
Beneath the Bonnet: A Breakdown
of Diagnostic Security

Jan Van den Herrewegen(B) and Flavio D. Garcia

University of Birmingham, Birmingham, UK
{jxv572,f.garcia}@cs.bham.ac.uk

Abstract. An Electronic Control Unit (ECU) is an automotive com-
puter essential to the operation of a modern car. Diagnostic protocols
running on these ECUs are often too powerful, giving an adversary full
access to the ECU if they can bypass the diagnostic authentication mech-
anism. Firstly, we present three ciphers used in the diagnostic access
control, which we reverse engineered from the ECU firmware of four
major automotive manufacturers. Next, we identify practical security
vulnerabilities in all three ciphers, which use proprietary cryptographic
primitives and a small internal state. Subsequently, we propose a generic
method to remotely execute code on an ECU over CAN exclusively
through diagnostic functions, which we have tested on units of three
major automotive manufacturers. Once authenticated, an adversary with
access to the CAN network can download binary code to the RAM of
the microcontroller and execute it, giving them full access to the ECU
and its peripherals, including the ability to read/write firmware at will.
Finally, we conclude with recommendations to improve the diagnostic
security of ECUs.

1 Introduction

The functionality of a modern road vehicle is determined by a few dozen Elec-
tronic Control Units (ECUs). These ECUs are interconnected via one or several
Controller Area Network (CAN) [10] buses. Powerful diagnostic protocols are put
in place by the manufacturer to update or patch the vehicle in case of malfunc-
tion. The most prevalent diagnostic standards are Unified Diagnostic Services
(UDS) [11] and its predecessor, Keyword Protocol 2000 (KWP2000) [12], which
provide manufacturers and service technicians with advanced diagnostic features
such as upload and download functionality. The main diagnostic access control
mechanism is the so called ‘seed-key protocol’, a challenge-response protocol used
to authenticate diagnostic devices. Even more sophisticated diagnostic protocols
such as the Universal Measurement and Calibration Protocol (XCP) [1] enable
service technicians to fully fine-tune ECUs. The functionality provided by XCP
goes beyond that of traditional diagnostic protocols found in ECUs, which a
knowledgeable attacker could abuse to take control of an ECU over CAN.

This work was partly funded by EPSRC Fellowship EP/R008000/1.

c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11098, pp. 305–324, 2018.
https://doi.org/10.1007/978-3-319-99073-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99073-6_15&domain=pdf


306 J. Van den Herrewegen and F. D. Garcia

In many cars, diagnostic communication occurs on the CAN bus available on
the OBD-II [13] port, which every vehicle commissioned in the European Union
since 2004 [5] must be equipped with. However, the automotive network was
never designed with an adversary in mind: the CAN bus is an unencrypted and
unauthenticated network. Thus, ECUs cannot distinguish diagnostic messages
originating from a diagnostic client from messages sent by an adversary. Previous
research has indicated that individual ECUs connected to the internal network
of a modern car can be compromised [17,18]. This becomes even more worrying
when combined with a remote exploit, as demonstrated in [24]. After having
gained access to the Telematics Unit, Valasek and Miller managed to remotely
control crucial functionality of the car. With advanced features such as in-vehicle
connectivity becoming the norm in modern cars, the automotive industry needs
to shift towards better diagnostic security in ECUs.

Our Contribution. The contribution of this paper is three-fold:

– Through reverse-engineering the ECU firmware of three different manufactur-
ers, we recovered the ciphers used in the diagnostic authentication protocol,
which we present here in full detail.

– We propose a practical cryptanalysis of each of these ciphers, showing that
the diagnostic authentication protocols can be easily bypassed with neglibible
computational complexity.

– We propose a generic method to remotely execute code on an ECU by exploit-
ing UDS and XCP features, giving us read/write access to the internal mem-
ory of the ECU and its peripherals.

