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INFORMATION-ENTROPY-BASED
DNS TUNNEL PREDICTION

Irvin Homem, Panagiotis Papapetrou and Spyridon Dosis

Abstract DNS tunneling techniques are often used for malicious purposes. Net-
work security mechanisms have struggled to detect DNS tunneling. Net-
work forensic analysis has been proposed as a solution, but it is slow,
invasive and tedious as network forensic analysis tools struggle to deal
with undocumented and new network tunneling techniques.

This chapter presents a method for supporting forensic analysis by
automating the inference of tunneled protocols. The internal packet
structure of DNS tunneling techniques is analyzed and the information
entropy of various network protocols and their DNS tunneled equiva-
lents are characterized. This provides the basis for a protocol prediction
method that uses entropy distribution averaging. Experiments demon-
strate that the method has a prediction accuracy of 75%. The method
also preserves privacy because it only computes the information entropy
and does not parse the actual tunneled content.
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1. Introduction
Recent years have seen an increase in the use of DNS tunneling to

stealthily perpetrate malicious activities such as exfiltrating sensitive
data, hiding network attacks and orchestrating malware activities via
botnet communications [23]. Several strains of malware such as the
Morto worm [18] and Feederbot [9], and variants of point-of-sale mal-
ware such as BernhardPOS and FrameworkPOS [22] demonstrate the
increased popularity of DNS tunneling to implement stealthy communi-
cations. The availability of DNS tunneling tools, such as NSTX, Iodine,
dnscat, DeNiSe, OzymanDNS and Heyoka [19], have also enhanced the
popularity and uptake of DNS tunneling.
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Preventive measures are unable to curtail these activities [22]. DNS
tunneling detection mechanisms have been developed [6, 7], but they
discover only 3% of attacks in sophisticated real-world cases [22]. Re-
search has focused on improving the detection of tunneling [13, 14], but
despite these efforts, network breaches that leverage tunneling are on
the increase [18, 22].

Reactive security mechanisms such as network security monitoring
and network forensic analysis techniques offer some promise. However,
the techniques are often manual and labor intensive [8]. The techniques
also require considerable expertise and are very time-consuming, tak-
ing up to seven months [17, 22]. Furthermore, available network foren-
sic analysis tools only parse standardized network protocols; previously
unseen or undocumented protocols commonly used in DNS tunneling
require manual dissection [8]. New and innovative methods are sorely
needed to alleviate these challenges and speed up the forensic analysis
of tunneled network traffic.

The primary goals of network forensic analysis of tunneled networked
traffic are to identify the carrier tunneling protocol, the internally tun-
neled protocol, the communicating parties, the content being tunneled
and its significance. This work assumes that the identification of DNS
tunneling has already been accomplished using, for example, the meth-
ods described in [6, 13]. Thus, the focus is on the next important task –
the discovery of the network protocol being carried inside a DNS tunnel.

Little, if any, work has focused on the forensic analysis of DNS tun-
neling techniques. Also, no work has been done on identifying tunneled
network protocols. To address this gap, this research has sought to
develop a prediction mechanism that probabilistically identifies the net-
work protocols carried in DNS tunnels. The hypothesis is that a network
protocol exhibits a unique entropy distribution in its byte content dur-
ing normal use. Furthermore, a network protocol carried in a tunneling
mechanism maintains some similarity to its original byte entropy distri-
bution. This enables the probabilistic matching of DNS tunneled traffic
to a particular protocol with reasonable accuracy.

This research is limited to identifying the HTTP and FTP protocols
when tunneled individually by a single DNS tunneling tool. The identi-
fication of the IP addresses of the communicating parties and the exact
content transmitted in the messages of an internally-tunneled protocol
are topics for future work. For simplicity, the focus is on the popular
Iodine DNS tunneling tool, although the proposed approach could be
applied to tools that use other DNS tunneling methods. Multilevel nest-
ing of tunneled protocols is not considered, nor are encrypted protocols
carried in tunneling protocols or tunneling protocols that use encryp-
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tion, such as IPSec, SSH and SSL. The reason is that encryption makes
information entropy uniform per block or per stream, rendering different
portions of a message indistinguishable from each other. In any case,
these are all interesting topics for future work.

