional annotation of the genome, identification
of the associated reactions and determination of their stoichiometry, which is
the relationship between the relative quantities of substances taking part in a
reaction. It also involves determining the biomass composition, estimating energy
requirements and defining model constraints [1]. A characteristic of these models
is that although they describe the reactions in terms of substrates and products,
they do not contain information on reaction rate constants because these cannot
be determined by the current reconstruction process.

GEMs have become an invaluable tool for analysing the properties and steady
state behaviour of metabolic networks, and have been especially successful for
E. coli [9]. The most recent model iJO1366 has been accepted as the reference
for E. coli network reconstruction. It has provided valuable insights into the
metabolism of E. coli and been used to formulate intervention strategies for
targeted modifications of the metabolism for biotechnological applications. Bac-
terial GEMs can comprise about 5000 reactions and metabolites, and encode a
huge variety of growth conditions. The BiGG public domain database contains
92 GEMs, of which 52 are for E. coli [13].

However, it has been argued that as the size and complexity of genome scale
models increases, limitations are placed on popular modelling techniques, such
as constraint-based modelling and kinetic modelling [9]. A similar argument was
put forward by [4] as a justification for developing a network reduction algorithm
to derive smaller models by unbiased stoichiometric reduction, based on the view
that the basic principles of an organism’s metabolism can be studied more easily
in smaller models. A number of reduced models have been proposed, including
[9,21].

Flux balance analysis (FBA) is a constraint-based approach for analysing
the flow of metabolites through a metabolic network by computing the reaction
fluxes in the steady state. This enables the prediction of the growth rate of an
organism or the production rate of biotechnologically important metabolites. An
additional biomass objective function is added to compute an optimal network
state and resulting flux distribution out of the set of feasible solutions. The
growth rate as reflected by the steady state flux of the biomass function is
constrained by the measured substrate uptake rates and by maintenance energy
requirements [22].

The biomass function indirectly indicates how much certain reactions con-
tribute to the phenotype. It does so by being represented as a pseudo (i.e.
abstract and artificial) “biomass reaction” that drains substrate metabolites
from the system at their relative stoichiometries to simulate biomass produc-
tion The biomass reaction is based on experimental measurements of biomass
components. This reaction is scaled so that the flux through it is equal to the
exponential growth rate (µ) of the organism [20].

FBA has limitations as it is unable to predict metabolite concentrations
because it does not use initial metabolite concentrations or kinetic parame-
ters. The mathematical model incorporates the stoichiometric matrix and any
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biologically meaningful constraints over the flux ranges. Therefore it is only suit-
able for determining relative fluxes at steady state [21].

Dynamic simulation. The network described by the stoichiometric matrix can
be equally read as a dynamic model to explore the temporal behaviour of the sys-
tem by tracing how metabolite concentrations and reaction rates (fluxes) change
over time [6,7]. For this purpose the model has to be enriched by initial metabo-
lite concentrations and kinetic reaction rates (kinetic laws and corresponding
parameters), both initially estimated and ultimately determined by experimen-
tal observation.

There are three main approaches for dynamic simulation: qualitative,
stochastic, and deterministic approaches. The most abstract representation of
a biochemical network is qualitative. However, biochemical systems are inher-
ently governed by stochastic laws, though due to the computational resources
required, continuous models are commonly used in place of stochastic models
to approximate stochastic behaviour with a deterministic approach [8]. These
approaches to dynamic simulation do not make any assumptions about steady
state, unlike FBA and dynamic FBA [16], thus facilitating the analysis of the
transient behaviour of the biological system.

The dynamic simulation of large and complex whole genome models has
been a bottleneck in the past [26], which has presented considerable difficulties
both for stochastic and deterministic methods [7]. However, stochastic simulation
based on Delta Leaping [24], permits the efficient simulation of these very large
GEMs, enabling the observation of new and complex behaviours [7].

