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CHAPTER 5

Achieving Data Synergy: The Socio-Technical 
Process of Handling Data

Sarah Higginson, Marina Topouzi, Carlos Andrade-
Cabrera, Ciara O’Dwyer, Sarah Darby, and Donal Finn

Abstract  Good quality research depends on good quality data. In multi-
disciplinary projects with quantitative and qualitative data, it can be difficult 
to collect data and share it between partners with diverse backgrounds in a 
timely and useful way, limiting the ability of different disciplines to collabo-
rate. This chapter will explore two examples of the impact of data collection 
and sharing on analysis in a recent Horizon 2020 project, RealValue. The 
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main insight is that it is not only projects but also the processes within them 
such as data collection, sharing and analysis that are socio-technical. We 
shall examine two examples within the project—validating the models and 
triangulating the qualitative data—to examine data synergy across four 
dimensions: time (synchronising activities), people (managing and coordi-
nating actors), technology (in this case focusing mainly on connectivity) and 
quality. Recommendations include developing a data protocol for the 
energy demand community built on these four dimensions.

Keywords  Data collection and sharing methods • Socio-technical • 
Multidisciplinary • Energy demand • Demand response • Smart grid

5.1    Introduction

A large number of field trials have attempted to understand energy use in 
buildings (e.g. Economidou et  al. 2011; Jones et  al. 2013; TSB 2014; 
Guerra-Santin et  al. 2013; Gupta and Kapsali 2015). Nevertheless, the 
number of studies with complete monitoring equally capturing building 
data, technologies and people is limited, a fact recognised by the Buildings 
Performance Institute Europe (BPIE) as limiting the impact of this research 
on European policy (Economidou et al. 2011). Notwithstanding their size, 
samples and research scope, many studies experience similar pitfalls in their 
data collection processes. Despite recognition of the need to combine mul-
tiple methods to understand the multidimensional socio-technical issues 
(Topouzi et al. 2016) and ongoing recognition of the ontological and lan-
guage challenges of multidisciplinary work (Mallaband et al. 2017; Robison 
and Foulds 2017; Sovacool et al. 2015), there is less focus on the challenge 
of data collection and the implementation of these methodologies.

This chapter reflects on the socio-technical nature of data collection 
and sharing in multi-partner multidisciplinary1 projects: not just the fact 
that different types of data need to be collected and analysed but the 
expectations different disciplines have of data2 and the different skills they 
bring to the analysis. Recognising this and planning accordingly increases 
the chances of high-quality, useful data being used in collaborative ways in 
complex consortia. We suggest four dimensions to achieving data synergy3 
in such contexts: synchronising data processes in time, coordinating the 
people involved both logistically and in terms of their skills and expecta-
tions, recognising the multiplicity of issues affecting both social and tech-
nical data collection and paying attention to data quality.
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Although the chapter will use examples from RealValue4 (see Fig. 5.1), 
the issues discussed are common to most multidisciplinary projects with 
multiple actors. The chapter will use two illustrative examples. The first 
examines attempts to validate bottom-up models of energy demand using 

RealValue was a 3 year demonstration project (2015-2018) exploring the potential of Demand Response (DR) 
through the installation of Smart Electric Thermal Storage (SETS) space- and water-heating systems in several 
hundred properties (domestic and non-domestic) across trial sites in Ireland, Germany and Latvia. Whereas 
previously, storage heating typically only charged up overnight, the aim was to demonstrate how smart 
electric storage and water heating might support the functioning of the grid through Demand Response (DR) 
if it was able to switch on or off at any time (provided customers’ needs were being met) in order to match 
demand with available supply.

The project involved a multidisciplinary group of energy modellers, social scientists, manufacturers, 
engineers, software designers, network operators and the electricity supply industry and was divided into 
two strands: on-the-ground implementation, which collected data in properties, and a modelling component 
based on archetypal data and validated by trial data. Both strands started in parallel straight away. These 
fitted together as outlined in the diagram below, which shows the interrelationship between the two strands 
(to be achieved through data sharing); the importance of timing (given the need to synchronise the strands 
to produce deliverables within the project time-frame); and the difference between the original plan of the 
project and what actually happened (which is discussed in more detail later). This is a fairly standard project 
framework but has inherent difficulties built into the data collection process, which is what this paper 
addresses.
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Fig. 5.1  Project description, design (top flowchart) and implementation (bottom 
flowchart)
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trial data collected during the project. The second explores efforts to tri-
angulate the qualitative data collected on customers, using monitoring 
data from the heating and hot water appliances fitted in their homes.