The proposed method is implemented in a network protocol prediction
tool. Experiments with the tool yield promising results with a prediction
accuracy of 75%. Given the large volumes of network traffic captures
encountered in digital investigations, the protocol prediction tool can
help speed up the triage process as well as the analysis of network traf-
fic. Specifically, a forensic analyst could identify network flows where
a certain suspect protocol may be present in the network traffic, but is
hidden by DNS tunneling. The tool also preserves privacy because it
does not parse actual content; rather, it only computes the information
entropy of a specific field in a packet.

2. Background and Related Work
Relatively few studies have sought to determine the protocols carried

within a tunneling protocol. Bernaille and Teixeira [3] have classified the
traffic of protocols tunneled over SSL using only the sizes of the first few
packets of an SSL session. Their approach differentiates SSL traffic from
normal traffic and uses a clustering mechanism based on Gaussian mix-
ture models to distinguish between several protocols (HTTP, FTP, Bit-
Torrent, edonkey, SMTP and POP3) tunneled over SSL. Dusi et al. [10]
have employed statistical analysis of packet sizes and inter-arrival times
to fingerprint normal SSH usage and when SSH is used for tunneling
other protocols. Dusi et al. [11] subsequently extended their approach
to distinguish HTTP tunneling traffic from normal HTTP traffic and
to predict the presence of plaintext protocols such as POP3, SMTP,
Chat and P2P in SSH and HTTP tunnels. Alshammari and Zincir-
Heywood [2] have used Adaboost, C4.5 and genetic-programming-based
classifiers to distinguish Skype and SSH traffic from other traffic, and to
identify the type of application traffic (Shell, SFTP, SCP, local/remote
forwarding or X11) in SSH tunnels.

Other researchers have focused on identifying proprietary protocols
such as Skype and Spotify in other network traffic [1, 4, 15]. Song et
al. [20] have extracted exact keystrokes from encrypted live SSH shell
sessions, demonstrating the inference of content in tunnels.

Most studies on DNS tunneling have focused on detection. Born and
Gustafson [6] have developed an n-gram character frequency analysis
method for identifying domain names typical of DNS tunneling traffic.
Xu et al. [23] have presented an anomaly detection method that contrasts
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the statistical and information-theoretic properties of payload content in
normal DNS traffic from those of DNS tunneled traffic. Farnham [13]
discusses several DNS tunneling tools and detection heuristics, including
DNS request and response sizes, domain name entropy, use of uncommon
resource records, volume of DNS requests per IP address or per domain,
number of sub-domains per domain and presence of large numbers of
orphaned DNS requests.

Davidoff and Ham [8] have developed initial methods for manually dis-
assembling DNS tunneling traffic to recover the internally-carried pro-
tocols and data. However, no studies have focused on the automated
prediction of network protocols carried in DNS tunneling traffic for the
benefit of forensic analysis, which is the principal thrust of the research
described in this chapter.

3. DNS Tunnel Internals and Dataset Collection
The flexibility of the DNS protocol enables DNS tunneling tools to

leverage a number of techniques [5]. Many tools append data as a sub-
domain in the name field of queries, but they vary in their ease of use,
throughput and invisibility to security mechanisms. For example, the
dns2tcp tool uses TXT records, Iodine uses NULL records and DNScat
uses CNAME records. Iodine and Heyoka use EDNS(0) extensions to
increase throughput [5].

3.1 Tunneling with Iodine
The research described in this chapter employs the Iodine DNS (IP-

over-DNS) tunneling tool due to its popularity, ease of use and avail-
ability of documentation [8]. Iodine encapsulates IPv4 packets in the
payloads of DNS packets. By default, it uses NULL resource records,
but it can also use other resource records such as PRIVATE, TXT, SRV,
MX, CNAME and A. The query/answer name field in the resource record
in use holds the encapsulated data.

