
Supporting SOA Resilience in Virtual
Enterprises

Roque O. Bezerra1(&), Ricardo J. Rabelo1, and Maiara H. Cancian2

1 Department of Automation and Systems Engineering,
Federal University of Santa Catarina, Florianopolis, SC, Brazil

{roque.bezera,ricardo.rabelo}@ufsc.br
2 Estácio Florianopolis, Rodovia SC401 Km 01, Florianopolis, SC, Brazil

maiara.cancian@estacio.br

Abstract. Computing systems are essential nowadays for the execution of
companies’ business processes and should keep operating permanently. Modern
approaches, as Service Oriented Architecture (SOA), have been gradually
adopted by companies to implement their systems. This paper exploits a Virtual
Enterprise (VE) scenario where its members’ systems are available as services
and are selected to support the VE operation itself. Regarding VE properties and
inspired in the autonomic computing paradigm, a resilience architecture and
system have been designed and implemented to help VE’s supporting system to
recover from services’ faults, respecting the business processes’ QoS in place.
Results are presented and discussed in the end.

Keywords: Reference business processes � Service Oriented Architecture
Resilience � Fault tolerance � Virtual Enterprises

1 Introduction

Computing systems have become essential for the execution of companies’ business
processes. As such, keep them permanently operating is one of their major concerns
[1]. SOA (Service Oriented Architecture) has been increasingly adopted by SMEs to
foster newer business models, based on larger scale provision and offering of software
services that are distributed over the Internet and that can be accessed on demand, from
everywhere, anytime from pervasive providers from digital ecosystems [2].

This paper deals with Virtual Enterprises (VE). One of VE’s properties refers that
its members share resources and working principles as well as they have enough IT
preparedness to participate in VEs. In this sense, this work exploits the scenario where
VE members can share their software services assets, and a SOA/services-based and
cross-boundary system is temporarily and dynamically created to support the execution
of the VE’s business processes throughout the VE life cycle [3].

This created system is therefore composed of (loose-coupling) services from the
currently VE members and, eventually, also from their IT supporting business partners,
creating a large-scale distributed system. In this scenario, several faults (e.g. services
unavailability) can happen during the system execution so causing problems in the VE
and related businesses if proper measures are not applied [4].

© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
L. M. Camarinha-Matos et al. (Eds.): PRO-VE 2018, IFIP AICT 534, pp. 111–123, 2018.
https://doi.org/10.1007/978-3-319-99127-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99127-6_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99127-6_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99127-6_10&domain=pdf

This paper addresses this issue from the IT resilience perspective. IT resilience
generally refers to guaranteeing the operation of the system under control and its
recovery in the presence of faults or high degradation within acceptable costs [5].

VEs bring up additional resilience requirements and research opportunities
regarding their collaborative, dynamic and open natures. However, it hasn’t been
tackled much in specific in the literature. Despite the complexity of the problem, most
of the evaluated works on SOA resilience doesn´t consider much the intrinsic VE
dynamics in terms of members composition, and they usually assume a too simplistic
IT reality of SOA problems when applied in real business cases [1, 6].

This paper presents a resilience architecture and supporting system to deal with the
VE scenario where a heterogeneous SOA-based system should remain operating when
the involved services have problems or the VE’s composition change (hence the
respective services should be replaced as well). It is an ongoing work and has been
developed under the action-research methodology.

This article is organized as following. Section 1 has introduced the problem and the
objectives of the work. Section 2 summarizes the requirements of a resilience archi-
tecture for SOA in VEs. Section 3 presents the proposed architecture. Section 4
describes the prototype and the achieved results. Section 5 presents some preliminary
conclusions and the next main steps of this work.

2 Literature Review and VE Resilience Aspects

Resilience and fault tolerance terms are sometimes used as synonyms or just used
differently depending on the scientific ‘community’. Some authors, like [7, 8], take
resilience as a wider perspective for systems reliability. They consider that fault tol-
erance term is more appropriate to be used in the cases where faults treatment is
handled at system’s design, while resilience would be more suitable in more flexible,
open, dynamic, evolving and less prescriptive architectures, which is the case of the
proposed work in this paper. Adaptive fault tolerance is another term found out in the
literature and it seems equivalent to resilience [7].