Related Work. With its transformation towards more complex vehicular sys-
tems, the automotive industry is no stranger to cryptographic attacks against
several security mechanisms it has put in place. Bogdanov first attacked the
KeeLoq block cipher, which is used in various automotive anti-theft mechanisms,
in [2], while further attacks on this cipher appear in [2,9,14]. Furthermore, an
immobiliser system is in place to prevent an attacker from starting the car with-
out a valid key fob. Ciphers used in the immobiliser system in various cars
include the DST40 cipher, Megamos Crypto and the Hitag2 cipher, attacked
respectively by Bono et al. in [3], Verdult et al. in [26,28] and in [27].

Several papers in the literature assess diagnostic security in ECUs, beginning
with the work of Koscher et al. [17], which experimentally tests the security and
capabilities of ECUs. The authors tamper with several safety-critical ECUs by
sending diagnostic messages, while they reprogram the telematics unit to act as
a bridge between the high-speed and low-speed CAN bus in the vehicle. The
reprogramming of the unit consists of downloading code to its RAM memory
and executing it. No access control mechanism was implemented on the studied
ECU’s.

Additionally, Miller and Valasek reverse engineered the complete reprogram-
ming procedure on two Ford ECUs by analysing a diagnostic tool [18]. The tool



Beneath the Bonnet: A Breakdown of Diagnostic Security 307

reprograms the units by downloading a piece of code to the RAM memory of
the microcontroller, which subsequently handles the reflashing of the unit. The
authors abuse this mechanism to execute their own code on the ECU. After
authenticating to the ECU, the authors use several diagnostic primitives to
download the code to the unit. Once certain prerequisites have been met, a
different diagnostic service makes the ECU jump to the downloaded code and
thus execute it. No access restrictions are in place on the microcontroller, giving
the code full access to peripherals such as the CAN bus.

Finally, Khan [15] raises several issues on security in the UDS protocol, the
access control mechanism in particular. The paper states multiple security flaws
in the security access service provided by UDS, more specifically on challenge
generation and the complexity of the employed cipher. Furthermore, Khan notes
that an attacker can recover the cipher and secret keys from the firmware.

Overview. The rest of this paper is organised as follows. Section 2 gives an
overview of the most prevalent diagnostic protocols we have encountered in
ECUs. In Sect. 3 we follow up with a description of the ciphers used in the diag-
nostic access control mechanism in several ECUs and propose ways to bypass
these. In Sect. 4 we propose a method to remotely execute code on an ECU
when having access to the CAN bus, of which we demonstrate the capabilities
in Sect. 5. We discuss our findings in Sect. 7, while we suggest countermeasures
and mitigations in Sect. 6. Finally, we conclude in Sect. 8.

2 Background

This section summarizes the most prevalent diagnostic protocol in ECUs, namely
the Unified Diagnostic Services. We have encountered its predecessor, the Key-
word Protocol 2000 in older ECUs, but since both protocols are very similar,
we will only outline the main features of UDS. Note that we use the concepts
tester and client interchangeably, both denoting the diagnostic device querying
the ECU. Moreover, we briefly introduce diagnostic communication channels and
summarize the main features of the XCP protocol.

2.1 Unified Diagnostic Services

The UDS standard defines several diagnostic sessions: in the default session an
ECU executes its normal function in the internal vehicular network. A diagnostic
client can change the active session with the DiagnosticSessionControl service
to either a programming session or an extended diagnostic session, however the
available functionality in these sessions is left up to the manufacturer’s discretion.

The main access control mechanism is a challenge-response (also known as
seed-key in automotive terminology) protocol specified by the SecurityAccess
service, as depicted in Fig. 1. In order to authenticate to the ECU, a diagnostic
client must send a challenge request to the ECU, which subsequently replies with
a randomly generated challenge (also called the seed in automotive terminology).



308 J. Van den Herrewegen and F. D. Garcia

Both the client and ECU calculate a response (also called the key in automotive
terminology) from this challenge according to a manufacturer-specific cipher,
based on a shared secret. The client is authenticated if it supplies the ECU
with a valid response. Multiple security levels are defined in UDS, which the
manufacturer is free to use for different levels of access. UDS only specifies the
challenge-response protocol, leaving the choice of the cipher up to the manufac-
turer.