There is also another limitation however, which is that the biomass function
for constraint-based GEMs does not work correctly under the dynamic simula-
tion of transient behaviour without quasi-steady state assumption, due to the
complexity in terms of the number of variables and specificity in terms of the
stoichiometries of the function. A systematic approach to the development of a
proxy function that can be used to determine the amount of biomass produced
is the main focus of the work presented here.

3 Data

Model. The research reported in this paper builds on the reduced E. coli core
model for the K12 strain of Orth et al. [21] available in SBML format from
http://systemsbiology.ucsd.edu/Downloads/EcoliCore. Its reactions and path-
ways have been chosen to represent the most well-known and widely studied
metabolic pathways of E. coli.

The metabolic reconstruction of the model includes 54 unique metabolites in
two compartments: cytosol and extracellular, and these metabolites may exist
as SBML species in both, differentiated by appropriate tags. The cytosol con-
tains 52 of these metabolites (of which 34 are uniquely cytosol species), and the
extracellular compartment contains 20 metabolites, two of which are not found
in the cytosol. By definition each of the 20 extracellular metabolites exists as
two copies – ‘boundary’ and ‘extracellular’ – the latter type being used in the

http://systemsbiology.ucsd.edu/Downloads/EcoliCore
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transport mechanism between extracellular and cytosol compartments, making
40 extracellular species. In total there are 52 + 40 = 92 species in the SBML
specification.

The model has 94 reactions of which 46 are reversible, which can be cat-
egorised into 49 metabolic reactions, 25 transport reactions between compart-
ments, and 20 exchange reactions [20]. Exchange reactions are always reversible
and exist for each extracellular metabolite (boundary condition), the directions
of which can be changed using the flux constraints. Additionally there is a
biomass function implemented as an abstract (irreversible) reaction, which com-
prises 16 substrates and 7 products with stoichiometries varying from 0.0709 to
59.81, see Table 4 in the Supplementary Materials.

The model can be configured to investigate the effect of different growth con-
ditions using the 20 extracellular species. Of these, 14 are carbon source growth
conditions including formate; we follow standard practice to ignore formate due
to viability issues [20] leaving 13 carbon sources that we considered. Five of the
remaining 6 boundary conditions correspond to the ingredients of a minimal
growth medium based on M9 [17], namely CO2, H+, H2O, D-Glucose, ammo-
nium, and phosphate. Finally, oxygen is also a boundary condition. Each of the
carbon sources can be considered both aerobically and anaerobically, making
in total 2 · 13 = 26 single growth conditions while ignoring formate.

For the purpose of simulation, we convert the SBML model into a stochas-
tic Petri net (SPN), which is done with the Petri net editor and simulator
Snoopy [10]. This involves four adjustments.

• As required for any discrete dynamic modelling approach, reversible reac-
tions are modelled by two opposite transitions representing the two direc-
tions a reversible reaction can occur.

• Metabolites which have been declared as boundary conditions are associ-
ated with additional source and sink transitions (called boundary transi-
tions), mimicking the FBA assumption of appropriate in/outflow. This
transforms a place-bordered net into a transition-bordered net, if all
boundary places (i.e., source/sink places) have been declared as bound-
ary conditions.

• Reaction rates are assigned to all transitions following the mass-action
pattern with uniform kinetic parameters of 1.

• The initial concentration is set to zero, except for those 12 metabolites
involved in mass conservation (P-invariants), computed with Charlie [12],
which were all set to the same initial amount, e.g. 10.

The Petri net model (ignoring the biomass function) comprises 180 transi-
tions (94+46+2 ·20 boundary transitions) and 92 places; it is shown in Fig. 6 in
the Supplementary Materials. In addition, the biomass function is present, but
never active.

Datasets. “Gold standard” target data for biomass was generated using
FBA with the Cobra software [25]. Time-series data for reaction activity and
metabolite concentrations were generated under dynamic simulation with the
approximative stochastic simulation algorithm Delta Leaping using the Marcie
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software [11] and recorded for all species (places) and reactions (transitions) for
1,000 time points averaged over 10,000 runs. The average of the last 200 time
points was calculated for each of the reactions and metabolites in the dynamic
time series data for use in regression analysis, based on the assumption that
this best represented the steady state. The rates of the forward and backward
transitions of reversible reactions were combined and appropriate new variables
introduced with suffix FwRe. Redundant variables were removed, e.g. boundary
transitions introduced by the conversion of SBML into SPN, and also the original
biomass function. These data preparation steps are summarised in Fig. 1.