Upstream data is compressed with GZIP and encoded. Encoding
options include Base32, Base64 (or Base64u) and Base128. This is de-
termined by checking for character set support at intermediate DNS
servers. Downstream data is compressed with GZIP and encoded, as in
the case of upstream data [12]. When encoding is applied, the down-
stream header is prepended with an ASCII character that signifies the
encoding type that is used.

Tunneled data in the name field consists of a header and the fragment
of the packet being tunneled, prepended as a sub-domain of the tunneling
server. The header preceding the tunneled data contains metadata such
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as the user ID, codecs in use (Base32/64/128), fragment size, fragment
number, sequence number, whether compression is used and a cache miss
counter [12].

3.2 DNS Tunneling Setup and Dataset Capture
No well-known DNS tunneling network traffic captures are available

and it is difficult to obtain network traffic captures involving malicious
DNS activity [21]. As a result, a DNS tunnel was set up using the Iodine
tool to create the experimental dataset.

The DNS tunneled traffic dataset was created by simulating the use
of HTTP and FTP protocols, each in its own DNS tunnel. HTTP traf-
fic over DNS was generated by performing simple web requests to eight
websites, allowing for additional requests for extra content (images, CSS,
JavaScript, Ads) to continue. The FTP protocol was simulated by down-
loading several files that were placed on an FTP server prior to the ex-
periments. To ensure variation, the downloaded files were of different
types, including image, PDF, text, audio, video and ZIP files. Twelve
files were downloaded in all and stored at different paths on the FTP
server.

The dataset comprised a total of 20 DNS tunneled traffic samples.
Eight were HTTP communications, one for each of the eight websites.
The other twelve were FTP communications involving logins, directory
traversals and individual file downloads.

The control dataset for comparison of the tunneled network protocols
against their plain versions was created by simulating normal HTTP
web traffic and normal FTP traffic. The HTTP traffic was generated by
visiting a randomly-chosen website with substantial content to be loaded.
Normal FTP traffic was generated by logging into an FTP server and
sequentially downloading three files. Multiple files were chosen due to
the terse nature of FTP protocol commands.

4. Protocol Feature Trends and Analysis
The proposed method for network protocol prediction identifies pat-

terns based on features found in plain protocol traffic that can be mapped
to equivalent features in DNS tunneled traffic. Several features could be
chosen to characterize the differences between protocols and the simi-
larities across the plain and tunneled protocol versions; these include
byte frequencies, information entropy and packet lengths. However, the
proposed method employs information entropy analysis because it is in-
herently tied to the actual data bytes in packets. The idea is to observe
normal HTTP and FTP traffic, and to compare the traffic against their
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DNS tunneled equivalents that have been fragmented, encoded and com-
pressed in the tunneling process.

4.1 Experimenting with Information Entropy
Measurements may be made at different levels of abstraction of a net-

work packet to characterize its features: (i) IP packet level; (ii) transport
level; and (iii) application level. Differences also can be identified be-
tween protocol client requests and server responses. HTTP and FTP
have relatively small vocabularies of commands and content that go into
requests, but their responses could include large amounts of data with
considerable variation. Therefore, the focus is only on requests whose
content and variation are more predictable and likely more significant
for comparisons.

Information entropy is a measure of the variations of the components
that make up a message. The proposed method computes the entropy
of the bytes that make up a packet layer or field value as follows:

H(X) = −
n∑

i=1

p(xi) log p(xi) (1)

where p(xi) is the probability of a particular byte occurrence and n is
the number of byte occurrences.

The hypothesis underlying the use of entropy is that the request pack-
ets in a protocol flow have a specific entropy distribution. The hypothesis
was tested by creating a simple Python program using the Scapy and
Matplotlib libraries to measure information entropy and plot charts for
visual analysis of the distribution trends.