A tester can use the RoutineControl service to execute preprogrammed func-
tions in the ECU, with each routine uniquely defined by a two byte identifier.
The client can pass arguments in a routine control call if needed. The standard
specifies some routines and their respective identifiers, such as the EraseMem-
ory routine with identifier 0xFF00, while the identifier range 0x200-0xC000 is
reserved for manufacturer specific use.

Finally, the RequestDownload service provides a diagnostic client with func-
tionality to download data to the ECU. Before sending the data with the Trans-
ferData service, the tester must specify an address where the data will be down-
loaded to along with the size of the data. The tester should invoke the Request-
TransferExit service on completion of the transfer.

Challenge Request (27 01)

Challenge (67 01 )

Response (27 02 )

Success (67 02)

authenticate()

Fig. 1. The challenge-response protocol specified by UDS

2.2 Diagnostic Communication Channels

Neither UDS nor KWP 2000 specify the exact nature of the diagnostic com-
munication channel (namely on which CAN ID each ECU listens for diagnostic
messages). This is manufacturer specific, although there are some similarities
across manufacturers. Since CAN frames with a lower identifier have priority
over those with a higher identifier on the bus, diagnostic CAN identifiers are
usually within the range 0x700-0x7FF. Additionally, there is generally a clear
relation between the CAN ID on which an ECU receives diagnostic messages,
and on which ID it replies (e.g. IDsend = IDrecv + 8).



Beneath the Bonnet: A Breakdown of Diagnostic Security 309

2.3 Universal Measurement and Calibration Protocol

Both XCP and its predecessor, the CAN Calibration Protocol (CCP) [16] are
standardized by the Association for Standardization of Automation and Mea-
suring Systems (ASAM). XCP is an application protocol which defines advanced
features such as arbitrary read/write access to variables in ECU memory, syn-
chronous data acquisition and flash programming of ECUs for development pur-
poses. A diagnostic tool, also called the master in XCP, can analyse the con-
nected ECUs, or slaves, through various XCP commands specified in the stan-
dard. The master has access to variables in memory by way of an ECU descrip-
tion file exclusive to each ECU, and can even download a reflashing kernel to
the RAM for reprogramming purposes. Automotive software companies such as
Vector Informatik support XCP solutions for ECUs of over 30 major automotive
manufacturers [25], alluding to the extensive use of the XCP standard in the
automotive industry.

3 Cryptanalysis of Diagnostic Protocols

In this section we analyse the ciphers used in the diagnostic challenge-response
protocol, which we extracted from ECUs of three different automotive manufac-
turers. We recovered and analysed the firmware of 13 ECUs in total, comprising
8 different car models. We focused our efforts on ECUs with a security criti-
cal function, such as the Instrument Cluster and Body Control Module (which
handle immobiliser functionality and store its secret keys), a Gateway (which
separates the critical high speed CAN bus from other low speed buses), and a
Telematics Unit (which provides connectivity to the outside world). Next, we
revisit the cipher first described by Valasek and Miller in [18] and present new
vulnerabilities, making it easy to circumvent in practise. Using the IDA Pro
disassembler we have recovered challenge-response ciphers from the firmware of
Ford, Volvo, Fiat and Audi ECUs. We present these ciphers and analyse their
security.

3.1 Obtaining and Analysing ECU Firmware Images

On all ECUs we have studied, the firmware was located in the internal flash
memory of the microcontroller. We managed to extract the firmware from these
embedded devices through a debug interface, such as a Joint Test Action Group
(JTAG) or a Background Debug Mode (BDM) interface, which is often exposed
on a group of test points on the Printed Circuit Board (PCB). Next, we load
the firmware into the IDA Pro disassembler on the correct memory address,
which is specified in the datasheet of the microcontroller. For microcontrollers
that incorporate a paging mechanism, such as the MC9S12XE (used on certain
Ford Instrument Clusters and Body Control Modules), we first need to separate
the firmware into chunks equal to the page size of the microcontroller. Once
loaded, we can locate the cipher used in the diagnostic authentication protocol



310 J. Van den Herrewegen and F. D. Garcia

by searching for functions that contain constants used in UDS, more specifically
frequently used diagnostic error codes and/or service identifiers. Since the man-
ufacturer often reuses ECUs running the same or at least a very similar firmware
version across different cars and models, we only need to go through this process
once for every ECU type.