This was initially done for the 26 different single growth conditions. How-
ever, the number of predictors (reactions and metabolites) in our model is large
in relation to the number of observations (growth conditions), and regression
analysis is more accurate for larger numbers of observations. Furthermore, anal-
ysis based on more conditions helps to reduce the likelihood of overfitting and
allows more predictor variables to be included in the regression equation. Given
a certain number of observations, there is an upper limit to the complexity of the
model that can be derived with any acceptable degree of uncertainty [2]. Also
there is a broadly linear relationship between the sample size (number of obser-
vations) and the number of predictors included in a multiple linear regression
model used for prediction [14].

Therefore, additional observations were generated using pairwise combina-
tions of 13 carbon sources, both aerobic and anaerobic, yielding 2·(132−13)/2 =
156 pairwise conditions. This also enabled us to investigate the effect of paired
combinations of carbon sources. Finally in order to further enhance the effec-
tiveness of the regression analysis, we combined the 156 pairwise observations
with the 26 single condition observations to create a combined dataset of 182
observations (growth conditions) with 300 variables (metabolites and reactions)
and 1 dependant variable (Biomass proxy).

Fig. 1. Summary of data preparation steps. A dataset was created for analysis with 300
variables and 26 single growth conditions, later extended by 156 pairwise conditions.
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4 Data Analytics Methods

In terms of data analytics we wish to derive a mathematical function to correctly
predict w.r.t. FBA results the biomass, to be precise: the steady state flux of the
biomass reaction, for different growth conditions based on the various metabolite
concentrations and reaction rates in the steady state as determined by simulation
of a dynamic model. In other words, the expected result is a proxy function
which predicts the FBA value in the steady state. Our analysis is based on the
assumption that a steady state exists for that model.

The overall workflow is illustrated in Fig. 2, and essential steps are explained
below. A more detailed workflow protocol is provided in the Supplementary
Materials.

Fig. 2. Workflow of key analytical steps in the development of the proxy function.
Steps 1–5 are covered in Sect. 3, steps 6–10 in Sect. 4 and step 11 in Sect. 5.



46 T. Self et al.

We use the term regression analysis to refer to the analysis of the relationships
between a dependent variable (which in this paper is biomass) and the predictor
variables (which in this paper are the metabolites and reactions).

Preliminary data analysis generated two important observations that shaped
the approach for regression analysis.

(i) The biomass values of anaerobic conditions follow “zero inflated distribu-
tion” (in which a large portion of values were either zero or close to zero),
whereas biomass production for aerobic conditions resembled a normal
distribution, as illustrated in Fig. 3. This finding led to the creation of
a dichotomous (binary) variable to distinguish between the two sets of
conditions.

(ii) There are a large number of independent variables or predictors with the
potential to lead to too much complexity. Many of these variables were
highly correlated with each other, leading to collinearity which can cause
inaccurate predictors in the regression equation.

Fig. 3. Histograms of biomass for pairs of conditions; anaerobic conditions (left) and
aerobic conditions (right).

Complexity reduction. The large number of predictors (metabolite concen-
trations and reaction fluxes) had the potential to generate overwhelming com-
plexity. Further investigation into these variables revealed that a large number
of them were highly correlated with each other and this helped to reduce some of
the complexity and to highlight the risk of collinearity in the regression model.
Some variables were in fact found to be perfectly correlated, given that they had
Pearson correlation coefficients of 1. This was because they related to the same
metabolite at different stages in transportation (or different compartments) as
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Fig. 4. Variable correlation matrix with hierarchical clustering based on complete link-
age, using 37 key variables from the initial dataset of 26 single conditions.

represented by the underlying biology model. So, the concentrations of metabo-
lite did not change irrespective of whether it was outside the E. coli bacterium
or passing through the outer part of the E. coli bacterium.