After an extensive review on theoretical foundations of collaborative networks and
VEs as well as of computing resilience and fault tolerance, a number of aspects were
identified as important to be taken into account when a resilience architecture/system is
going to be developed for dealing with VE.

A systematic literature review (SLR) [9] was done upon five international scientific
repositories looking for works combining the areas of SOA/services, resilience/fault
tolerance and VE (and its other equivalent terms). Almost three thousand papers were
found out in the search, and 27 were preliminary selected. Due to space limitation to
mention them in the references, only the nine taken as the most relevant ones (for the
purpose of this work) are listed.

Table 1 summarizes these works against the identified VE-related aspects as well as
highlights the envisaged contribution of this work. By “supported” it is meant at least
some level of guarantee. By “not (yet) supported” it is meant that the given feature is
not currently supported but it is planned to be in the next version of the work. By “not
supported” that the given feature is not anyhow supported in this proposal.

112 R. O. Bezerra et al.

Table 1. Summary of the literature review

VE-related aspect Works [10–18] Proposed work

1. Newcomers can join a VE and current
members can leave it during its
execution. This means that the
composed SOA/services-based
supporting system should be also
dynamically recomposed accordingly in
order to keep the VE operating
gracefully

−Most of them support dynamic
discovery and re-composition

Supported

−These works only consider previously
defined alternative services, and a
discovery and execution in local & intra-
enterprise environments

Supported

−None works consider the dynamics
and scalability of members’ composition

Supported

−Only one work considers the dynamics
and scalability of existing services
provision

Supported

2. VE members are independent
companies and usually adopt different
models in their BP modeling, impacting
the services’ functional requirements
and the way SOA layer interacts with
the Business and Infrastructure layers
This relates to very well defined scope of
responsibilities (and hence the actions) of
each layer

−Only one work offers some level of
integration with the Business layer

Supported

−All works support integration with the
Infrastructure layer

Supported

−Only four works adopt standard BP
models, but none of them make use of
this to facilitate services discovery and
interop

Supported

3. VE members implement their services
in different technologies, IT standards &
patterns, security mechanisms,
granularities, deployed in different
servers, and registered using different
signatures and repositories. The
effective system (re)composition and
execution require syntactic or semantic
interoperability mediation

−Most of works assume a homogeneous
environment, basically composed of
web services, XML and SOAP

Not
(yet) supported

−Only three works use some mediation
(via ESB [Enterprise Service Bus]) to
support larger interoperability

Supported

−Only two works offer some security
support

Not Supported

4. Companies (and so their services) can
be linked to several VEs simultaneously
in their different stages, meaning that a
given service can have several
instances/tenants in execution
responding to different VEs’ QoS
metrics and multiple SLAs

−Most of works deal with end-to-end
QoS

Supported

−Three works also monitor and handle
temporal restrictions of the individual
services

supported

−None works support multi-tenancy Not supported

5. Companies’ services are in theory
permanently running. However, services
can become unavailable or fail during
different VE phases: before getting
bound to given VEs; before being
invoked by a given VE’s business
processes (BP); and during their
execution in given VEs

−All works checks services only in the
execution phase

Supported

(continued)

Supporting SOA Resilience in Virtual Enterprises 113

Table 1. (continued)

VE-related aspect Works [10–18] Proposed work

6. Each business a VE is related to can
have different priorities (i.e. weights) in
terms of the most critical QoS metrics to
pursuit, impacting the general costs and
hence the feasibility of the resilience
policy in place

−Only four works support some level of
parametrization, weighting or
prioritization

Supported

7. The access to VE members’ services
should follow the VE governance model
and possibly the gov model of the long-
term alliance the members belong to

