
PwIN – Pwning Intel piN: Why DBI is
Unsuitable for Security Applications

Julian Kirsch(B), Zhechko Zhechev, Bruno Bierbaumer, and Thomas Kittel

Technical University of Munich, Munich, Germany
{kirschju,zhechev,bierbaumer,kittel}@sec.in.tum.de

Abstract. Binary instrumentation is a robust and powerful technique
which facilitates binary code modification of computer programs even
when no source code is available. This is achieved either statically by
rewriting the binary instructions of the program and then executing the
altered program or dynamically, by changing the code at run-time right
before it is executed. The design of most Dynamic Binary Instrumenta-
tion (DBI) frameworks puts emphasis on ease-of-use, portability, and effi-
ciency, offering the possibility to execute inspecting analysis code from an
interpositioned perspective maintaining full access to the instrumented
program. This has established DBI as a powerful tool utilized for analy-
sis tasks such as profiling, performance evaluation, and prototyping.

The interest of employing DBI tools for binary hardening techniques
(e.g. Program Shepherding) and malware analysis is constantly increas-
ing among researchers. However, the usage of DBI for security related
tasks is questionable, as in such scenarios it is important that analysis
code runs isolated from the instrumented program in a stealthy way.

In this paper, we show (1) that a plethora of literature implicitly seems
to assume isolation and stealthiness of DBI frameworks and strongly
challenge these assumptions. We use Intel Pin running on x86-64 Linux
as an example to show that assuming a program is running in context of
a DBI framework (2) the presence thereof can be detected, (3) policies
introduced by binary hardening mechanisms can be subverted, and (4)
otherwise hard-to-exploit bugs can be escalated to full code execution.

Keywords: Dynamic Binary Instrumentation · Intel Pin
Control Flow Integrity · Program shepherding · Malware analysis
Evasive malware · Virtual machine escape · Exploitation

1 Introduction

Malware continues to be a growing cyber security threat even nowadays. In
the early days of the Internet malware was developed for mainly experimental
reasons [26]. However, in recent years we are witnesses of malware utilized for
theft of confidential data, denial-of-service of commercial systems, or even black
mailing and cyber espionage. Industry and academia are constantly striving to
develop countermeasures against these threats in form of advanced malware
c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 363–382, 2018.
https://doi.org/10.1007/978-3-319-99073-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_18&domain=pdf

364 J. Kirsch et al.

detection approaches. However, malware developers continue to become more
creative in their attempt to hinder the analysis of malware samples. Dynamic
Binary Instrumentation (DBI) can help analysts to inspect applications’ char-
acteristics or alter their functionalities even when no source code is available.
Therefore, DBI is easily employed as a malware analysis tool where the existence
of anti-analysis techniques and the absence of source code are very common.

Similarly, computer systems are often subject to external attacks that aim to
gain control over their functionality by leveraging malicious inputs. Such attacks
attempt to trigger existing programming mistakes in software such as memory
corruption bugs to subvert execution. DBI frameworks provide a possibility to
conveniently add new functionalities to existing binaries, thus rendering these
frameworks useful to harden software. One peculiarity, illustrating this approach,
is program shepherding [17] – a technique that involves monitoring of all control
transfers to ensure that each satisfies a given security policy, such as restricted
code origins and controlling return targets. According to the program shepherd-
ing’s paradigms this is possible because the hardened application is executed
in the context of a DBI framework. A typical example of program shepherding
is the implementation of Control Flow Integrity (CFI) policies using DBI to
operate on Commercial Off-The-Shelf (COTS) binaries.

In this work we challenge both scenarios painted above. We argue that the
original intent driving the motivation to build DBI frameworks was the ability
to execute analysis code in a way that interposes execution of the instrumented
program, i.e. analysis code can subscribe to be notified of any occurring event
taking place in context of the instrumented program. Furthermore, an important
design goal of DBI was to equip analysis code with full inspection capabilities
covering the complete architectural state of the target. In practice this is typi-
cally achieved by introducing a single address space for both, analysis code and
instrumented program.

This key observation is the main motivation behind our research. We show
that due to the shared memory model, DBI frameworks in their current state
are inherently incapable of providing neither stealthiness of the analysis code nor
isolation of the analysis code against manipulations of the instrumented target.
In our opinion, this conceptionally renders them unsuitable for malware analysis
and program shepherding.

In a nutshell, this paper makes the following contributions:

Relevance. We identify DBI to be a common instrument for security-related
tasks such as malware analysis and application hardening in literature.

Detectability. We demonstrate that it is trivial for an application to detect
whether it is running in context of a DBI framework, enabling malicious
software to behave in different ways during analysis.

Escapability. We attest that a malicious application can break out of the instru-
mentation engine and execute arbitrary code outside of the DBI framework.

Increased Attack Surface. We argue that counter-intuitively instead of
increasing security by introducing DBI based software hardening measures,
DBI actually decreases the overall security by escalating an otherwise hard-
to-exploit real world bug (CVE-2017-13089) into full code execution.

PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications 365

2 Background and Related Work

In this chapter we discuss background about essential characteristics of DBI in
general, introduce a consistent taxonomy used throughout this work, and discuss
the usage of DBI frameworks for security in academic literature.

2.1 Dynamic Binary Instrumentation

A typical DBI framework consists of three components in a single address space:

1. The compiled target program which functionality should be altered
2. The functionality that is to be added to the target program
3. The DBI platform injecting the additional code into the target binary and

ensuring proper execution.

Implementers typically develop their own analysis plugins which the instru-
mentation platform injects into the binary code of an application (instrumented
application) that should be analyzed. The instrumentation platform exposes
an API that enables the analysis plugin to register callbacks for certain events
happening during the execution of the instrumented application. For example, it
might be desirable for an analysis plugin implementing a shadow stack to receive
a callback whenever the instrumented application tries to execute a call or ret
instruction (interposition). Once the analysis plugin is notified (synchronously)
of the execution of such an instruction, it may now freely inspect or modify all
register and memory contents of the instrumented application (inspection).