Clustering techniques were used to identify groups of highly correlated vari-
ables. Figure 4 provides an illustration of hierarchical variable clustering using
complete linkage for 37 key variables. Note that only a limited number of vari-
ables were used as including all 300 would not be visually effective.

We applied two approaches to regression analysis—stepwise regression and a
machine learning based algorithmic approach.

Stepwise regression analysis. The decision was taken to initially develop a
multiple linear regression model to predict biomass in preference to employing
machine learning algorithms, due to the additional insight that statistical meth-
ods can offer in terms of inference or interpretability of the parameters (which
in this case is the underlying biochemistry) as opposed to simply looking at
prediction. The methodology and approach applied to the regression analysis
was strongly influenced by the findings identified in the preliminary analysis
described above.

An initial regression equation was derived by applying a process of stepwise
regression to the small dataset of 26 single conditions. Variables were included
in the stepwise regression process based on the earlier work carried-out around
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correlation and clustering analysis. The validity of using correlation analysis
could be questioned because a linear combination of a few dependent variables
that are only weakly correlated with the dependent variable may have larger cor-
relation with the dependent variable than a linear combination of a few strongly
correlated variables. However, it should be pointed out that an alternative, more
formulaic approach to variable selection was applied when running the auto-
mated feature selection as outlined in the section below.

In spite of the fact that a dataset with only 26 conditions imposed limits on
the scope of the regression analysis, the results were promising and served as
a starting point for analysis based on the larger dataset. A process of stepwise
regression followed in which different terms were successively added and removed.
A regression equation with an adjusted r-squared value of 0.91 was obtained,
providing a fair amount of explanatory power.

A comparison of datasets generated for paired, as opposed to single conditions
identified a drop in the adjusted r-squared value from 0.92 to 0.83 when the same
regression model was applied to the dataset for paired conditions. This finding
led to the creation of a second dichotomous variable ‘Pair’ to distinguish between
paired condition and single conditions.

A procedure known as StepAIC (available in the Mass package in R) was
then applied and the results obtained were used to help validate this model.
Interaction terms were then added to reflect the combined effect of the predictors
(metabolite concentrations and reaction fluxes) and the dichotomous variable
created to distinguish between aerobic and anaerobic conditions. The inclusion
of such terms in the regression model led to a significant improvement and an
adjusted r-squared of 0.976 was obtained, illustrating the strong explanatory
power. Furthermore, all of the coefficients and the overall model were shown to
be highly statistically significant.

A machine learning based algorithmic approach to regression. One
of the main challenges identified in the preliminary analysis was the need to
manage the complexity created by the large number of variables (300), which
is a characteristic of many modern datasets. Kursa and Rudnicki identified two
main issues with large datasets. Firstly, the decrease in accuracy that can occur
when too many variables are included, known as the minimal optimal problem.
Secondly, the challenges in finding all relevant variables as opposed to just the
non-redundant ones, which is known the all-relevant problem [15]. This is of
particular importance when one wishes to understand the mechanisms related
to the subject of interest, as opposed to purely building a black box predictive
model. Kursa and Rudnick have developed Boruta, a package in R [3] for variable
selection, which includes a variable selection algorithm (also called Boruta) to
address the all-relevant problem. The algorithm employs a wrapper approach
which is built around a random forest classifier. In a wrapper approach, the
classifier (in this case a random forest classifier) is used as a black box to return
output, which is used to evaluate the importance of variables. Random forest is
an ensemble method used in machine learning in which classification is performed
by voting on (or taking the average of) multiple unbiased weak classifiers -
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decision trees. These trees are independently developed on different samples of
the training dataset [15].

Diagnostics terminology. In the following we first explain the terminology of
the methods that we have used, followed by their application in our approach.