Notation and Variables. To avoid any ambiguity, we will use the following
notation in this section. C denotes the random challenge generated by the ECU,
whereas R denotes the corresponding response. vi denotes bit i of a variable v,
with v0 being the least significant (rightmost) bit, whereas v[i] denotes byte i of
v, with v[0] being the most significant (leftmost) byte. v ≪ i refers to a rotation
of v by i bits to the left. Finally, (v, w) denotes a concatenation of bytes v and
w, with w the least significant byte.

3.2 Analysis of the Ford Challenge-Response Cipher

In this section we perform a cryptanalysis of the Ford cipher, which we have
located in the firmware of several Ford ECUs but also in some Volvo units
through our reverse engineering efforts. We introduce the cipher and demonstrate
how an attacker can break it by means of an attack over CAN. We have found
this cipher in the ECUs shown in Table 1.

Table 1. ECUs on which we examined and identified the Ford cipher

Make Year Model ECU

Ford 2010 Focus MK2 Body control module

Instrument Cluster

2012, 2014, 2016 Focus MK3 Body control module

Instrument cluster

2008 Fiesta MK6 Instrument cluster

2013, 2014, 2015, 2017 Fiesta MK7 Instrument cluster

Body control module

Volvo 2015 V50 Telematics unit

Cipher Details. Both the challenge and response are three bytes in Ford ECUs.
The cipher uses a slightly modified version of the Galois Linear-Feedback Shift
Register (Galois LFSR) with an internal state of 24 bits, which is initialised
with a constant (0xC541A9) stored in the firmware of the ECU. The output bit
of the LFSR is XORed with a bit from a 64-bit input register R consisting of a
40-bit secret S and the 24-bit challenge C. Figure 2 depicts the structure of the
modified Galois LFSR, while Definition 1 details the input bit of the cipher in
round i. The cipher runs for 64 rounds: in the first 24 rounds, the challenge is



Beneath the Bonnet: A Breakdown of Diagnostic Security 311

shifted into the internal state, after which the cipher absorbs the 40-bit secret
into its internal state. In each round, the XOR of the output bit of the LFSR and
the input bit of the register is fed back into the tapped bits. The final response
is derived from the 24-bit LFSR-state by permuting the nibbles of the state, as
shown in Definition 2.

Ri

Fig. 2. Structure of the Ford LFSR

Definition 1. Given challenge C and secret S, input bit Ri in round i is defined
as follows.

Ri =

{
C i, if i < 24
S 24−i, if 24 ≤ i < 64

Definition 2. Let the nibble representation of the internal state Y be
n0, . . . , n5 = Y [0], . . . , Y [2]. Then the permutation P1(n0, . . . , n5) : F24

2 → F
24
2

is defined as follows.

P1(n0, . . . , n5) =
(
n0 n1 n2 n3 n4 n5

n3 n4 n2 n0 n5 n1

)

Weaknesses. The internal state of the Galois-LFSR used in the Ford algorithm
contains merely 24 bits of entropy. What is even worse, we have observed the
same start state and tapping sequence across all ECUs we have studied. With
no added entropy from a varying start state or tapping sequence, only the 40-bit
secret is unknown to an attacker. Through empirical tests we discovered that
only the first 24 secret bits shifted into the internal state add entropy. In the
subsequent 16 rounds we can set the input bit to zero, making the cipher a
standard Galois-LFSR. One valid challenge-response pair enables an attacker to
retrieve 24 bits of the secret, and thus recover the structure of the cipher. The
attacker can obtain a valid challenge-response pair by making a diagnostic device
authenticate to the ECU, which Valasek and Miller demonstrated in [18]. The
cipher, however, can be broken even without knowledge of a challenge-response
pair.