2.2 Required Security Properties of Analysis Frameworks

In context of this work, we follow the taxonomy of Garfinkel and Rosenblum [14]
to outline key requirements that any dynamic analysis framework needs to fulfill.
In accordance to this work, we introduce analysis plugin and the instrumentation
platform to form the analyzing system, as opposed to the instrumented applica-
tion which constitutes the analyzed system. Then, the Garfinkel and Rosenblum
taxonomy can be rephrased to DBI tools as follows:

R1 Interposition. The analyzing system can subscribe to and is notified of
certain events within the analyzed system. For DBI this means that the
instrumentation platform stops execution of the instrumented application and
transfers control to the analysis plugin once certain events occur.

R2 Inspection. The analyzing system has access to the full state of the analyzed
system. Thus, the analyzed system is unable to evade analysis. In context of
our work this implies that the analysis plugin can freely access and modify
all memory and register contents of the instrumented application.

R3 Isolation. The analyzed system is unable to tamper with the analyzing sys-
tem or any other analyzed system. This means that the instrumentation plat-
form and analysis plugin have to defend themselves against (malicious) mod-
ifications performed by the instrumented application.

366 J. Kirsch et al.

In addition, researchers realized that dynamic analysis systems suitable to
handle malware also need to operate in a way transparent to the analyzed system.
This has the simple reason that so-called split personality malware might evade
dynamic analysis if it is capable of detecting the analysis environment, as pointed
out by Lengyel et al. [20]:

R4 Stealthiness. The analyzed system is unable to detect if it currently under-
goes analysis. This means that the instrumented application must not be able
to infer the presence of the instrumentation platform.

2.3 DBI Use in Literature

There are numerous examples of DBI utilization not only by the research com-
munity but also in commercial software development.

Binary Analysis. Many researchers develop DBI tools in order to perform anal-
ysis of binaries, e.g. Salwan et al. developed Triton [30], a concolic execution
framework. Clause et al. [9] implement a dynamic taint analysis tool which sup-
ports data-flow and control-flow based tainting using DBI. Other analysis tools
based on Intel Pin include a debugging backend shipped by default with the
Interactive Disassembler (IDA) as well as Lighthouse1, a coverage measurement
tool created to enrich static analysis with dynamic information.

Bug Detection. Even in 2018, vulnerabilities resulting from memory corruption
bugs [25] are still problematic. Many researchers implement vulnerability detec-
tion and prevention tools using DBI to limit the potential damage. This is the
case because DBI provides them the advantage so that custom security code may
be directly executed within the analyzed/hardened program. The Valgrind dis-
tribution includes a lot of profiling and debugging tools, such as Memcheck [22]
which detects memory-management problems, as well as the heap profiler
Massif [24]. Similarly, on the Windows family of Operating Systems (OSs)
Dr. Memory [7] is a memory monitoring tool built on the DynamoRIO frame-
work capable of identifying memory-related programming errors.

Program Shepherding/(CFI). A lot of research is recently conducted regarding
program shepherding and CFI which attempts to restrict the set of possible
control flow transfers to those that are strictly required for correct program
execution [3]. In order to implement this approach, Davi et al. [10] developed a
Pintool that dynamically enforces sanitizing return address checks by employing
a shadow stack at run-time. While the idea of a shadow stack is much older [8,33],
the advantage of this approach was the ease of development of the dynamic
security enforcement tool. A similar approach was chosen by van der Veen et
al. who developed a Linux kernel module and a Dyninst plugin [32] which both
determine and restrict the valid execution paths and thereby ensure correct

1 https://github.com/gaasedelen/lighthouse.

https://github.com/gaasedelen/lighthouse

PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications 367

program execution. Instead of verifying the return address’s validity, Tymburibá
et al. [31] in contrast try to utilize Return-Oriented programming (ROP) gadgets’
characteristics in order to prevent the hijacking of program’s execution flow. In
their Pintool called RipRop they detect unusually high rates of successive indirect
branches during the execution of unusually short basic blocks, which may be an
indication of a undergoing ROP attack. Later, in the same year Follner et al.
present ROPocop [13], another Code-Reuse Attack (CRA) detection framework
targeted at Windows x86 binaries. It combines the idea of Tymburibá et al.
together with a custom shadow stack and a technique which ensures no data
is unintentionally executed. Yet another example of a Pintool utilized in ROP
attack detection was proposed by Elsabagh et al. Their tool EigenROP attempts
to detect anomalies in the execution process [11], due to execution of ROP
gadgets, based on directional statistics and the program’s own characteristics.
Finally, Qiang et al. built a fully context-sensitive CFI tool [28] on top of Pin
that may be used to protect COTS binaries. Among other advantages is that the
tool checks the execution path instead of checking each edge in this execution
path one by one which helps accelerate the process.

Malware Analysis. In addition, many security analysts employ DBI tools to
study and profile malicious programs’ behavior. Both to harden productive appli-
cations as well as to understand and reverse engineer potentially malicious pro-
gram functionality in a sandbox environment. For instance, Gröbert et al. take
advantage of a Pintool to generate execution traces and apply several heuris-
tics to automate the identification of cryptographic primitives [15] in malicious
samples. Kulakov developed a Pintool which performs static malware analysis
in order to generate a loose timeline of the whole execution [19]. Additionally,
he created an IDA plugin for better visualization of the data. Banescu et al. [4]
proposed an empirical framework which is able to behaviorally obfuscate stan-
dard malware binaries. The program’s observable behavior or path is defined by
all internal computations and the sequence of accomplished system calls during
its execution. In order to obfuscate malware samples, Banescu et al. [4] imple-
mented a Pintool which inserts and reorders system calls into the binary without
modifying its functionality but altering its known observable behavior.

Note that for the latter two of these domains, both Isolation and Stealthiness
are a fundamental requirement to provide the proposed security guarantees.