4.2 Comparison of Plain and Tunneled Protocols
Figures 1(a) and 1(b) show the entropy distributions of application

layer requests for plain HTTP and plain FTP network traffic, respec-
tively. The traffic was filtered by taking only the packets containing
application layer content and destined to port 80 and port 21 for HTTP
and FTP, respectively. Thus, no transport layer features were present
and no ACKs were observed because ACKs do not have any application
layer content.

Figures 2(a) and 2(b) show the entropy distributions at the IP packet
level for plain HTTP and FTP traffic, respectively. The traffic was fil-
tered at a more granular level in that all the IP traffic from the client
was captured. The packet entropy distributions contain packets with
application data and packets with transport layer ACKs because HTTP



Homem, Papapetrou & Dosis 133

(a) HTTP requests. (b) FTP requests.

Figure 1. Application layer entropy of plain protocols.

(a) HTTP source IP address traffic. (b) FTP source IP address traffic.

Figure 2. IP layer entropy of plain protocols.

and FTP both use TCP for the transport layer. The client ACKs ac-
knowledge the receipt of prior server S-ACKs that originated from the
delivery of requests to the server.

Figures 3(a) and 3(b) show the entropy distributions of HTTP-over-
DNS traffic and FTP-over-DNS traffic, respectively. Specifically, the
figures show the entropy of the query name field for DNS requests des-
tined for DNS port 53. Because the filtering was based on the client
side traffic destined for port 53, it includes tunneled application proto-
col request packets as well as those embodying transport layer properties
(e.g., ACKs, sequencing and reliability information). Filtering was per-
formed in this manner because no established methods exist for parsing
and differentiating between application layer data and data from other
layers of DNS tunneled traffic. Privacy was preserved because computa-
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(a) HTTP-over-DNS requests. (b) FTP-over-DNS requests.

Figure 3. DNS request query name field entropy of tunneled protocols.

tions were performed over the packet content to generate metadata (i.e.,
entropy) without necessarily making sense of the actual content.

In the case of Base128 encoded traffic (default used by Iodine), the
theoretical maximum entropy for completely random data tends towards
eight bits. The distributions in Figures 1 through 3 show discernible
variations between the protocols as well as between different layers of
abstraction. The distributions are not uniformly distributed at the eight-
bit value, demonstrating an absence of absolute randomness. The dis-
tributions also have different patterns that may indicate the presence of
specific network protocols.

The HTTP application layer traffic entropy values in Figures 1(a) and
1(b) are significantly denser than those for FTP traffic. The FTP traffic
has application layer packet entropy values around 4.5 and other values
around 2.5 whereas the HTTP application layer traffic has most of its
entropy values between 5.4 and 5.6.

In Figures 2(a) and 2(b), the density of packets appears to be less for
FTP traffic than for HTTP traffic. There are three bands of clusters for
HTTP traffic, with the densest band having entropy values between 4.9
and 5.3; the other two bands are around 4.6 and 5.8. FTP traffic has
a single dense cluster of entropy values around the 4.8 mark. However,
one could argue for the presence of two very sparse clusters around the
5.4 and 4.5 entropy values. These sparse clusters may be significant
when one looks across the sequence of packets, where the hypothesized
variations in entropy away from the 4.8 mark correspond to the FTP
requests that initiated downloads of the three files.

Figures 3(a) and 3(b) reveal some clustering of the entropy values for
HTTP-over-DNS traffic and FTP-over-DNS traffic, respectively. The
HTTP-over-DNS traffic in Figure 3(a) appears to have three cluster
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bands – the densest band is around 5.6 and 5.8, the next less dense
band is around 6.5 and the least dense band is in the 3.8 to 4.0 entropy
range. The FTP-over-DNS traffic in Figure 3(b) has two main clusters
of entropy values – one band is in the 5.6 to 5.8 range and the other is
in the 3.8 to 4.0 range.