The chapter will start by introducing the background context of the 
project, move on to discussing the four dimensions of data synergy and 
finish with some recommendations for achieving data synergy.

5.2    Background Context

In order to later appreciate the data requirements of each project strand, 
it is necessary to describe them briefly.

5.2.1    Modelling

The plan for the modelling work was to integrate a building energy model 
(BEM) into power system models in order to assess the potential system 
value of deploying smart electric thermal storage (SETS) and then to vali-
date them using trial data.

A BEM is a physics-based simulation of building energy use. Inputs into 
the model include physical characteristics such as building geometry, con-
struction materials, lighting, HVAC5 and so on (Negendahl 2015; Clarke 
and Hensen 2015). The model also needs information about building use, 
occupancy and indoor temperature. A BEM program combines these 
inputs with information about local weather to calculate thermal loads and 
energy requirements, the electricity grid’s response to those loads and 
resulting energy use. Such models are used by building professionals and 
researchers to evaluate the energy performance of buildings for applica-
tions like building design, retrofit decision-making, LEED certification6 
and urban planning. Bottom-up models of demand are based on uncertain 
assumptions (McKenna et al. 2017). To help deal with some of these, the 
models were initially calibrated based on ‘archetypal’ data from national 
databases to allow time to run the simulations required by the project 
(Andrade-Cabrera et al. 2016). Originally, there was a plan to use trial data 
at a later stage, to validate the models and recalibrate them if necessary.

5.2.2    Customer Impact Assessment

In parallel with the modelling work, customers were recruited for the live 
trial and had a combination of technologies installed in their homes, an 
experience captured in the Customer Impact Assessment (Darby et  al. 
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2018). The technologies installed included heaters and/or hot water cyl-
inders, an internet connection if not already present, a gateway to link the 
appliances to the cloud (where demand response (DR7) would be facili-
tated), interval meters and, in a sample of homes, additional sensors (occu-
pancy and temperature) and smart plugs8. Each home was therefore a 
source of multiple data points, for assessing the potential for DR and other 
research purposes.

The social scientists also collected data, including surveys before and 
after the installation of the technology and at the end of the project, in-
home interviews, observations and photographs in a subset of properties 
and interviews with other project actors (installers, project delivery coor-
dinators, manufacturers, etc.) on their interactions with customers. The 
objectives were to understand the impact of the installed technologies and, 
eventually, DR, on customers, and to assess necessary conditions for a 
good customer experience and DR participation. Five conditions emerged: 
comfort, control, cost, care and connectivity.

Both the technical and social data were meant to facilitate multidis-
ciplinary collaboration. Interesting data from the implementation phase 
included indoor and outdoor temperature, occupancy, building fabric, 
energy consumption (ideally, with heating consumption disaggregated) 
and customer data held by other partners, like billing, call centre data 
and DR performance data. The quantitative data from the technologies 
installed in homes was to be used to triangulate the qualitative data.

5.3    The Processes of Collecting, Sharing 
and Analysing Data Are Socio-technical

Based on the social and technical contexts just described, researchers 
took the view that this was a socio-technical project (Foulds and 
Robison 2017). Following Powells et al. (2014) who argue that elec-
tricity ‘load’ is  not an isolated physical phenomenon but also repre-
sents activities and social practices, we recognised that the technology 
and its users were inextricably interlinked and that, therefore, multiple 
disciplinary methods were necessary. Table  5.1 summarises the data 
collected.