2.4 Scope

To our perception, the most prominent examples of DBI frameworks nowadays
are Intel Pin [21], Dyninst [5], Valgrind [23], DynamoRIO [6] and (more recently)
QBDI [2] and Skorpio [29]. In the following, we focused (almost exclusively) on
Intel Pin version 3.5 in Just-In-Time (JIT) mode on Linux while checking our
results also against other common DBI implementations. We also utilize, as the
time of writing, the latest release of Ubuntu 17.10 (64 bit) so that we can benefit

368 J. Kirsch et al.

Table 1. Description of different DBI detection techniques. An asterisk (*) in the first
column indicates a technique newly discovered during our research. All other techniques
were adopted from their 32 bit versions targeting Windows presented in [12], except
enter which is proposed by Ahmed Bougacha (See Footnote 3).

Technique Type Brief description

envvar EA Checks for Pin specific environment variables on stack

enter CA Checks whether enter instruction is legal and can be
executed

fsbase* CA Checks if fsbase value is the same using rdfsbase and
prctl

jitbr* CO Detects time overhead when a conditional branch is
jitted

jitlib CO Detects JIT compiler overhead when a library is loaded

nx* CA Tries to execute code on a non-executable page

pageperm EA Checks for pages with rwx permissions

mapname EA Checks mapped files’ names for known values (pinbin,
vgpreload)

ripfxsave CA Executes fxsave instruction and checks the saved rip
value

ripsiginfo* CA Causes an int3 and checks the saved rip value in
fpregs

ripsyscall CA Checks whether rip value is saved in rcx after a syscall

smc* CA Check whether the framework detects Self-Modifying
Code

vmleave EA Checks for known code patterns (VMLeave)

from the latest security mechanisms, such as, for example, a higher number of
randomized bits by Address Space Layout Randomization (ASLR)2.

Note that from the previously defined requirements, R1 (Interposition) and
R2 (Inspection) are fundamental features of DBI. In the following sections,
we will challenge the previously defined requirements R3 (Isolation) and R4
(Stealthiness) and show that subversion of any thereof consequently also anni-
hilates R1 (Interposition) and R2 (Inspection).

3 Stealthiness

In this section we present several techniques that reliably detect the presence of
different DBI frameworks. To achieve this, we not only adopted several existing
DBI detection techniques [12] to Linux x86-64 but also found new, previously

2 See /proc/sys/vm/mmap rnd bits.

PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications 369

Table 2. Detection mechanisms on different DBI frameworks. A indicates that the
test reliably detects the presence of the indicated DBI framework, a means that a
particular test does not detect the presence of the respective DBI framework.

unknown detection techniques. We group detection techniques in three cate-
gories; (1) code cache/instrumentation artifacts (CA), (2) JIT compiler over-
head (CO), and (3) runtime environment artifacts (EA). In this paper we only
describe techniques from categories (1) and (3) in detail. While we explain these
techniques on Pin, we found them also applicable to other DBI implementations.

We have developed a tool called jitmenot which employs 13 different DBI
detection mechanisms summarized in Table 1, 7 of which were adopted from
their Windows specific 32 bit counterparts presented elsewhere [12] and one
was proposed by Ahmed Bougacha3. In the following, we describe only the most
prominent examples for space reasons. Our testing tool jitmenot is released under
an open-source license and can be downloaded from GitHub4. See Table 2 for an
overview of which detection technique is able to detect which of the analyzed
DBI frameworks.

3.1 Code Cache/Instrumentation Artifacts

In the first category – code cache artifacts – we include anomalies introduced by
the fact that the executed code is not the original one.

Abusing the syscall Instruction (ripsyscall). One less known property of
the x86-64 architecture is that when executing any system call via the syscall
instruction, the current instruction pointer value is copied to the rcx register [16],
such that the kernel can restore execution correctly via the sysret instruction
later. As operation of the OS’s kernel happens transparently, user land perceives
3 http://repzret.org/p/detecting-valgrind.
4 https://github.com/zhechkoz/PwIN.

http://repzret.org/p/detecting-valgrind
https://github.com/zhechkoz/PwIN

370 J. Kirsch et al.

the syscall instruction to have the side effect of setting the rcx register to
the instruction right behind the syscall. The ripsyscall method involves the
way the DBI frameworks emulate system calls. For example, when Pin has to
accomplish some task outside of the Virtual Machine (VM), such as forwarding
a system call request from the instrumented application or determining the next
basic block to execute, the register state of the instrumented application is saved
and the VM is left.

However, this is not the case for an instrumented application executed within
DBI. Since, DBI frameworks wrap all system calls performed by the instrumented
application, they need to save the program’s register state before switching from
the context of the instrumented application to its own internal state. When re-
entering the context of the instrumented application, apart from the system call’s
result in rax, no other side effects are propagated back to the program. As a
result, the rcx register observed by the instrumented application stays constant
across system calls. This discrepancy can be used as a detection mechanism.

Self-modifying Code (smc). Yet another code cache artifact involves the
way DBI frameworks handle Self-Modifying Code (SMC) together with the
fact that instrumentation is done at basic block granularity. According to
Intel, the Pin framework, for example, does attempt to detect manipula-
tions of the original code of the instrumented application by exposing the
PIN Set-Smc-Support configuration option and a corresponding callback func-
tion TRACE -AddSmc-Detected-Function. However, the analysis plugin pro-
grammer has to manually trigger code cache invalidation upon receiving a SMC
notification to re-trigger the JIT compiler for the altered code. If the analysis
plugin programmer does not handle SMC, or does not invalidate the code cache,
the instrumented application could detect the presence of Pin as follows: First,
the instrumented application marks its own code as readable, writeable and exe-
cutable prior to executing a probe instruction once, making sure it gets placed
into the code cache. Then the malicious tool modifies the immediate operand
of the probe mov instruction from I0 to I1 in the code cache. Since Pin does
not automatically invalidate the code cache only the original code is modified,
resulting in mov ending up with immediate operand I0. If the same sequence
is executed outside of a instrumentation platform, the code change takes effect
immediately and the mov instruction will use I1 as immediate operand. Only
if the analysis plugin monitors all write accesses of the application to its own
text segment it can reliably detect SMC. Furthermore, a code cache invalidation
request after every write (incurring performance overhead) is needed to prevent
the attack sketched above.