Shorter message sizes and smaller alphabets produce lower entropy
values [3]. In the case of tunneled traffic with a fixed Base128 encoding,
two types of traffic could have lower entropy values due to their shorter
packet lengths. One is the ACKs from the transport layer and the other
is the short query request messages (ping traffic) sent by a DNS tunneling
tool to prevent DNS servers from timing out.

It can be postulated that the bands in Figures 3(a) and 3(b) around
the 4.0 mark correspond to the entropy values of the pings because they
are shorter (less than 30 bytes) than those of ACKs (at least 40 bytes)
when seen in a manual DNS tunneling disassembly. This is reinforced
by the fact that they are less dense in the HTTP traffic because an
HTTP request can spawn several other HTTP requests to retrieve more
content in order to load websites properly. These HTTP requests keep
the connection between the DNS tunneling client and tunneling server
open, resulting in fewer pings being generated for time-out prevention.

The bands in the 5.6 to 5.8 range for tunneled HTTP traffic and tun-
neled FTP traffic in Figures 3(a) and 3(b), respectively, likely correspond
to ACKs in the transport layer. This inference is made primarily be-
cause the HTTP-over-DNS traffic has another band with higher entropy
that likely corresponds to HTTP requests, which have higher entropy
values because they are the longest messages. Also, the small repetitive
pattern seen in the first 200 packets in Figure 3(b) appears to correspond
to the downloading of the three files, implying that the band around the
4.0 mark contains FTP request packets hidden in the same cluster as
the pings. This is reinforced by the fact that FTP commands in FTP
requests are terse and have a fixed structure. This would contribute to a
lower entropy than for the HTTP requests, which have a larger request
header set and many more fields.

The clustering of different types of packets based on the effects that
their content and lengths have on entropy implies that inherent distribu-
tions exist that can help distinguish between DNS tunneled traffic that
contains different protocols. The different average values of the bands
suggests that the average entropy of tunneled network traffic can help
distinguish between internally-tunneled protocols. The next section dis-
cusses protocol prediction experiments that explore whether these trends
and mean entropy values can identify internally-tunneled protocols.
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5. Protocol Prediction Experiments
The dataset containing 20 test traffic captures and two ground truth

captures was used to determine the similarities between the entropy
distributions (variables) of plain network traffic of a particular protocol
and its equivalent DNS tunneled versions. A simple similarity metric
based on the averages of the distributions (variables) was employed.
This metric is referred to as “MeanDiff,” which is the shortened form of
“Mean Differences.” It is computed as the absolute difference between
the means of the two variables:

m(X,Y ) = |μX − μY | (2)

where the variable X corresponds to the entropy values of the ground
truth protocol packet capture over time, and variable Y corresponds to
the entropy values of a specific tunneled test capture.

5.1 Results
A classifier tool was written to evaluate the suitability of the Mean-

Diff similarity metric for predicting the underlying protocol in a DNS
tunneled network traffic capture. The classifier scripts are available at
a GitHub repository [16].

The tool takes two ground truth traffic captures, one containing plain
HTTP traffic and the other containing plain FTP traffic. It computes
the entropy values of each packet in a capture stream at the IP packet
level, generating two entropy distributions, one for HTTP traffic and the
other for FTP traffic.

The tool then accepts a DNS tunneled traffic capture with an unknown
internally-tunneled protocol. It performs random sampling by selecting
a consecutive series of entropy values from the DNS tunneling capture.
The random sample series length is set at 90% of the length of the
ground truth capture used for comparison. One thousand samples are
taken and the MeanDiff metric is calculated for each sample against the
respective HTTP and FTP entropy distributions. An average of the
1,000 rounds is then taken as the MeanDiff score against the respective
ground truth entropy distributions (HTTP and FTP) for a given DNS
tunneled sample. This score is used as the basis for prediction, where
MeanDiff is the distance metric. The ground truth protocol with the
smallest MeanDiff score is deemed to be closest to the test DNS tunneled
traffic sample. This ground truth protocol is the predicted internally-
carried protocol.
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Table 1. Sample run results.