It also became clear that the processes of collecting, sharing and analys-
ing data were socio-technical, no matter whether the data being collected 
was qualitative or quantitative and irrespective of the use to which it was 
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Table 5.1  Summary of data collected

Data Significance for energy (heating) 
outcomes

Collection methods

Demographics Age, gender, occupation, education 
and income level may have an 
influence on energy use for heating 
(Wilson and Dowlatabadi 2007)

Some data held by energy 
company, survey, in-home 
interviews/observationa

Practices Achieving thermal comfort is not 
just a matter of an insulated building 
or efficient heating technologies but 
also includes skills, meanings and 
activities (Gram-Hanssen 2013)

Survey, in-home interviews/
observation,a photographs,a 
installer stories,a customer call 
records,a appliance monitoring 
data (room temperature, comfort 
settings, boost activity)

Occupancy The number of people in a house 
and when they are at home—the 
assumption in occupancy models is 
that this is when they use most 
energy for heating (Richardson 
2008; Guerra-Santin and Silvester 
2017)9

Survey, charging schedules of 
appliances, interval meters, 
movement sensorsa

Consumption How much electricity is used by the 
home—as the heating is electric, 
disaggregated data is important

Survey, billing data, interval 
metres (for disaggregated data), 
smart plugs (for particular items)

Building The size, fabric, age and type of 
building are key indicators of its 
energy performance (Gram-Hanssen 
2013)

Survey, technical survey, 
observation,a photographsa

Temperature How warm the home is—also a 
defining indicator of energy use 
(Peeters et al. 2009)

Core temperature of appliance, 
appliance sensor, in-home 
interviews/focus groups,a 
observation,a room temperature 
sensorsa

Cost How much customers were spending 
on their energy consumption and 
whether this had increased or 
decreased—ideally a mixture of 
perceptual and measured data10

Survey, in-home interviews/
focus groups,a bills, actual cost 
(inserted by agent in final survey)

Appliance 
monitoring 
data

Data from heaters (and cylinders) Thermostatic set point 
temperature, room temperature, 
charge period, smart electric 
thermal storage (SETS) demand 
request, charge power rate and 
boost function activity

aOnly possible in a subset of properties
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finally put.11 For example, the social scientists collected and shared cus-
tomer satisfaction data with industry partners, building and occupancy 
data with the modelling team and the interview, observation and photo-
graphic data with several partners who were interested in a more in-depth 
insight into their customers, often to improve the technology on offer. In 
return, they hoped to receive more quantitative data such as heating peri-
ods and temperature settings from the SETS, call centre complaints/
inquiries, cost data from the energy providers and consumption data from 
interval meters.

Having discussed the use of the data, we now turn our attention to the 
data itself. There is no space to deal with every data source in turn but, in 
the discussion that follows, we explore more fully the idea that dealing 
with data is socio-technical by focusing on four aspects of the data collec-
tion and sharing process necessary to achieve data synergy.

5.4    Data Synergy

We contend that good data depended on four interlinking dimensions:

•	 Time (synchronising the collection and sharing of data between dif-
ferent parts of the project)

•	 People (coordinating the different actors involved in the collection 
and sharing of data)

•	 Technology (establishing the connectivity between the different 
technologies so that data could be transmitted)

•	 Quality (ensuring data is good enough for the research purpose)

The discussion will examine challenges in relation to these dimensions 
in order to make recommendations for the development of a data protocol 
for appropriate data synergy for use in other multidisciplinary energy 
demand projects.

5.4.1    Time: Synchronisation

Figure 5.2 shows the timing of data collection in the project,12 including 
the winter periods (critical data collection opportunities in a heating 
project), the two strands of the project and the variety of data collection 
methods. It is noteworthy that most data was collected towards the end of 
the project, with a gap in the middle caused by recruitment difficulties.
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Several issues emerged:

1.	 Multiple data collection methods required complex coordination 
with the main implementation phases of the project such as 
recruitment, installation and the three heating seasons, as well as 
maintaining a coherent approach across the three countries.

2.	 As different stages started and finished, the need to facilitate com-
munication among actors across different stages of the process 
became more complicated, and, without a single data person to over-
see this process, the inevitable result was that partners focused more 
on managing their own data and results than on collaboration.