−Not supported Not supported

8. The general computing infrastructure
to support the execution of the VE
resilience system should ideally be
deployed in servers that are not
dependent of any given VE member as it
can leave the VE anytime. The own
resilience system should ideally be
resilient in order to mitigate its complete
fail in the case of problems

−All works have developed centralized
architectures/systems to handle
resilience

Supported

−All works do not support self-
resilience

Not
(yet) supported

9. The VE’s legal obligations only end
after all the contracted aspects have been
fulfilled. This means that the VE
members’ services should be kept
‘connected’ even after the final
‘product’ (which originated the creation
of a VE) has been delivered

−Not supported Not supported

10. The replacement of a given VE
member (and its services) by another
members (and its services) should
consider implementation issues, like the
service’s components lock-in and
business duties. Yet, the creation of
services’ replicas may imply replicating
other components as well (e.g. a
database)

−Not supported. Not
(yet) supported

11. VE members are dealing with real
businesses, carried out collaboratively
and in a distributed way. Resilience
supporting systems should ideally act
pro-actively close to the involved
members’ services in order to prevent
the VE from generally failing because
given members’ services have got down

−Half of works do it pro-actively Supported

114 R. O. Bezerra et al.

3 The Proposed SOA-Based Resilience Architecture
and System

This section presents the proposed resilience architecture for VEs.
Considering (i) this is an ongoing work; (ii) the complexity of some aspects related

to VE resilience (Table 1); and (iii) that some of them involve issues that are not even
totally or well solved in the distributed systems area; the proposed architecture showed
in this paper has been designed to handle (at different levels of depth) only the aspects
pointed out in Table 1.

3.1 The Resilience Architecture’s Rationale

A number of general design principles have been considered in the architecture:

(a) All VE members belong to a long-term collaborative alliance of type VBE
(Virtual organization Breeding Environment), which is grounded on trust and
members’ autonomy, and whose members intrinsically have the willingness to
collaborate and share resources [4]. This means that, as a general rule, their
services can be made available to be accessed by other VBE members and hence
VEs [6]. This assumption relies on the fact that any VBE member must respect a
number of common principles of work and introduce them in their companies so
that their general differences get hidden to other companies. This all refers to the
so called members’ preparedness [4].

(b) IT preparedness is one of the pre-conditions for a company to be member of a
VBE and VE [4]. This means that their services and computing infrastructure
should be previously prepared (at several levels) and duly wrapped so as to be also
used by other client systems, including the resilience system. This, however, does
not mean forcing all companies to adopt the same IT or standards, although this
actually happens in plenty of cases in real life SMEs when integrating with larger
enterprises.

(c) When a given company leaves a VE its services keep available to be accessed by
the resilience system so as to replace problematic services, regarding the col-
laborative nature of VBEs (as in [6]). However, their effective use depends on
BP’s activities restrictions and/or technological factors;

(d) The architecture separates the whole resilience actions into three inter-dependent
actors (‘responsibility’ layers, as in [18]), relating to the model, runtime and
deployment views: (1) the planning layer (as a BPM-like environment, where
business processes and activities are defined and services are discovered and
bound to); (2) the SOA/services layer (where services are deployed, made
available, also discovered and executed); and (3) the middleware/operating system
layer (responsible to support the execution and communication of all services –
and of the own resilience system). A number of assumptions are taken within each
layer. One of the most important ones is the adoption of a given reference model
for BP modeling (as a VBE/VE common neutral model for internal interopera-
tion), based on which all VBE members would have their services developed

Supporting SOA Resilience in Virtual Enterprises 115

according to, although implemented in different technologies, semantics and
granularities, as in [19];

(e) The resilience actions can require human intervention (e.g. QoS relaxation) in the
case of unsolvable situations so as to keep the VE operating (as in [6]);

(f) The resilience architecture/system has to be decentralized and distributed so as to
prevent central points of faults, as in [8];

(g) Each new system’s reconfiguration/re-composition has a cost, which should be
measured and evaluated before being set up, as in [16].

In this current version of the prototype only services’ faults are treated. No services’
degradation analysis is performed.