Wrong Emulation of enter Instruction (enter). Some DBI frameworks,
such as Valgrind, first translate the program into a processor-neutral Intermedi-
ate Representation (IR), which is then instrumented by the analysis plugin and in
the end compiled to machine code. This implies that the DBI framework is capa-
ble of emulating the whole instruction set of the processor. However, since some
instructions are less frequently used than others, DBI developers choose to either
partially or completely not support them. An example of such an instruction is

PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications 371

the x86 enter instruction [16], which creates a stack frame for a procedure. This
instruction executes as expected in a non-instrumented environment. However,
when a program instrumented by Valgrind attempts to execute enter, a signal
is raised because this particular instruction is not implemented in the IR. By
catching this signal, an application can determine whether it is instrumented or
not. Note that this behavior is not observed in Intel Pin since it does not rely
on IR for instrumentation.

Neglecting No-eXecute Bit (nx). W⊕X is an exploitation mitigation tech-
nique enabling the OS to mark writeable pages in memory as not executable.
The consistent application of W⊕X denies an attacker the ability to introduce
own code into the address space of a program before transferring the execution
flow to it. However, when the JIT compiler of a DBI framework fetches new
instructions for instrumentation, it does not check whether the source memory
is marked as executable; as long as the page is readable the JIT compiler will
translate any data present and emit executable assembly instructions. Note that
all DBI frameworks we tested were vulnerable to this problem. Clearly, this is a
huge security issue, as this implies that any program instrumented by a DBI
framework effectively has W⊕X disabled. We utilized this fact as a detection
technique in the following way: (1) Allocate a new page on the heap without
execute permissions and place valid code in it, (2) then execute it. Without
instrumentation, on any modern OS, a program trying to execute code on a
page without x permissions will result in a crash. Otherwise, if the program is
being instrumented, the program will be allowed to continue. This difference
allows us to determine whether an application is currently instrumented or not.

Therefore, if it is possible to divert execution to a user-controllable buffer,
an attacker can place shellcode in it and the VM will execute it. This effectively
violates the Isolation property of DBI. Later we present a real-world example of
how this can be leveraged to achieve a fully working exploit. This classifies as
a major vulnerability issue not only in PinDBI framework but also in all other
DBI engines which we tested as can be seen in Table 2. Nevertheless, introducing
proper checks for correct memory page permissions before fetching code from
memory could resolve this issue. This can be accomplished either in the JIT
compiler or as a temporary fix integrated in the instrumentation platforms.

Real Instruction Pointer (ripfxsave/ripsiginfo). This technique was
already introduced by Falcón and Riva [12]. However, as detection of the real
rip also is a building block for attacks (against the DBI Isolation property)
described later in this paper, we briefly summarize the techniques nevertheless.

In a nutshell, the DBI framework VMs execute only the translated and instru-
mented code of the application residing in the code cache but never the original
code in the original text segment of the instrumented application. To maintain
compatibility with non-relocatable applications, Pin attempts to mask the VM’s
rip with the instrumented program’s original rip value whenever necessary.

One technique for finding the real rip abuses the systems Floating Point
Unit (FPU): First, any FPU instruction (e.g. fldz) is executed. Afterwards,
the FPU state is saved using the fxsave instruction. This state includes the

372 J. Kirsch et al.

address of the most recently executed FPU instruction, which is not masked by
any instrumentation platform. A malicious instrumented application can then
compare this value to the (masked) value when directly reading the rip register.
If the values do not match, the application is being instrumented.

The same can be achieved on Linux with the help of the OS: The sigaction
system call allows the calling process to examine and/or specify the action to be
associated with a specific signal. When configured, the OS provides information
about the context at the time the signal occurred. If we execute any floating-point
instruction and then initiate a signal (for instance by deliberately triggering a
segmentation fault), the context argument passed to the signal handler contains
the state of the FPU registers. By comparing these values with the corresponding
rip, one can again determine whether the program is being instrumented.

3.2 Environment Artifacts

In this section we identify environmental artifacts introduced by DBI frame-
works. By this we refer to anomalies in the execution environment. For example,
the memory layout varies drastically with the usage of instrumentation plat-
forms. Searching for DBI artifacts such as strings or particular code patterns in
memory reveals the presence of a DBI tool inside the target process memory.

Pin Internal Environment Variables. Firstly, Pin expects certain
environment variables in order to run properly (e.g. PIN INJECTOR64 LD
LIBRARY PATH). Because the framework spawns the instrumented process as its
own child, these inherited environment variables can still be found in the instru-
mented application’s memory. Querying them by means of getenv can therefore
expose the underlying JIT engine.

Page Permissions and Code Patterns. A side effect of the JIT engine is the
presence of pages that are marked simultaneously as readable, writeable, and
executable. An attacker can use this knowledge to scan the address space for
such pages (e.g. using /proc/self/maps on Linux). Knowing that rwx memory
is not present in a particular binary this discrepancy reveals the presence of the
JIT compiler’ code cache.

Additionally, an attacker can scan the whole memory for mapped pages and
compare names of memory mapped files with names related to the DBI frame-
work (e.g. pinbin for Pin). Moreover, as the instrumented application and the
analysis plugin share one address space, the full implementation of the instru-
mentation platform has to be present as well. For example, an attacker can search
for specific code patterns such as the characteristic implementation of the tran-
sition between the instrumented application and the analysis plugin (VMLeave).
This code sequence is distinctive because it saves the current VM context on the
stack and restores the jitted application’s registers, generating assembly code
that can easily be recognized.

PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications 373

Another method revealing the JIT engine’s presence relies on an egg-hunting
approach: A simple loop might scan all pages for a unique 8-byte-pattern. Under
normal circumstances, the pattern should be observed exactly once in the address
space (the operand of the comparison). However, when executed in context of
a DBI framework, the pattern emerges at least twice: Once in the original code
and once in the code cache.

3.3 Summary

As one can see, an instrumented application can notice whether it is currently
being executed in a DBI environment. By nature, JIT compilers cause a lot of
noise which is not only hard to disguise but trying to do so introduces even more
irregularities in the instrumented program execution (cf. [27]). It follows that,
the requirement R4 (Stealthiness) which is essential for security applications
such as malware analysis cannot be hold by DBI frameworks.

4 Isolation

After discussing detectability of DBI frameworks, the following section focuses
on the methods and possibilities to escape from and consequently evade the
instrumentation. In the original work describing Pin [21] in Sect. 3.3.1 the authors
state that the instrumented application’s code is never executed – instead it is
translated (from machine instructions to the same kind of machine instructions)
and executed together with the analysis plugin’s procedures within a custom
virtual environment (the Pin VM). All executed machine instructions reside in
the VM (code cache) and the effect of any instruction cannot escape from the VM
region. Like other VMs, the Pin framework manages the instrumented program’s
instruction pointer and translates each basic block of the original code lazily (i.e.
when reached by the execution flow). Two properties make Pin subject to attacks
compromising isolation: First, the VM may and will reuse already compiled code
because of optimization benefits. Second, Pin does not employ any integrity
checks of already translated instructions in the code cache. Therefore, we can
alter already executed instructions in memory, as they (comfortably) reside on
pages marked rwx by the instrumentation platform. Experimental evidence from
Sect. 3 indicates that the code cache implemented by other DBI tools behaves in
accordance with Pin’s code cache. However, we target the DBI implementation
of Pin on x86-64 Linux in the following sections.

For this we distinguish two different attacker models, and describe an escap-
ing mechanism suitable for each.

A1 Control of Code and Data. This is the most potent attacker. She can
freely specify which code is executed in the instrumented application and is
able to freely interact with the application while instrumented. In reality,
such an attacker would craft a malicious binary in the hope that an analyst
would execute the binary in a instrumentation platform.

374 J. Kirsch et al.

A2 Control of only Data. This is the weaker of the two attacker models.
In this case, an attacker only possesses copies of the instrumented applica-
tion, instrumentation platform, analysis plugin, and all depending dynamic
libraries. However, this attacker is also able to freely interact with the applica-
tion containing memory corruption vulnerabilities while executed in an DBI
framework. In practice this is the case when some binary hardening policy
implemented using DBI gets attacked over the network.

While detectability always required an attacker of type A1, we show that it
is possible for an attacker of type A2 to escape from the instrumentation if the
attacked program contains what is commonly referred to as a write-where-what
vulnerability.

Fig. 1. A minimal program escaping from the Pin VM.

4.1 Escaping from Pin’s Instrumentation Using Direct Code Cache
Modification

First, we describe the escaping technique for the more potent attacker A1 whose
goal is to execute arbitrary code without Pin’s instrumentation engine being able
to embed callbacks notifying the analysis plugin. The existence of the just-in-
time compilation allows us to first execute a basic block in order to allow the
Pin VM to translate its assembly code and place its address in an internal hash
table to find it later. Then the instrumented program can find the translated
version of the basic block in the code cache (using the real instruction pointer
detection techniques described in the previous section). It can then modify the
jitted code arbitrarily. Once the execution flow reaches the modified basic block
a second time, Pin will effectively execute whatever an attacker placed there.
Figure 1 depicts the steps needed.

Prior to escaping from the VM, one first has to use any of the techniques to
find the real rip value discussed in Sect. 3 (Block loc A0 in Fig. 1 showing the
ripfxsave technique). As expected, Pin executes these instructions within its

PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications 375

own code cache. As a result, at the end of block loc A0, rax now points to the
FPU context containing a pointer to the beginning of loc A0. Then (step 1.),
execution is redirected to block loc A1 using a jmp instruction, where an attacker
places code that patches out the first instruction of loc A0 and replaces it with
a control flow change eventually reaching loc B0 (step 2.). Then, when the
control flow reaches loc A0 for the second time, the modified instructions placed
there will be executed, now redirecting execution to block loc B0 residing in
the original code (step 3.). As the code cache is mapped rwx, this does not
trigger any page fault, hence the instrumentation engine does not get notified of
the breach happening in the VM. To maintain ABI compatibility to arbitrary
code embedded into the malicious executable, block loc B0 needs to restore the
rsp and fsbase registers, which, due to the code generation strategy of the
JIT compiler are conveniently accessible via a structure pointed to by register
r15. Now, execution can move on to any arbitrary code loc C0 in the original
executable prepared by the attacker – as all pages are mapped executable there
is no mechanism allowing Pin to re-trigger the JIT compiler process to embed
its instrumentation hooks. In fact, from Pin’s perspective the application is still
executed in the VM and awaits to regain control again, which never happens.

4.2 Escaping from Pin’s Instrumentation Using an Existing
Memory Corruption

As previously stated, it is also possible under certain circumstances to evade
the instrumentation if only an attacker of type A2 is present. Escaping the Pin
sandbox in Linux without necessarily knowing any code cache address is also
possible: We measured the relative offsets between all mapped pages in different
executions of an application instrumented by Pin. As it can be seen in Fig. 3 (top
right on page 18), the offset between libc and the code cache, as well as pinbin
(main Pin binary) and Pin’s own stack is constant. Leaking addresses from any
of these code regions therefore allows us to reliably find the other mappings.
Consequently, we can utilize all gadgets present in the code basis to build ROP
chains, or directly write shellcode using a write-what-where vulnerability into the
code cache. This is due to the fact that, as already explained, the Pin framework
copies itself into the application’s memory by allocating memory using mmap. As
pointed out in earlier work [18], the addresses of consecutively allocated memory
allocations returned by mmap are predictable (i.e. relative distances remain con-
stant) in Linux. Thus, all required information can be calculated a priori based
on known binaries of Pin, the analysis plugin, the instrumented application, and
all dynamic link libraries (cf. Fig. 3 in the Appendix).