3.	 Collecting the same data at different points in the project neces-
sitated the altering of the data collection tools to reflect the 
changing priorities of partners, resulting in changed metrics in 
some cases, and this compromised the quality of the data and 
made comparisons across countries difficult.

4.	 Timing data collection to happen during the winter season was 
critical, and the ambitious timeframe meant there were only three 
heating seasons in which to test the technology and monitor 
behaviour. The first phase of installations had been done by the 
first heating season, but the connectivity problems discussed 
below meant data was absent or of poor quality. Further, recruit-
ment was then delayed until just before the final heating season, 
so close to the end of the project that it was difficult to process 
data collected when the technologies were at their most reliable.
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5.4.2    People: Coordination

People are a crucial part of collecting data, even when the methods are 
apparently technical. It is worth noting the different roles of people in the 
project, each of whom impacted the data: customers, data collection 
agents, installers, industrial project partners and researchers. The nature of 
this project meant direct access to customers was restricted, and so data 
were generally not collected by researchers. This was problematic because 
those collecting it did not have the skills, training or appreciation of the 
final use of the data to collect it correctly, as they had other priorities.

Previous research (Janda and Parag 2013; Wade et al. 2016) has high-
lighted the influence of different actors in socio-technical processes, and 
this project was a case in point. The otherwise excellent project manage-
ment team had an industry background, and their priority was implemen-
tation rather than research. Thus, ensuring timely deliverables sometimes 
hampered the collection and sharing of research data. Table 5.2 serves to 
highlight the number of different actors involved in the project and con-
sequent complexity of sharing different types of data.

Apart from the logistical challenge of coordinating the data across 
actors, working with multiple partners had other challenges, more widely 
discussed in the literature, such as a lack of shared ontology, vocabulary 
and culture (Hargreaves and Burgess 2009; Longhurst and Chilvers 2012; 
Robison and Foulds 2017; Sovacool et al. 2015). Data sets also had a dif-
ferent meaning for different partners, who brought different skills to the 
analysis and interpreted, and then used, the data differently. This had 
implications for the quality of data they needed and the way in which the 
data was interpreted, both of which are discussed later under data 
quality.

5.4.3    Technology: Connectivity

Given IOT [Internet of Things] is in the news… clean technology, all these 
buzzwords are always being used. But yet, when it comes to the practicali-
ties of doing a project with [hundreds of] houses, it was incredibly 
difficult.

Project delivery coordinator, RealValue project

Good connectivity between the different technologies was essential, 
both for successful DR and to access most of the quantitative data. It is not 
necessary to dwell on the details of these connections (Fig. 5.3), but, in 
essence, it was necessary for the connected appliances to communicate 
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through a gateway to a cloud-based aggregation platform that optimised 
the charging of those appliances according to the customer’s comfort set-
tings, cost algorithms and grid constraints. This was unexpectedly demand-
ing. Unanticipated complications included the need to install internet 
connections, customers turning off one or other technology, power fail-
ures causing the appliances to revert to ‘stand-alone’ mode (i.e. not con-
nected and so no longer transmitting data or available for DR), the need 
to develop interfaces for different technologies to communicate, organisa-
tional firewalls preventing communication, changing communication pro-
tocols necessitating ongoing modifications and a software update that 
disrupted the appliances.

Fig. 5.3  Diagram of the subsystem integration and data flows behind the 
RealValue user interface application. WAN = Wireless Area Network, IoT = 
Internet of Things, SETS = Smart Electric Thermal Storage. Source: RealValue 
project partners, cited in Darby et al. (2018)
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The variety of factors that can influence technical data is noteworthy. 
Spataru and Gauthier (2014) focused explicitly on the performance of 
various indoor environmental sensors for monitoring people and indoor 
temperatures. In addition, there were significant impacts on the research-
ers (for a specific example, see Box 5.1). However, we are more interested 
in the impact.