Attack over CAN. We demonstrate how an attacker can recover the secret
used in the Ford cipher for a particular ECU without knowledge of any successful
authentication pairs. Access to the diagnostic interface of the ECU is the only
prerequisite for this attack.

Delay Mechanism. Unified Diagnostic Services specify an error code which indi-
cates a delay timer is active on the ECU in case of too many failed security access
attempts. The specifics of this mechanism are left up to the manufacturer. Many



312 J. Van den Herrewegen and F. D. Garcia

ECUs implement this delay functionality and disable the security access service
temporarily after a certain amount of failed attempts. An attacker can bypass
this by requesting a soft reset using the ECUReset diagnostic service, which
resets all timers and variables. Following a reset the attacker must request a new
diagnostic session before they can request a new challenge.

Recovering Diagnostic Secrets on Ford and Volvo ECUs. We conducted our
attack both on a 2012 Ford Body Control Module (BCM) and a 2015 Volvo
Telematics Unit. These particular units do not implement the delay mechanism
after a failed security access attempt. Once we request a diagnostic program-
ming session, the units remains in programming mode until no further diag-
nostic messages are detected for a certain period (∼5 s). Each security access
attempt requires four CAN messages: a challenge request and reply followed by
a response and a final message indicating whether the response was valid or not.
All CAN frames are 8 bytes for the Ford diagnostic packages, making a physical
CAN frame on the bus 135 bits in the worst case, with stuffing bits taken into
account [20]. On the BCM, the diagnostic interface is available on the high speed
CAN network, which runs at 500 kbit/s. One security access attempt takes four
CAN frames or maximum 540 bits, so with a bitrate of 500 kbit/s that makes for
a minimum of 1.08 ms per attempt, calculation time or other delays not taken
into account. Since we reduced the complexity from 240 of a brute-force attack
to only 224 attempts, this results in a search time of approximately 5 h in the
best case scenario. Due to all other delays, the attack we implemented took
approximately 15 h. We would like to emphasise that, since all ECUs use the
same secret, an attacker only needs to do this once.

3.3 Analysis of the Fiat Challenge-Response Cipher

Through reverse engineering the firmwares of both a current Fiat Body System
Interface (BSI) and its predecessor, used in cars before 2012, we have extracted
the following cipher used for the security access service. We present the cipher
used in the older Fiat BSI for security level 1 and discuss flaws in the design and
key generation process.

Cipher Details. Both the challenge and response are 32-bit in the Fiat imple-
mentation of the security access service. The cipher uses two 16-bit LFSRs, both
with the structure depicted in Fig. 3. Both LFSRs absorb one input bit in each
round, as detailed in Definition 4. The cipher runs for 24 rounds: in the first 8
rounds different constants (S[0] and S[2]) are shifted into each state, whereas in
the remaining 16 rounds the cipher absorbs one bit of the preprocessed challenge
bytes into the state. Finally, the 32-bit response is derived from the LFSRs by
combining the 16-bit internal states.

Definition 3. For a given byte b, the permutation P2(b) : F8
2 → F

8
2 is defined

as follows.

P2(b) =
(
b7 b6 b5 b4 b3 b2 b1 b0
b3 b0 b6 b1 b7 b4 b2 b5

)



Beneath the Bonnet: A Breakdown of Diagnostic Security 313

Ri,j

Fig. 3. Structure of the Fiat LFSR

Definition 4. With given challenge C and secret bytes S[0], . . . , S[3], input bit
Ri,j in round i for LFSR j is defined as follows.