No. DNS Tunneled Sample True Value MeanDiff Prediction

1 [amazon] HTTP HTTP
2 [bbc] HTTP HTTP
3 [craigslist] HTTP FTP
4 [dsv.su.se] HTTP HTTP
5 [en.wikipedia] HTTP HTTP
6 [facebook] HTTP HTTP
7 [google] HTTP FTP
8 [youtube] HTTP FTP
9 [audio-wav] FTP HTTP
10 [audio-mp3] FTP HTTP
11 [img-jpg1] FTP FTP
12 [img-jpg2] FTP FTP
13 [img-png1] FTP FTP
14 [img-png2] FTP FTP
15 [pdf1] FTP FTP
16 [pdf2] FTP FTP
17 [txt1] FTP FTP
18 [txt2] FTP FTP
19 [video] FTP FTP
20 [zipfile] FTP FTP

5.2 Discussion
The classifier tool was applied to the dataset. Table 1 shows the actual

and predicted protocols in a sample run. The MeanDiff metric yields
a prediction accuracy of approximately 75%. Subsequent runs yielded
70% to 80% prediction accuracy, demonstrating the promise of the pro-
posed approach for predicting DNS tunneled protocols. Note that five
of the eight HTTP-over-DNS test samples were classified correctly, cor-
responding to a 62.5% recall (true positive) rate. Also, ten of the twelve
FTP-over-DNS test samples were classified correctly, corresponding to
an 83.3% recall.

The confusion matrix in Table 2 summarizes the classifier perfor-
mance. The misclassification rate is 25%. The precision is 71.4% for
HTTP and 76.9% for FTP. The false positive rate is 37.5% for the HTTP
class and 16.7% for the FTP class. These results demonstrate the effec-
tiveness of the method for predicting the underlying network protocols
in DNS tunnels.
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Table 2. Classifier performance confusion matrix.

Predicted

N = 20 HTTP FTP Total

Actual
HTTP 5 3 8

FTP 2 10 12

Total 7 13 20

6. Conclusions
This research has taken on the challenging task of predicting the appli-

cation protocols tunneled in DNS traffic. The exploration of the internal
structure of DNS tunneling techniques contributed to the use of entropy
distributions of packet bytes in a method for characterizing and predict-
ing internally-tunneled protocols. Packet traces were visualized in order
to identify patterns arising from various protocol packets due to their
content and function. A classifier tool was developed and applied to a
dataset of DNS tunneled traffic to evaluate the approach. Protocol clas-
sification based on entropy value averages yielded a prediction accuracy
of 75%, indicating that the method holds promise.

DNS tunneling is increasingly leveraged in security breaches and other
criminal activities. The proposed method assists forensic analysts in
triaging and identifying DNS tunneling network traffic that may contain
protocols of interest, enabling them to focus on specific DNS tunnel flows
instead of having to analyze all the DNS tunneled traffic. The proposed
method also preserves privacy because it only computes the information
entropy and does not scrutinize the contents of packets. This is an
important feature that enables the method to adhere to privacy laws
that limit the invasive nature of forensic investigations.

This research is just the first foray into the relatively unexplored field
of DNS tunneled traffic forensics. Although the 75% prediction accu-
racy obtained in the experiments is quite good, certain improvements
can be made to improve the performance. One approach is to incor-
porate features in addition to information entropy in tunneled protocol
classification; these features include packet lengths, inter-arrival times
and character n-grams. A wider analysis of DNS tunneling techniques
and candidate internally-tunneled protocols would help identify the best
set of features for classification. Other statistical metrics that offer fine-
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grained differentiation of protocols should also be explored. Finally,
machine learning and data mining techniques should be leveraged to
improve protocol classification. For example, current research is employ-
ing dynamic time warping in time series analysis for robust matching of
plain protocols against their DNS tunneled variants.
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