Box 5.1 Attempts to collect temperature and occupancy data using 
technical and social methods
Temperature and occupancy data were important both to validate 
the models and triangulate the qualitative customer data, and there 
were multiple possible data sources (Table  5.1). The heaters had 
temperature sensors and timing settings, which offered a proxy for 
temperature and occupancy, respectively. However, the temperature 
sensors were on the heaters themselves and so could not measure the 
actual temperature of the room, and heating was often set to come 
on when people were not at home, making both proxies unreliable. 
Besides, data from most heaters was unavailable until much later in 
the project, as described. This meant additional temperature and 
occupancy sensors installed in a subset of homes were important 
both to help calibrate the models with this appliance data and to 
triangulate the customer impact assessment data, but there were two 
significant problems. The first was that most did not transmit data. 
The second was that the location of the sensors was not accurately 
noted by those who installed them, making interpretation of the 
data impossible.

Although the social scientists included occupancy and tempera-
ture questions in the surveys, these were filled in by agents with dif-
ferent objectives, and the data was incomplete and ultimately 
unusable. Follow-up home visits were carried out and did include 
questions and observations on temperature and occupancy that were 
shared with modellers, but it was not possible to visit the homes with 
additional sensors, again because of the need to coordinate with 
other project partners, and so remedying the connectivity issues or 
observing the location of the sensors was impossible. Despite mul-
tiple possible sources, therefore, the final data on temperature and 
occupancy was patchy. This prevented researchers collaborating as 
fully as they might have done otherwise.

  S. HIGGINSON ET AL.



  75

5.4.4    Data Quality: Granularity, Reliability and Project 
Design

During the final heating season, recruitment was completed and attention 
turned to fixing the connectivity issues, with some success: data did 
become available. As partners started to work with it, however, the next 
major issue arose—the quality of the data, a product of the previous three 
sections (Stevenson and Leaman 2010). All sorts of factors had affected 
the data but there are three main points to discuss here.

First, expectations of the granularity (or resolution13), and the dura-
tion of the data, varied depending on the partner and their purpose. So, 
whilst industrial partners needed single 24-hour periods of uninter-
rupted data to run equipment diagnostics, social scientists wanted data 
for participants for whom they had other data (such as surveys or inter-
views), and modellers needed several days of data to help them see pat-
terns but did not mind some gaps, as long as they had an idea of 
occupancy (Fig. 5.4).

Second is the reliability, or consistency, of the data. As noted in Fig. 5.4, 
different methods of collecting apparently the same data yielded different 
results, making methodological transparency and accuracy vital for repli-
cable research. Figure 5.5 demonstrates this from viewpoint of the data. It 
shows two sets of temperature data: one from a SETS temperature sensor, 
the other from an additional temperature sensor (whose location was 
unknown).

Fig. 5.4  Missing days of SETS monitoring data from Irish data sample (n = 357) 
in September 2017
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Based on the midday temperature spikes on the solid line, we could 
speculate that the additional sensor was warmed by the sun. Interestingly, 
the interpretation of what happened on the days without spikes differed 
between modellers and social scientists: the former assuming cloudy 
weather and the latter closed curtains, possibly indicating illness or shift 
work, for example. Without additional data on weather, the aspect of the 
room and occupancy, it is not possible to tell which of these is correct, but 
the different analyses indicate each discipline’s bias.

Still on temperature, the 2–4 °C difference between the two sensors is 
striking.14 As the SETS sensor is on the metallic SETS surface near the 
warm air vent, it might well be warmer than the room. This might help 
explain the high temperature settings seen during the home visits: 24 °C 
at the appliance might translate to 18–20 °C in the room.

Both graphs also show gaps in the data, indicated by straight horizontal 
lines. Strangely, these do not always coincide, suggesting either that they 
were caused by different factors or that there were various combinations 
of factors affecting data quality. Again, without a home visit to verify, the 
cause cannot be known.

Third is the socio-technical project design. What has become clear 
upon examination of the data is that many of the problems related to the 
project design phase of the project. Rather than a socio-technical proj-

Fig. 5.5  Sensor temperature data comparison in a single household in 2018 
(potential misplacement)
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ect design, this was in fact an industry-led technical demonstration project 
with some social inputs, partly leading to the incommensurability of the 
data discussed above. A socio-technical project design should encompass 
three phases: model, design and methods, and analysis, all of which should 
be socio-technical. This should start with a conceptual, theoretical phase 
that considers how the actions and states of people interact with the tech-
nical and physical properties of their environments. It might end with an 
analysis of socio-technical constructs such as a ‘person-space-time mean 
internal temperature’, a measure meant to get closer to the user experi-
ence of temperature in the home (Love and Cooper 2015). The methods 
linking these have yet to be developed, but mobile phones and in-home 
temperature apps might offer some traction (Grunewald 2015).