Akaike’s information criterion (AIC) is a diagnostic used in regression,
which takes into account how well the model fits the data while adjusting for
the ability of that model to fit any dataset. It seeks to strike a balance between
goodness of fit and parsimony and assigns a penalty based on the number of
predictors to guard against overfitting. It is defined as

AIC = −2 · ln(L) + 2 · p,

where L is a measure of the log likelihood and p is the number of variables in
the model [18].

Bayesian information criterion (BIC) is a Bayesian extension of AIC with

BIC = −2 · ln(L) + p · ln(n),

where L is a measure of the log likelihood and p is the number of variables in
the model as above. It is known to be a more conservative measure than AIC in
the sense that it assigns a stronger penalty as more predictors are added to the
model. Like AIC, the lower the value of BIC the better.

Note that AIC and BIC are used to determine the relative quality of different
statistical models based on the same dataset. They cannot be used to compare
models generated from different datasets.

Cross-validation is an evaluation technique, which is used to assess the accu-
racy of results obtained from training data on test data. In cross-validation, the
number of folds ‘k’ is defined in advance. The data is then split equally into ‘k’
folds. Each fold in turn is used for testing and the remainder used for training.
This procedure is repeated ‘k’ times so that at the end every instance has been
used exactly once for testing [27]. The cross-validation residual is then derived
by calculating the difference between the prediction using the ‘refit’ regression
model and the actuals for the test dataset. Witten et al. claim that in extensive
tests on numerous different datasets, with different learning techniques, 10-fold
cross validation is about the right number of folds to get the best estimate of
error, and there is also some theoretical evidence that backs this up [27].

The following steps were applied in our algorithmic approach to perform
regression analysis in order to derive a proxy function for biomass.

(i) The Boruta package in R was used to identify 80 important independent
variables from a total of 300.

(ii) Collinearity was then removed by eliminating variables with a variance
inflation factor (VIF) higher than 4, using a routine developed with the
‘car’ package in R [5]. Collinearity refers to strong correlations between
independent variables. It can result in biased coefficients in the regression
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equation, which means it is difficult to assess the impact of the indepen-
dent variables on the dependent variable. VIF is an excellent measure of
the collinearity of the ith independent variable with the other indepen-
dent variables in the model, according to O’Brien [19]. He also argues
against the need to apply low VIF thresholds as was the case here. In
fairness a higher threshold could have been used, however as we will see
below, the algorithm used to test all the combinations of linear regression
models is extremely resource intensive and only a limited number could
be employed.

(iii) A matrix was created to store all of the potential subsets of predictors.
(iv) Training and validation samples were created.
(v) Linear models were generated, using the 14 most important variables

resulting in the creation of 16,384 (214) different models. Due to the expo-
nential complexity of the problem we confined our analysis to a maximum
of 14 variables, which took about 2 h to run.

(vi) Key diagnostics are captured for all models including: r-squared, adjusted
r-squared, p-values, AIC and BIC and k-fold cross-validation mean
squared error.

Combining results from stepwise regression with the machine learn-
ing based algorithmic approach. The results obtained from this algorithmic
approach were inferior to the results obtained through stepwise regression. How-
ever, there were 12 predictors that appeared in the top algorithmic models that
were also absent from the stepwise regression model, which were reviewed in
order to determine whether any improvement could be made to the results of
the stepwise regression analysis.

After another process of stepwise regression, two additional predicators were
included and a regression model to estimate the biomass was developed leading
to an improvement in the adjusted r-squared from 0.976 to 0.979:

Biomass ≈
− 14.2113
+ 2.1133 · M fru b + 2.1744 · M glc D b + 4.5078 · M o2 b

+ 13.4913 · R GLUN (1)
+ Aerobic (0.7191 · Pair − 0.1056 · M h b

+ 1.8578 · M fru b + 1.8466 · M glc D b − 3.4306 · M o2 c

+ 0.8033 · R RPI − 3.5964 · R SUCOAS FwRe).