Five types of general faults can be treated by a resilience system for SOA-based
systems [14]: publication, discovery, composition, binding, and execution. A number of
very concrete faults are associated to each one. Publication and Binding faults are
actually not considered as necessary to be treated in the proposed architecture. It is
assumed that publication-related faults (e.g. wrong publication, wrong interface and
lookup faults) are resolved at VBE level when every company properly register its
services in their repositories and make them available in the VBE’s services federation.
In terms of binding, it is assumed that the related faults (wrong binding, binding denied
and access denied) are resolved at BPM level when the BPMN and BPEL process are
generated, and that services are ‘naturally’ available as their owners belong to the given
VE and VBE (or to their IT business partners).

In terms of Discovery and Composition, the faults to be treated by the resilience
system [14] refer to services inexistence, services unavailability, services inadequacy
(e.g. inadequate QoS) and discovery fail. This can happen when services are being
bound to BPs’ activities. In terms of Execution faults, these three faults can also happen
when services are going to be invoked by the BPEL process and when services get
crashed. Yet, as the resilience system also monitors the BPEL process another possible
fault is the BPEL process crash.

Two other SOA-related faults [14] are treated in other layers: the reserved com-
munication port fault, which is not up to the SOA layer/resilience system to solve as
ports are automatically defined by the infrastructure and middleware layer/systems. The
incorrect result fault is resolved by the high-level applications, which understand the
business logic associated to the BPs’ activities.

3.2 The Architecture

The architecture has been devised to support both VE-related aspects (Table 1) and the
core design principles, previously described. In order to facilitate its explanation and
due to space restrictions, only a general description will be provided, besides mixing
some general aspects of implementation and execution.

IT resilience can be addressed from different approaches. Regarding that the desired
resilience architecture should monitor its own state and adapt itself in the presence of
faults, the autonomic computing approach has been chosen. The self-inspection and
self-adaptation techniques [20] are used to implement that.

116 R. O. Bezerra et al.

The architecture is designed to cope with the discovery, composition and execution
faults applying two approaches: services replaceability (replacement of the faulty
service by an equivalent one [10]) and services provision and migration (creation of
replicas or dynamic migration of the faulty service to other servers [20]).

The architecture is organized into three layers regarding their role (Fig. 1). Their
components work in two different moments: when the VE is being created (Project
Phase) and when the supporting service-based system is composed and set up; and
when it is executed (Execution Phase). The resilience system will then take care of this
VE system.

Project Phase:
A VE is created after some steps [4], including the one where the so-called VE’s
coordinator indicates, in the planning/BPM layer, the actual BPs each VE member will
be responsible for. In the implemented prototype, the open standard UBL BP Reference
Model [21] has been adopted regarding its target on supply chains. Each of its 68 BPs
has a number of pre-defined activities and documents to be exchanged between
members. As services are dynamically discovered and bound to the involved BPs’
activities, only a functional reference of the required services are provided, as in [22].
This provides higher flexibility to the resilience system in its search for equivalent
services when it decides to replace the unavailable ones. The VE coordinator’s business
analyst also specifies the non-functional requirements (as QoS attributes) for each BP’s
activity, which are used by the resilience system both to control the time constraints of
each BP’s activity and the BP’s end-to-end QoS, as in [6]. All this has been developed
using the Eclipse and IBM Websphere’s APIs.

Fig. 1. The proposed architecture and resilience phases

Supporting SOA Resilience in Virtual Enterprises 117

Once the VE’s services are finally discovered and bound, a BPEL (BP Execution
Language) file is generated as the result of the VE planning, previously modeled (in
BPMN). This BPEL is deployed as a SOA application and put into the execution
environment (a BPEL engine based on the Apache ODE). This is done interacting with
the supporting infrastructure (via a REST API and Docker) and deploying the required
services: the execution environment, the involved VE members’ services and the own
resilience services-based system. Each deployed service may have different numbers of
replicas (not implemented yet in this prototype). The replication level and deployment
policies can be defined by IT analysts, meaning that the resilience “level” of the own
resilience system can be configured.