5.5    Achieving Data Synergy

Epistemological debates run as an undercurrent through all of these issues. 
Fundamentally, the more positivist-grounded technical/monitoring sci-
ences would define quality in very different ways to most critical social 
scientists, who would instead embrace subjectivity, implying that issues of 
‘validation’ and ‘calibration’, in the traditional sense, are backgrounded or 
at least mean something different. Nevertheless, in the context of a repli-
cability crisis in various disciplines, this chapter suggests that data processes 
in the energy demand research community could use improvement.

We have contributed to the conversation about ways in which this 
might happen and will finish with recommendations in each of the four 
dimensions discussed:

•	 Time: Synchronising research rests on critical dependencies, differ-
ent from project management, and requires backup plans to ensure 
quality data, otherwise sometimes constrained by the project plan. 
Also, the duration of heating projects needs to be better aligned with 
their objectives.15

•	 People: The impact of different actors cannot be underestimated. 
Planning and responsive management are essential parts of real-
world project delivery, and we would recommend four coordination 
roles—a project manager, a project delivery coordinator (for practi-
cal project implementation), a data analyst (from the start of the 
project, to organise, hold and facilitate access to a shared set of data) 
and a research coordinator (with a socio-technical background, to 
synchronise the research).
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•	 Technology: Demonstration projects inevitably use novel technolo-
gies and the  difficulty of managing  the interfaces between them 
should be taken into account.

•	 Quality: The use of consistent metrics would allow better compari-
sons across different countries with different languages, contexts, 
technologies and participant groups. Data protocols need to be 
developed to establish conventions for collecting and sharing data, 
both quantitative (e.g. what to capture, how often and where) and 
qualitative (e.g. what scales to use for age, income and cost).

This is not trivial and requires work from researchers and funders. 
However, the reward would be more robust, reliable data; better, more 
policy-relevant outcomes; and more replicable research.
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Notes

1.	 The Oxford Dictionary defines multidisciplinary as ‘Combining or involv-
ing several academic disciplines or professional specializations in an 
approach to a topic or problem’. This fits our purposes in this chapter.

2.	 Such as the need for larger/representative/standardised samples vs. the 
need for depth/bringing out individual differences in the data, for 
example.

3.	 Data synergy is a term coined for this chapter and describes data from 
multiple sources or disciplines that, when combined, is more valuable than 
any of the sources were on their own.

4.	 http://www.realvalueproject.com.
5.	 HVAC (heating, ventilation and air conditioning).
6.	 LEED (Leadership in Energy and Environmental Design) is the most 

widely used green building rating system in the world.
7.	 Demand response seeks to adjust the demand for power instead of adjust-

ing the supply, for the benefit of the grid.
8.	 A plug that provides control of any device plugged into it.
9.	 Though this may not be true where indoor temperatures are kept constant 

using thermostats and where, in fact, people warming the environment 
through their bodies and activities may lessen the need for heating.

10.	 In many countries the weather varies from one year to another, and thus 
the heat demand. In fact, therefore, information on heating costs at stable 
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tariffs in a normal year are required (the effect of price increases and 
weather variations should be discounted).

11.	 Love and Cooper (2015) discuss the need for socio-technical data rather 
than separate streams of social and technical data.

12.	 This is just the timeline for Ireland. Data was also collected in Latvia and 
Germany.

13.	 The number of data points within a particular period for a particular data set.
14.	 Higher variations than this have been recorded. To make some kind of 

judgement here, one needs data from many homes and sensors, but only 5 
of 50 homes installed with additional room temperature sensors provided 
usable data, and even this was not good quality.

15.	 This is out of the control of the project itself but something that should be 
considered by funders.
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