See Table 1 for an explanation of all variables used in the function. Note that
unlike the original biomass function (compare Table 4 in the Supplementary
Materials), reaction rates as well as metabolite concentrations are involved.

Validation of the proxy function was undertaken. The standard diagnostics
were reviewed, which included but were not limited to the following.

(i) The adjusted r-squared value of 0.979 was very high. The adjusted r-
squared being the preferred measure of explanatory power as it is more
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Table 1. Variables occurring in the biomass proxy, see Eq. (1). Aerobic represents a
dichotomous variable which was added to distinguish between aerobic and anaerobic
conditions; likewise for Pair. Prefixes: M – metabolite, R – reaction; suffixes: b –
boundary condition, c – cytosol, FwRe – combined rate of forward and backward
direction of a reversible reaction.

Short name Explanation

Aerobic Dichotomous variable

Pair Dichotomous variable

M fru b Fructose

M glc D b D-Glucose

M o2 b, M o2 c Oxygen

M h b Hydrogen

R GLUN glutaminase

R RPI ribose-5-phosphate isomerase, forward reaction

R SUCOAS FwRe succinyl-CoA synthetase (ADP-forming)

conservative than the r-squared value and has been adjusted for the num-
ber of predictors in the regression model.

(ii) The p-value for the F-statistic was a lot less than 0.1% (0.001), meaning
that it is highly statistical significant and that there is strong evidence of
a relationship between the dependent and independent variables.

(iii) All the p-values for the coefficients were statistically significant at the
0.1% (0.001) level, meaning that there is evidence that the coefficients
are significant.

Finally, the reassuring results were obtained from 10-fold cross-validation.
The 10 dashed lines in Fig. 5, which relate to the best fit lines for the 10 respec-
tive folds in cross-validation do not vary significantly and are parallel and close
together, as would be expected in a good model. The overall mean square value,
i.e. the mean squared difference between the predicted value and the actual
value, is a commonly used diagnostic in cross-validation and is 0.0265 for this
data.

Further analysis was undertaken to ascertain whether the regression model
meets assumptions for linear regression in order to determine whether it can be
used for inference in addition to prediction. Some modest violations were iden-
tified with regard to homoscedasticity and some collinearity was also identified,
but it was demonstrated that this could be effectively addressed by removing
two of the variables from the regression equation with only a modest drop in the
adjusted r-squared value from 0.979 to 0.965.

5 Evaluation of Key Results

Preliminary data analysis generated a number of critical insights that helped
to guide the approach towards the regression analysis.
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(i) First, it was found that biomass production for the different anaerobic
conditions followed what can be described as a ‘zero inflated distribution’
(in which a large portion of values were either zero or close to zero),
whereas biomass production for aerobic conditions resembles a normal
distribution, as illustrated in Fig. 3.

(ii) The large number of predictors (metabolite concentrations and reaction
fluxes) had the potential to generate overwhelming complexity. Further
investigation into these variables revealed that a large number of them
where highly correlated with each other and this together with clustering
analysis helped to reduce the number of dimensions and to highlight the
risk of collinearity in the regression model.

(iii) The initial dataset with only 26 single conditions imposed restrictions on
the scope of the regression modelling, as there were not enough conditions
to incorporate all the key predictors without a risk of overfitting. This led
to the generation of additional data for pairs of conditions. The benefits of
obtaining this data were twofold, firstly it improved the regression model
by allowing for the inclusion of more predictors, without the same risk of
overfitting. Secondly, it led to some interesting insights around biomass
values for pairs of conditions which will be discussed below.

Key insights from the analysis of biomass for pairs of conditions. Not
only did the additional data on 156 pairs of conditions help to improve the pre-
dictive power of the regression model, but it led to some serendipitous findings.
First, pairs of aerobic conditions always have biomass values that are between
1% and 7% larger than the sum of the two single conditions as illustrated in
Table 2.

Secondly, it was also shown that acetaldehyde, which does not produce
biomass anaerobically as a single condition, produced biomass when paired with
a number of other conditions that do not produce biomass anaerobically as illus-
trated in Table 3.