Ri,0 = (C[0] ⊕ S[1], C[2] ≫ 5, S[0])i
Ri,1 = (C[3] ⊕ S[3], P2(C[1]), S[2])i

Analysis of the Cipher. There are several issues in the design and secret
generation of the cipher. The cipher uses two 16-bit LFSRs instead of one 32-
bit LFSR, which reduces the entropy added by the tapped bits and start state
significantly. An exhaustive search over the secret space would take 248 tries,
since an attacker must guess the 16-bit start state, the 16-bit tapping sequence
and the 8-bit constants S[0] . . . S[3]. However, Table 2 depicts the constants found
in the firmware of two different Fiat ECUs. Only the tapped bits, S[0] and S[2]
differ. The nibbles of S[0] and S[2] are reversed in the firmware of the ECUs. Only
the tapped bits in the LFSR are significantly different across the two different
ECUs, which reduces the time of an exhaustive search to only 216 = 65536
attempts.

We have implemented this attack on a Fiat Grande Punto BSI. The diag-
nostic interface of this unit is available on the high-speed CAN bus, which runs
at 500 kbit/s. The ECU enables a delay timer after receiving two unsuccesfull
security access attempts, which lasts 10 s. However, to circumvent this delay
it suffices to establish a default session and immediately thereafter request a
new programming session, which resets the timers on the ECU. Thus, every two
security access attempts require 12 CAN frames: a programming mode request
and response, four frames for obtaining and validating a challenge-response pair
(which we do twice) and finally a default mode request and response. This makes
for an average of 6 frames per attempt, which comes to a maximum of 810 bits
(including stuffing bits) on the CAN bus. For the reduced search space of 65536
attempts this results in a minimum search time of 106 s. The attack we imple-
mented took just over an hour, which is mostly due to the delay incurred when
changing from and to a programming session. An attacker only needs to perform
this attack once, since diagnostic secrets are shared across similar types of ECUs.

Table 2. Secrets found in the firmware of two different Fiat ECUs

ECU S[0] S[1] S[2] S[3] Taps Start state

Fiat BSI 2012+ 0x12 0xDC 0x34 0x7A 0x8408 0xFFFF

Fiat BSI 2012− 0x21 0xDC 0x43 0x7A 0x3423 0xFFFF



314 J. Van den Herrewegen and F. D. Garcia

3.4 Analysis of the Volkswagen Group Cipher

Through analysing firmwares of both Volkswagen and Audi ECUs, we reverse
engineered the ciphers used in a 2009 Audi Gateway Control Unit and a 2010 VW
Passat Instrument Cluster. The implementation of the cipher in these Volkswa-
gen Group (VAG) ECUs goes as follows. Each ECU contains the same algorithm
which interprets a sequence of bytes stored in the firmware as commands on the
internal state. The cipher uses the randomly generated challenge as the initial
internal state. Subsequently, the algorithm reads the sequence of bytes, which
are parsed as opcodes for the cipher. Each opcode denotes an operation on the
internal 32-bit state, with the five basic operations being: rotate the state to the
left/right, add/subtract a constant to/from the state and XOR the state with
a constant. Based on this information we present the cipher we extracted from
the Audi Gateway Control Unit and assess its security.

Code listing 1. Audi gateway challenge-response algorithm
1: function challenge-response(C) � With C - 32-bit challenge
2: S = C
3: for i in {0 . . . 10} do
4: S = S ≪ 1
5: feedback = S ∧ 1
6: if i ∈ {0, 2, 6, 7} then
7: if feedback == 1 then � For rounds 0, 2, 6 and 7
8: S = S ∧ (∼ 1) � Clear the feedback bit
9: S = S ⊕ 0x04C11DB7 � XOR the tapped bits

10: end if
11: else
12: if feedback == 1 then
13: S = S ⊕ 0x04C11DB7

14: else
15: S = S | 1 � Set the feedback bit
16: end if
17: end if
18: end for
19: return S
20: end function

Cipher Details. Code Listing 1 details the cipher, which runs for 10 rounds.
In each round, the cipher rotates the state to the left. The cipher is a stan-
dard Galois LFSR: if the feedback bit is set, a constant (the tapped bits, i.e.
0x04C11DB7 in the code below) is XORed into the state. Depending on the round,
the feedback bit is either set or cleared.