Since Pin does not monitor its code cache for external changes and does not
restrict its execution to known memory locations, one can alter the instrumented
processes memory in any suitable way. Moreover, the address of the code cache in
the Linux version of Pin can be calculated by using any leaked address from other
similarly created memory region. Therefore, if the binary contains a function
that is executed twice and after its first invocation, a malicious user overwrites
this function’s instructions in the code cache, they are able to gain full control

376 J. Kirsch et al.

over the application. Unfortunately, such a function (rtld lock default lock)
is contained within the dynamic loader, a core component of the Linux OS.

5 Increased Attack Surface

Previously we have shown that DBI frameworks are both detectable and
escapable rendering them as not suitable for binary hardening or malware analy-
sis. In this section, we show how implementing security mechanisms enforced by
executing a given COTS binary in a DBI environment even introduces more pos-
sibilities to exploit already present bugs (i.e. attack surface is increased instead
of decreased). To support this claim we discuss an example where a vulnerability
that is not trivial to exploit during normal execution becomes exploitable when
executed within a DBI framework interacting with an attacker of type A2.

5.1 The Return of Aleph One

During the study of detectability properties of instrumentation platforms we
already pointed out that they fail to check the permissions of the code that is
to be processed by their JIT engines. This means any data in memory can (and
will) be translated to executable instructions if reached by the control flow. This
transfers us back to the dawn of buffer overflows and shellcode execution era.
As a simple example we can run an application which jumps to shellcode on
the stack. Normally, because of the set No-eXecute bit in the page tables of the
stack, the program would crash as soon as the instruction pointer points to an
address on the stack. However, instrumenting the same binary with Pin does not
crash the application. In fact, the execution continues and opens a shell.

5.2 Turning CVE-2017-13089 to a Code Execution Bug with the
Help of Intel Pin

To underline the exploitability claim, we have implemented a Proof Of Con-
cept binary (PwIN) that exploits an existing CVE vulnerability (CVE-2017-
13089, cf. [1]) that is not easily exploited when executed in a normal environ-
ment. CVE-2017-13089 is a bug in wget versions older than 1.19.2 found in
http.c:skip short body(). The bug itself is described in more detail in the
next section. Without Intel Pin the strongest attack (known to us) results in a
1
16 probability of leaking an arbitrary file stored on the victim to the server (see
below). We will discuss how the same bug can be escalated to full code execution
if the victim is instrumented using Intel Pin.

Description of the Bug. The vulnerable function in wget is called when
processing HTTP redirects together with HTTP chunked encoding. The chunk
parser uses strtol() to parse each chunk’s length into a variable of type long.
Prior to copying a chunk’s contents into a buffer on the stack, the code validates

PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications 377

Fig. 2. Control flow and state changes of wget when attacked by a malicious server.
The last control transfers (4.2 in purple and 5. in red) mark the transitions that are
enabled by the usage of Pin. Under normal circumstances, the program would crash as
the buffers on the stack containing the malicious shellcode would not be executable.
(Color figure online)

that the chunk size specified in the HTTP request fits into the buffer, forgetting
to ensure the supplied signed value is actually a positive number. The code then
tries to skip the chunk in pieces of 512 bytes but ends passing a negative length to
connect.c:fd read(). Unfortunately, fd read()’s length argument is of type
int, thus the high 32 bits of the length variable are discarded. Therefore, values
in the range 0xffffffff00000000 to 0xffffffffffffffff pass all checks while
the truncation to a 32 bit value still allows an attacker to control the length of
the read chunk and to overflow the dlbuf variable, a buffer of fixed size, on the
stack.

Exploitation of the Bug. The bug allows for a continuous write of arbi-
trary data on the stack. Due to the absence of stack canaries, the saved return
address on the stack can be compromised. However, without the knowledge of
the current state of ASLR, there is not much an attacker can do, as she does not
know any pointer pointing into valid memory (the binary is compiled as position
independent executable). Consequently, the only remaining option to continue
exploitation is a partial pointer override. With this technique, an attacker abuses
the fact that ASLR operates at a page (4096 = 212 bytes) granularity. There-
fore, the lowest 12 bits of any object within the address space are deterministic.

378 J. Kirsch et al.

As a consequence, an attacker can now trade the number of ROP gadgets reach-
able by a ret for exploit reliability by overwriting parts of the saved return
pointer on the stack. For example, a two-byte partial pointer overwrite needs to
guess 2 · 8 − 12 = 4 bits of randomness, allowing to transfer control to a region
sharing the same 22·8 = 65536 bytes region with the original return address.
Automatically evaluating all targets within this region using dynamic analysis
does not unveil any target where an attacker could trivially obtain arbitrary
code execution. The only noteworthy effect that can be observed is when target-
ing body file send(), as register allocation (cf. Fig. 2) matches the signature
of this function with rsi pointing to attacker controlled data specifying a file
name to transfer from the client to the server.