Approach towards development of a proxy function to predict biomass
using multiple linear regression. Two separate approaches were used in
relation to the predictive modelling. The first was the traditional statistical app-
roach of stepwise regression. The second was to use feature selection algorithms
to select variables together with an automated process to iterate through all
the different combinations of the variables. Interestingly, the stepwise regression
model outperformed the model generated through the algorithmic approach.
This scenario was unexpected, but analysis showed that the single most impor-
tant factor in improving the predictive power of the regression model was the
inclusion of interaction terms to reflect the combined effect of the predictors
(metabolite concentrations and reaction fluxes) together with the dichotomous
variable created to distinguish between aerobic and anaerobic conditions, that
were not included in the automated algorithmic approach. The lesson here is
that one should not overlook the importance of the preliminary data analysis in
helping shape the approach toward predictive model building.
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Table 2. Comparing the sum of aerobic single conditions with pair of conditions.

Condition 1 Condition 2 Condition 1+2 Paired value Biomass total Increase %

Name Biomass Name Biomass

Ethanol 0.70 Glutamine 1.16 1.86 1.97 0.104 5.6%

Ethanol 0.70 Fumarate 0.79 1.49 1.58 0.097 6.5%

Ethanol 0.70 Malate 0.79 1.49 1.58 0.097 6.5%

Fructose 1.79 Glutamine 1.16 2.95 3.05 0.096 3.2%

Glucose 1.79 Glutamine 1.16 2.95 3.05 0.096 3.2%

Ethanol 0.70 Glutamate 1.24 1.94 2.04 0.096 4.9%

Glutamine 1.16 Lactate 0.74 1.90 2.00 0.092 4.9%

Ethanol 0.70 Auccinate 0.84 1.54 1.63 0.092 5.9%

Acetaldehyde 0.61 Glutamine 1.16 1.77 1.86 0.091 5.1%

Fructose 1.79 Glutamate 1.24 3.03 3.12 0.090 3.0%

Glucose 1.79 Glutamate 1.24 3.03 3.12 0.090 3.0%

Acetaldehyde 0.61 Fumarate 0.79 1.39 1.48 0.090 6.5%

Acetaldehyde 0.61 Malate 0.79 1.39 1.48 0.090 6.5%

Acetaldehyde 0.61 Glutamate 1.24 1.85 1.94 0.090 4.8%

Acetaldehyde 0.61 Auccinate 0.84 1.45 1.53 0.087 6.0%

Glutamate 1.24 Lactate 0.74 1.98 2.07 0.085 4.3%

Ethanol 0.70 Fructose 1.79 2.49 2.57 0.083 3.3%

Ethanol 0.70 Glucose 1.79 2.49 2.57 0.083 3.3%

Fructose 1.79 fumarate 0.79 2.58 2.66 0.083 3.2%

Fructose 1.79 Malate 0.79 2.58 2.66 0.083 3.2%

Table 3. FBA values for anaerobic paired conditions.

Acetaldehyde paired with FBA value for paired condition

Fumarate 0.145

Malate 0.145

Lactate 0.117

2-oxoglutarate 0.068

Glutamate 0.045

Glutamine 0.040

All other conditions <0.01

Elements of the automated approach involving automated feature selection
and regression model building did however help to improve the final stepwise
regression model, see Eq. (1), with an adjusted r-squared of 0.98.

Interpretation of the biomass proxy. The methodology that we employed to
derive the biomass proxy – incorporating regression analysis and machine learn-
ing – was by its very nature designed to derive a robust and accurate proxy along
the lines of Occam’s razor, without overt regard to biological interpretation.
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Fig. 5. Cross-validation output for the final regression model. Small symbols show
predicted values; large symbols represent actuals. The 10 dashed lines relate to the
best fit line for the respective folds.