Execution Phase:
In this phase the services-based system generated to support the VE’s BP execution
starts to run in the sense that the involved VE members’ services are invoked by the
BPEL process. The resilience system supervises the BPEL process (in the SOA layer,
mainly for trying to guarantee the end-to-end QoS) as well as the involved services (in
the infrastructure layer, for trying to keep up the VE operating).

The resilience system does not take care of its own resilience at all. Its modules are
implemented as threads and communicate with each other using synchronized queues
coded in Java. The communication with the other modules uses the SOAP protocol
(point-to-point) and the Apache ActiveMQ (JMS publish-subscribe communication
middleware). However, the BPEL engine is also replicated and its state is synchronized
(using the Infinispan framework). This is part of the self-resilience strategy of the
model as another replica can assume the execution of the process in the case a given
one gets unavailable, making the resilience system more reliable.

The resilience system has been designed to perform the following main activities,
which are based on the MAPE-K [23] reference autonomic computing model: it
monitors the “system” (the BPEL process and services); it analyses the system entities’
status; it plans actions in the case of services faults; and it executes actions to keep the
VE operating. The knowledge part (to be used by the resilience system to evolve) is not
supported in the current prototype.

Services availability is monitored using endpoint monitoring via heartbeat requests/
“ping” [24], using two techniques: a fail fast every 500 ms to check if services are
listening to their ports and, complementarily, a timeout of 1000 ms [25].

The resilience system performs an ‘expansion cycle’ of services discovery (and
further composition and binding) during its execution in the case a given service has a
problem: it starts by searching for a new service in the respective VE member’s
repository. If no equivalent service is discovered then the search is expanded to the
other VE’s members. It ends with a wider search in the VBE’s and IT business
partners’ repositories (i.e. the services replaceability approach). In the case no services
are found out then the system will try to deploy the faulty service in another (previously
defined) computing infrastructure (i.e. the services provision approach).

An ESB (Camel ESB) is used as a complementary entity to help in the services
binding and mediation avoiding point-to-point and tight-coupling communication. It
pro-actively checks if the invoked services keep being available and responding to the
required QoS, and sends this information to the monitoring module. The ESB is kept

118 R. O. Bezerra et al.

permanently updated when new services are bound to given BPs or when members
composition change. Besides that, in spite of the implemented prototype has only
considered WS-* services, the use of the ESB allows supporting “any” other services’
implementation technologies.

4 Results

This section presents the VE scenario and computing prototype implemented in a
controlled environment to quantitatively assess the proposed resilience architecture.

This scenario refers to a hypothetic customer who asks for a given product close to
a given VBE’s company. This product is basically composed of three parts, being one
part produced by this company. This company then triggers the process of VE creation,
ending up by forming the following VE: this company (‘Partner 1’) is the VE Coor-
dinator and interacts with the customer; and ‘Partner 2’ and ‘Partner 3’, which man-
ufacture the other two product’s parts. These two partners should send their parts
directly to Partner 1 once they have been finished for the final product assembly.

This VE’s plan is showed in the Fig. 2, which is the graphical representation of the
BPEL file generated from the respective BPM/BPMN modeling. This plan reflects the
standard flow of activities specified in the UBL process ‘Ordering Process’.

It was simulated a scenario where 100 customer orders arrives to the VE and then
the resilience system should try to keep the supporting VE system running and
attending the BP’s end-to-end QoS in the presence of several services’ faults.

Due to space restrictions only the discovery and execution faults will be showed in
this section, i.e. it is assumed that binding faults (in the BPEL file) will not happen,
although being supported by the developed resilience system.

Fig. 2. The business process scenario and related BPEL file

Supporting SOA Resilience in Virtual Enterprises 119

A number of performance indicators would have to be used to measure the many
aspects of resilience in the implemented model. Considering the goals of the current
stage of the work, two reference performance indicators [26] are so far used to measure
the “quality” of the resilience system: the “resilience time” (the time spent to recover
from a local fault without violating the global end-to-end QoS, including all the
communication, latency and processing times – ‘reaction time’ in Fig. 3, line “ ”); and
“End-to-End violation” (the number of times and process’ instances the end-to-end
QoS has been violated - ‘process instance duration’ in Fig. 3, line “ ”).