However, when running in context of Intel Pin we can inject and execute
shellcode situated in non-executable memory regions, reducing the challenge of
achieving code execution to just having to find a reliable mechanism to jump
to a pointer to data we control. Our full exploit chain is visualized in Fig. 2:
Fortunately, when reaching the end of the skip short body() function the rsi
register (step 1.1) contains the address of dlbuf (controlled by the attacker).
However, there are no convenient gadgets reachable with a partial overwrite on
the return address which may divert the code execution to the address contained
in rsi. We remedy this by injecting our own jmp rsi gadget into a buffer that we
can divert control to using the partial overwrite in step 1.3. As expected, before
reaching the return pointer on the stack, we inevitably have to load an invalid
pointer to rbp register (step 1.2) which fortunately, does not negatively influ-
ence our future actions. We can reach a stack lifting gadget with a partial over-
write (step 2.) that increments the stack pointer by Δ = 0x88 bytes (step 3.).
The new stack pointer location now points to a pointer to the UTF-8 encoded
value of the contents of the Set-Cookie header of the HTTP response. At this
point the ret will transfer control to an attacker controlled buffer (steps 4.1
and 4.2) but the UTF-8 encoding constrains the shellcode in an uncomfortable
way. Luckily enough, the string V\xff is encoded to V\xc3\xbf which is per-
fectly valid UTF-8 and disassembles to push rsi; ret at the same time. As
rsi still points to (now unconstrained) attacker controlled shellcode from the
HTTP response body residing in dlbuf, this control transfer (step 5.) is the last
step in achieving code execution. This attack succeeds with a probability of 1

16 ,
due to the partial pointer override used in the first step.

6 Discussion

We conclude this work by inviting other researchers to reproduce our findings,
discussing limitations and future improvements.

6.1 Reproducibility and Source Code Availability

In the spirit of open research and to enable others to reproduce our findings, we
publish the source code of all the experiments conducted in context of this work.
A Docker container is available via download at https://kirschju.re/pwin.

https://kirschju.re/pwin

PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications 379

6.2 Limitations and Future Work

There are some known limitations associated with the proposed methodologies.
First, the detect mechanism can be avoided by extending DBI frameworks. How-
ever, we already discussed that the JIT compiler introduces a lot of noise in
the normal execution of the application, constantly turning up new possibilities
to detect irregularities. Secondly, to escape the DBI sandbox, the application
has to execute a function at least twice and simultaneously know its address
in the code cache. Moreover, it needs to alter this function in the code cache
before its last execution. Additionally, to escape DBI without knowing exactly
the address of a function executed at least twice, requires calculation of the nec-
essary memory locations. This is only possible, since the offset between pages
created by mmap is constant [18]. However, the attacker has to possess copies
of the instrumented application, instrumentation platform, analysis plugin, and
all depending dynamic libraries because they all reside in the code cache and
influence the fixed offsets between memory regions.

The research presented in this work discussed in detail the disadvantages of
utilizing DBI engines in the security domain. The most fundamental problem is
that DBI logic and application reside in the same address space, with no iso-
lation present. The question remains how Intel Pin and other DBI frameworks
can mitigate this problem in the future and how these techniques would influ-
ence our research. A possible mitigation strategy might introduce Intel Memory
Protection Keys to change memory access permissions from user space without
sacrificing performance.

6.3 Conclusion

In this paper, we showed that DBI frameworks are commonly used in a con-
text of security, both as an analysis platform, as well as a hardening tool. Thus
we systematically discussed the requirements for DBI frameworks to be used
within such a context. We showed, that DBI is not able to hold these require-
ments in practice. We demonstrate, that the stealthiness requirement does not
hold in practice by enumerating different inherent techniques to detect DBI. In
addition, we also attested that DBI does not sufficiently isolate instrumented
applications from the instrumentation framework, which provides a possibility
for instrumented applications to gain arbitrary code execution on the analysis
system. Finally, we argue, that instead of increasing security by introducing DBI
based software hardening measures, DBI actually decreases the overall security
by escalating an otherwise hard-to-exploit real world bugs into to full code exe-
cution. To support our claim, we implemented a couple of Proof Of Concepts to
support our claims, which we are happy to freely share with the community.

380 J. Kirsch et al.

A Appendix

Fig. 3. Color matrices showing memory regions sharing random (/) or constant
(/ /) distances with each other for applications instrumented by Linux (above
right) and Windows (down left) version of Pin. The region names in red are additional
components added by the instrumentation framework while in black are presented the
program’s original mapped files. (Color figure online)

PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications 381

References

1. CVE-2014-0160. Available from MITRE, CVE-2017-13089. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2017-13089. Accessed 24 Apr 2018

2. QuarkslaB Dynamic binary Instrumentation (QBDI). https://qbdi.quarkslab.
com/. Accessed 24 Apr 2018

3. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity princi-
ples, implementations, and applications. ACM Trans. Inf. Syst. Secur. 13, 4:1–4:40
(2009)

4. Banescu, S., Wüchner, T., Guggenmos, M., Ochoa, M., Pretschner, A.: FEEBO: an
empirical evaluation framework for malware behavior obfuscation. arXiv preprint
arXiv:1502.03245 (2015)

5. Bruening, D., Duesterwald, E., Amarasinghe, S.: Design and implementation of
a dynamic optimization framework for windows. In: 4th ACM Workshop on
Feedback-Directed and Dynamic Optimization (FDDO-4) (2001)

6. Bruening, D., Garnett, T., Amarasinghe, S.: An infrastructure for adaptive
dynamic optimization. In: International Symposium on Code Generation and Opti-
mization, CGO 2003, pp. 265–275. IEEE (2003)

7. Bruening, D., Zhao, Q.: Practical memory checking with Dr. Memory. In: Proceed-
ings of the 9th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, pp. 213–223. IEEE Computer Society (2011)

8. Chiueh, T.c., Hsu, F.H.: RAD: a compile-time solution to buffer overflow attacks.
In: 21st International Conference on Distributed Computing Systems, pp. 409–417.
IEEE (2001)

9. Clause, J., Li, W., Orso, A.: Dytan: a generic dynamic taint analysis framework.
In: Proceedings of the 2007 International Symposium on Software Testing and
Analysis, pp. 196–206. ACM (2007)

10. Davi, L., Sadeghi, A.R., Winandy, M.: ROPdefender: a detection tool to defend
against return-oriented programming attacks. In: ASIACCS (2011)

11. Elsabagh, M., Barbará, D., Fleck, D., Stavrou, A.: Detecting ROP with statistical
learning of program characteristics. In: Proceedings of the Seventh ACM on Con-
ference on Data and Application Security and Privacy, pp. 219–226. ACM (2017)