Our starting point was an FBA model, lacking appropriate kinetic data.
Thus, to be able to demonstrate our approach, we assumed mass-action rates
with uniform kinetic parameters for all reactions. Our workflow embodies a gen-
eral approach which works for any kinetic parameters; their choice, however,
may influence the final outcome of the derived proxy function. Also note that
the result obtained is not unique, because there are many highly correlated
variables—some were even perfectly correlated, given that they had Pearson cor-
relation coefficients of 1. The representative for an equivalence class of pairwise
highly correlated variables (above an appropriate threshold) is selected according
to predictive power and collinearity.

In other words, our function given in Eq. (1) is inherently not explanatory,
but mimics the calculation flux value of the FBA biomass function (given in
Table 4 in the Supplementary Materials). Moreover, the proxy function is not
a pseudo-reaction in the way that the FBA one is, but is merely a function
over a subset of the observables, both metabolite concentrations and reaction
rates. It is for this reason that a mere syntactic comparison between the two
is not meaningful, along the lines of comparing apples and pears, and it is the
predictive power of the proxy which is of interest.

Reproducibility. Supplementary Materials can be found on our website http://
www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Examples, where we pro-
vide the original SBML model and its Snoopy version in ANDL format, which can
be easily configured and simulated for the various growth conditions using the
script provided. All the data analytics methods used are well recognised. Please

http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Examples
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Examples
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also note, only public tools were used; thus all results presented are reproducible.
Further data is also available in the form of additional tables and figures.

6 Conclusions

The research reported here describes a workflow to derive a dynamic biomass
function which acts as a robust and accurate proxy for the FBA equivalent. The
application of the method was illustrated for a reduced GEM for E. coli. Data
generated by stochastic simulation for growth under a wide variety of conditions
was used to develop a proxy function to predict biomass in the dynamic model,
using data analytics techniques. This involved consolidating data for reactions
and metabolites generated under dynamic simulation with gold standard target
data for biomass generated under steady state analysis using a state of the art
FBA solver.

The complexity generated by the large number of potential predictors
(metabolites and reactions) was addressed through correlation and clustering
analysis. In addition, the limited number of conditions in the initial dataset led to
the need to generate more data using pairs of conditions. This not only improved
the regression model by allowing for the inclusion of more predictors without the
risk of overfitting, but led to a number of interesting insights regarding biomass
for pairs of conditions. Namely, that pairs of aerobic conditions always have a
biomass value that is between 1% and 7% larger than the sum of the two single
conditions. In addition, it was shown that acetaldehyde, which does not produce
biomass anaerobically as a single condition, produced biomass when paired with
a number of other conditions that do not produce biomass anaerobically. These
findings were faithfully reproduced in our dynamic proxy function.

Our workflow operates with any sets of kinetic data [7], and the biomass proxy
results may be refined as more precise kinetic parameters become available.

Outlook. In further work we want to semi-automate the workflow developed and
apply it to unreduced GEMs. Because of our unexpected finding that regression
out-performs machine learning, we also plan to modify the algorithmic machine
learning approach in such a way that we incorporate interactive terms that
combine the effect of the predictors together with the dichotomous variables
which distinguish between aerobic and anaerobic environments.

We also intend to investigate whether the biomass proxy function will cor-
rectly predict biomass in transient states before a steady state is reached. This
would permit us to explore the effects of dynamic changes in growth conditions –
for example during the process whereby a carbon source is gradually exhausted,
or the availability of carbon sources in the environment fluctuates up and down,
or the oxygen available is gradually used up. It would also be interesting to inves-
tigate how an active biomass function could be included in a dynamic model
in order to retain its recycling properties as well as the draining of biomass
components, possibly by decomposition into parts, or by employing non-mass
action kinetics. This would enable us to investigate the dynamic evolution of the
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biomass function, i.e. to analyse more realistically at what time points the sys-
tem becomes biologically non-viable under certain conditions. This would allow
us to address the interpretation of the proxy function compared with the re-
engineered biomass function in the context of the simulation of dynamic GEMs,
i.e. whether the proxy function derived by regression analysis and machine learn-
ing can be not only predictive but also explanatory with regard to the behaviour
of large-scale metabolism.
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or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.
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