In this sense, there are three possible ending situations for each VE’s customer
order: (i) the VE has operated without any end-to-end QoS violation; (ii) the VE has
operated within an acceptable number (to be determined by the VBE board or the VE
members) of end-to-end QoS violations; and (iii) the VE could not operate as properly
due to severe problems in its supporting services.

These situations are actually related to the VE-related aspect 11 (Sect. 2), as the
ultimate goal of the resilience system is to “guarantee” that the VE keeps operating and
respecting the required end-to-end QoS.

In the implemented scenario each VE member has five available services func-
tionally equivalent to execute each of the standard BP’s activities. This means that any
of them can be used by the resilience system to automatically replace a faulty service.
The services unavailability is randomly set up in the prototype. The replacement
strategy is performed via the ‘expansion cycle’, as previously explained.

The end-to-end QoS value for the UBL process ‘Ordering Process’ was set up as
8 s (line “ ” in Fig. 3), so it should be observed by the resilience system when
summing the individual response times of all the involved services (line “ ”). The
y axis represents the time, whereas the x axis represents the VE’ instance. Y axis is also

Fig. 3. Experimental results

120 R. O. Bezerra et al.

used to represent the number of services replacements (shaded bars - ‘reconfiguration
count’) necessary to recover from services unavailability in the 100 VE’s instances.

One thousand services were deployed in the so-called VBE’s services federation,
being their signatures and QoS attributes also randomly generated when registered.
Their response time was randomly assigned with a sleeping time when services are
invoked. The computing infrastructure was deployed in three distributed Intel servers in
a link of 100 Mbps and a mean latency time of 2 ms.

The resilience system starts monitoring the involved services as soon as the VE is
created and services are bound to its BPs. In this experiment, the (simulated) faults start
to happen from instance 7 on, when services get unavailable. The resilience system
then performs its ‘expansion cycle’. The shaded bars indicate the number of services
replacement per BP’s composition per VE’s instance.

The process’ instance duration (line “ ”) is quite variable. This is due both to the
natural variability of services availability/re-composition time and to the variable
execution flows of the BP activities (Fig. 2).

The ‘deployment duration’ (line “ ”) shows when the services provision strat-
egy steps in after all the attempts to search for a substitute service in the ‘expansion
cycle’ have failed (discovery fault), which took 6.000 ms. This provision took about
2.500 ms to be executed. However, it is necessary to wait for the services initiation in
the server and for the re-composition completion. Summing all the other related actions
this ended up taking about 20.000 ms, which violates the required global QoS.

As a final average, the resilience system could maintain the VE operating well in
93% of its instances, which can be considered as quite acceptable in general terms.

In terms of computational complexity, the main variables involved in the system
execution (e.g. number of services and number of instances) had a linear complexity,
which seems to be also quite reasonable for a VE scenario.

This prototype and achieved results tried to show at which extent the VE-related
aspects 1-2-3-4-5-6-8-11 listed in Table 1 (Sect. 2) were somehow supported.

5 Final Considerations

This paper has presented preliminary results of an ongoing research that, at last, aims at
conceiving and implementing an autonomic resilience architecture and system to
sustain the Virtual Enterprise (VE) operation in the presence of diverse faults in its
SOA/services-based supporting systems.

A core assumption of this architecture is that VE members all belong to a long-term
business alliance grounded on trust, collaboration and resources sharing, including
software assets. IT preparedness is one of the pre-conditions for a company to be
member of a VBE and VE, being its systems properly wrapped as services. Therefore,
the VE supporting system is formed by a composition of members’ services involved in
the diverse business processes related to the given VE’ business and it is the one that
the resilience system supervises.