12. Falcón, F., Riva, N.: Dynamic binary instrumentation frameworks: i know you’re
there spying on me. In: RECon 2012 (2012). https://recon.cx/2012/schedule/
attachments/42 FalconRiva 2012.pdf. Accessed 25 Apr 2018

13. Follner, A., Bodden, E.: ROPocop - dynamic mitigation of code-reuse attacks. J.
Inf. Secur. Appl. 29, 16–26 (2016)

14. Garfinkel, T., Rosenblum, M., et al.: A virtual machine introspection based archi-
tecture for intrusion detection. In: NDSS, vol. 3, pp. 191–206 (2003)

15. Gröbert, F., Willems, C., Holz, T.: Automated identification of cryptographic prim-
itives in binary programs. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID
2011. LNCS, vol. 6961, pp. 41–60. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23644-0 3

16. Intel Corporation: Intel R© 64 and IA-32 Architectures Software Developer’s Man-
ual, January 2018

17. Kiriansky, V., Bruening, D., Amarasinghe, S.P.: Secure execution via program
shepherding. In: Proceedings of the 11th USENIX Security Symposium, pp. 191–
206. USENIX Association, Berkeley (2002)

18. Kirsch, J., Bierbaumer, B., Kittel, T., Eckert, C.: Dynamic loader oriented pro-
gramming on Linux. In: ROOTS (2017)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13089
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-13089
https://qbdi.quarkslab.com/
https://qbdi.quarkslab.com/
http://arxiv.org/abs/1502.03245
https://recon.cx/2012/schedule/attachments/42_FalconRiva_2012.pdf
https://recon.cx/2012/schedule/attachments/42_FalconRiva_2012.pdf
https://doi.org/10.1007/978-3-642-23644-0_3
https://doi.org/10.1007/978-3-642-23644-0_3

382 J. Kirsch et al.

19. Kulakov, Y.: MazeWalker - enriching static malware analysis. In: RECon 2017
(2017). https://recon.cx/2017/montreal/resources/slides/RECON-MTL-2017-
MazeWalker.pdf. Accessed 25 Apr 2018

20. Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S., Kiayias, A.: Scal-
ability, fidelity and stealth in the DRAKVUF dynamic malware analysis system.
In: Proceedings of the 30th Annual Computer Security Applications Conference,
pp. 386–395. ACM (2014)

21. Luk, C.K., et al.: Pin: building customized program analysis tools with dynamic
instrumentation. In: ACM Sigplan Notices, vol. 40, pp. 190–200. ACM (2005)

22. Nethercote, N., Seward, J.: How to shadow every byte of memory used by a pro-
gram. In: VEE (2007)

23. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: ACM Sigplan Notices, vol. 42, pp. 89–100. ACM (2007)

24. Nethercote, N., Walsh, R., Fitzhardinge, J.: Building workload characterization
tools with Valgrind. In: IISWC (2006)

25. One, A.: Smashing the stack for fun and profit. In: Phrack 49 (1996)
26. Orman, H.: The Morris worm: a fifteen-year perspective. IEEE Secur. Priv. 99(5),

35–43 (2003)
27. Polino, M., et al.: Measuring and defeating anti-instrumentation-equipped mal-

ware. In: Polychronakis, M., Meier, M. (eds.) DIMVA 2017. LNCS, vol. 10327, pp.
73–96. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60876-1 4

28. Qiang, W., Huang, Y., Zou, D., Jin, H., Wang, S., Sun, G.: Fully context-sensitive
CFI for COTS binaries. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS,
vol. 10343, pp. 435–442. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-59870-3 28

29. Quynh, N.A.: Skorpio: advanced binary instrumentation framework. In: OPCDE
2018, Dubai, April 2018

30. Saudel, F., Salwan, J.: Triton: a dynamic symbolic execution framework. In: Sym-
posium sur la sécurité des technologies de l’information et des communications,
SSTIC, France, Rennes, 3–5 June 2015, pp. 31–54. SSTIC (2015)

31. Tymburibá, M., Emilio, R., Pereira, F.: RipRop: a dynamic detector of ROP
attacks. In: Proceedings of the 2015 Brazilian Congress on Software: Theory and
Practice, p. 2 (2015)

32. van der Veen, V., et al.: Practical context-sensitive CFI. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, pp.
927–940. ACM (2015)

33. Vendicator, S.S.: A Stack Smashing Technique Protection Tool for Linux (2000).
http://www.angelfire.com/sk/stackshield/info.html. Accessed 24 Apr 2018

https://recon.cx/2017/montreal/resources/slides/RECON-MTL-2017-MazeWalker.pdf
https://recon.cx/2017/montreal/resources/slides/RECON-MTL-2017-MazeWalker.pdf
https://doi.org/10.1007/978-3-319-60876-1_4
https://doi.org/10.1007/978-3-319-59870-3_28
https://doi.org/10.1007/978-3-319-59870-3_28
http://www.angelfire.com/sk/stackshield/info.html

	PwIN – Pwning Intel piN: Why DBI is Unsuitable for Security Applications
	1 Introduction
	2 Background and Related Work
	2.1 Dynamic Binary Instrumentation
	2.2 Required Security Properties of Analysis Frameworks
	2.3 DBI Use in Literature
	2.4 Scope

	3 Stealthiness
	3.1 Code Cache/Instrumentation Artifacts
	3.2 Environment Artifacts
	3.3 Summary

	4 Isolation
	4.1 Escaping from Pin's Instrumentation Using Direct Code Cache Modification
	4.2 Escaping from Pin's Instrumentation Using an Existing Memory Corruption

	5 Increased Attack Surface
	5.1 The Return of Aleph One
	5.2 Turning CVE-2017-13089 to a Code Execution Bug with the Help of Intel Pin

	6 Discussion
	6.1 Reproducibility and Source Code Availability
	6.2 Limitations and Future Work
	6.3 Conclusion

	A Appendix
	References