VE brings up a number of particular requirements to be supported when compared
to a resilience system for “any” distributed system. The devised architecture has been
designed to cope with most of them although adopting some assumptions. Issues that

Supporting SOA Resilience in Virtual Enterprises 121

are not supported by the architecture and system were also identified, to be highlighted
security, governance and the Knowledge part of the MAPE-K model.

A system prototype was implemented and assessed using open source tools and IT
standards, in a controlled environment. Three types of services faults were tested. In
general, it can be said that the system showed a good potential to support resilience
actions within feasible costs as well as in terms of computing complexity.

The mean result of 93% of recovery could be actually better. The simulated
environment has actually “forced” each service to get unavailable many times during
the VE’s instances execution, which is not realistic in minimally robust infrastructures.
This number also shows the importance of a resilience system for VEs. Almost all VE
instances would have had problems to keep operating within the required QoS level if
the diverse detected services’ faults were not properly treated.

Next main steps of this research include: the consideration of services degradation
faults; a self-resilience model; the implementation of services in multiple technologies
and protocols; and a support for stateful services’ replicas, which brings tough issues to
be coped with in terms of services coordination and of evolution of system’s state.

References

1. Rabelo, R.J., Baldo, F., Alves-Junior, O.C., Dihlmann, C.: Virtual enterprises: strengthening
SMES competitiveness via flexible businesses alliances. In: North, K., Varvakis, G. (eds.)
Competitive Strategies for Small and Medium Enterprises, pp. 255–272. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-27303-7_18

2. Brzeziński, J., et al.: Dependability infrastructure for SOA applications. In: Ambroszkiewicz,
S., Brzeziński, J., Cellary, W., Grzech, A., Zieliński, K. (eds.) Advanced SOA Tools and
Applications. Studies in Computational Intelligence, vol. 499, pp. 203–260. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-38957-3_5

3. Bezerra, R.O., Cancian, M.H., Rabelo, R.J.: Enhancing network collaboration in SOA
services composition via standard business processes catalogues. In: Camarinha-Matos, L.
M., Afsarmanesh, H., Fornasiero, R. (eds.) PRO-VE 2017. IAICT, vol. 506, pp. 421–431.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65151-4_38

4. Afsarmanesh, H., Camarinha-Matos, L.M., Ermilova, E.: VBE Reference Framework. In:
Camarinha-Matos, L.M., Afsarmanesh, H., Ollus, M. (eds.) Methods and Tools for
Collaborative Networked Organizations, pp. 35–68. Springer, Boston (2008). https://doi.org/
10.1007/978-0-387-79424-2_2

5. Annarelli, A., Nonino, F.: Strategic and operational management of organizational
resilience: current state of research and future directions. Omega 62, 1–18 (2015)

6. Vernadat, F.B.: Technical, semantic and organizational issues of enterprise interoperability
and networking. IFAC Proc. 42(4), 728–733 (2009)

7. Strigini, L.: Fault tolerance and resilience: meanings, measures and assessment. In: Wolter,
K., Avritzer, A., Vieira, M., van Moorsel, A. (eds.) Resilience Assessment and Evaluation of
Computing Systems, pp. 3–24. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-29032-9_1

8. Banatre, M., Pataricza, A., Moorsel, A., Palanque, P., Strigini, L.: From Resilience-Building
to Resilience-Scaling Technologies: Directions - ReSIST NoE Deliverable D13. Technical
reports (2007). http://hdl.handle.net/10451/14107

122 R. O. Bezerra et al.

http://dx.doi.org/10.1007/978-3-319-27303-7_18
http://dx.doi.org/10.1007/978-3-642-38957-3_5
http://dx.doi.org/10.1007/978-3-319-65151-4_38
http://dx.doi.org/10.1007/978-0-387-79424-2_2
http://dx.doi.org/10.1007/978-0-387-79424-2_2
http://dx.doi.org/10.1007/978-3-642-29032-9_1
http://dx.doi.org/10.1007/978-3-642-29032-9_1
http://hdl.handle.net/10451/14107

9. Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature Reviews in
Software Engineering. Technical report EBSE-2007-01 (2007). https://www.elsevier.com/__
data/promis_misc/525444systematicreviewsguide.pdf

10. Cardellini, V., et al.: MOSES: a framework for QoS driven runtime adaptation of service-
oriented systems. Softw. Eng. 38(5), 1138–1159 (2012)

11. He, Q., et al.: Localizing runtime anomalies in service-oriented systems. IEEE Trans. Serv.
Comput. 10(1), 94–106 (2017)

12. Weidong, W., Liqiang, W., Wei, L.: A resilient framework for fault handling in web service
oriented systems. In: IEEE International Conference Web Services (2015)

13. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dynamic
QoS management and optimization in service-based systems. IEEE Trans. Softw. Eng.
37(3), 387–409 (2011)

14. Ardagna, D., Baresi, L., Comai, S., Comuzzi, M.: A service-based framework for flexible
business processes. IEEE Softw. 28(2), 61–67 (2011)

15. Menascé, D., Gomaa, H., Malek, S., Sousa, J.: SASSY: a framework for self-architecting
service-oriented systems. IEEE Softw. 28(6), 78–85 (2011)

16. Stein, S., Payne, T.R., Jennings, N.R.: Robust execution of service workflows using
redundancy and advance reservations. IEEE Trans. Serv. Comput. 4(2), 125–139 (2011)

17. Hummer, W., Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: VRESCo – vienna
runtime environment for service-oriented computing. Service Engineering, pp. 299–324.
Springer, Vienna (2011). https://doi.org/10.1007/978-3-7091-0415-6_11

18. Friedrich, G., Fugini, M.G., Mussi, E.: Exception handling for repair in service-based
processes. IEEE Trans. Softw. Eng. 36(2), 198–215 (2010)

19. Schratzenstaller, W.M.K., Baldo, F., Rabelo, R.J.: Semantic integration via enterprise
service bus in virtual organization breeding environments. In: Nguyen, N.T., Trawiński, B.,
Fujita, H., Hong, T.-P. (eds.) ACIIDS 2016. LNCS (LNAI), vol. 9622, pp. 544–553.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49390-8_53

20. Pääkkönen, P., Pakkala, D.: Mechanism and architecture for the migration of service
implementation during traffic peaks. Serv. Oriented Comput. Appl. 9(2), 193–209 (2015)

21. OASIS.: Universal Business Language Version (UBL) 2.1. 2013 (2016). http://docs.oasis-
open.org/ubl/UBL-2.1.html

22. de Souza, A.P., Rabelo, R.J.: A dynamic services discovery model for better leveraging
BPM and SOA integration. Int. J. Inf. Syst. Serv. Sect. (IJISSS) 7(1), 1–21 (2015)

23. Kephart, J.O., Chess, D.: Dm.: the vision of autonomic computing. Computer 36(1), 41–50
(2003)

24. Homer, A., Sharp, J., Brader, L., Narumoto, M.: Cloud design patterns: prescriptive
architecture guidance for cloud applications. Microsoft Pattern Pract. 238 (2014)

25. Nygard, M.T.: Release it!: design and deploy production-ready software. In: Raleigh, N.C.
(ed.) Pragmatic Bookshelf (2007)

26. Liu, D., Deters, R., Zhang, W.J.: Architectural design for resilience. Enterp. Inf. Syst. 4(2),
137–152 (2010)

Supporting SOA Resilience in Virtual Enterprises 123

https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
http://dx.doi.org/10.1007/978-3-7091-0415-6_11
http://dx.doi.org/10.1007/978-3-662-49390-8_53
http://docs.oasis-open.org/ubl/UBL-2.1.html
http://docs.oasis-open.org/ubl/UBL-2.1.html

	Supporting SOA Resilience in Virtual Enterprises
	Abstract
	1 Introduction
	2 Literature Review and VE Resilience Aspects
	3 The Proposed SOA-Based Resilience Architecture and System
	3.1 The Resilience Architecture’s Rationale
	3.2 The Architecture

	4 Results
	5 Final Considerations
	References