Weaknesses. Since the internal state of the cipher is equal to the generated
challenge, only the 32-bit tapping sequence adds entropy to the cipher. An



Beneath the Bonnet: A Breakdown of Diagnostic Security 315

attacker with access to one challenge-response pair can recover this 32-bit con-
stant by performing an exhaustive search over the 32-bit secret space. It should
be noted that the flexible nature of the structure of the cipher makes it more dif-
ficult for an attacker to recover the secrets in different ECUs. Indeed, in several
VW Instrument Clusters we found that the cipher runs for a different number
of rounds and XORs the state with multiple constants, making the cipher more
secure.

Additionally, we identified a supplementary security issue in the firmware of
this particular unit: if the diagnostic client provides an invalid response, the ECU
performs an extra check, which compares the response to a hardcoded value (i.e.
0xCAFFE012). The diagnostic tool is authenticated if it provides this value as
the response. Regardless of existing vulnerabilities in the cipher, a hardcoded
backdoor on the ECU introduces extra security implications.

4 Remote Code Execution over CAN

The ciphers we studied in Sect. 3 are in place to protect the ECU from unautho-
rised access. Once a diagnostic device is authenticated, the ECU unlocks priv-
iliged diagnostic functionality, part of which allows executing more advanced
diagnostic protocols like XCP. Despite its widespread use in the automotive
industry, we failed to locate the XCP protocol in the firmware of the ECUs we
studied. Instead, we found that the Original Equipment Manufacturer (OEM)
enables a download of the XCP stack to the RAM of an ECU through vari-
ous diagnostic services. Piggybacking on this required functionality for the XCP
protocol, we have identified a generic approach to execute arbitrary code on an
ECU over the CAN bus. Through our own reverse engineering efforts we have
encountered this mechanism in ECUs made by several manufacturers. Provided
that an attacker can bypass the access control mechanism of the diagnostic pro-
tocol as we showed in Sect. 3, the only prerequisite is that they can send and
receive messages on the CAN bus. An attacker with access to the OBD-II port
or who has compromised an ECU on the network, such as the Telematics Unit,
can abuse this functionality to control or reprogram additional ECUs.

The outline of this section is as follows. After specifying the general method
to execute code on an ECU, we show how an adversary with access to the CAN
bus can abuse this mechanism to gain read/write access to the firmware of ECUs
of several manufacturers. From now on we will refer to the piece of binary code
that is sent to the ECU as the secondary bootloader.

Downloading Sequence. Figure 4 shows the sequence of diagnostic messages
required to execute the secondary bootloader on an ECU. Firstly, the diagnostic
client must request a programming session. Until the client authenticates itself to
the ECU, any necessary functionality remains unavailable. Once authenticated,
the client can carry out certain checks and assertions about the ECU. These
usually include reading out the software version and part number of the module
as the secondary bootloader is dependent on the microcontroller. The client can



316 J. Van den Herrewegen and F. D. Garcia

transfer the secondary bootloader to the ECU through the download services
provided by the running diagnostic protocol. Finally, the client requests a routine
control either before or after the download (dependent on the manufacturer) in
order to redirect the program flow to the secondary bootloader, which now resides
in RAM.

Request programming session

programming session()
Challenge Request

Challenge Reply

calc response(challenge) calc response(challenge)

Send Response

Authenticated

Request Download

Transfer Data

. . .

Request Transfer Exit

Routine Control

exec bootloader()

Fig. 4. Execution of the secondary bootloader

Memory Limitations. The ECU only provides a small area in RAM for the
secondary bootloader, which usually suffices if the downloaded code performs a
simple task (such as updating a variable in memory). Otherwise, the bootloader
can download additional code into the RAM of the unit over the CAN bus.

4.1 Use Case: Changing the Odometer on a Ford Instrument
Cluster

We have managed to change the odometer value on a 2016 Ford Focus Instru-
ment Cluster (IC) through the secondary bootloader. The download of the sec-
ondary bootloader goes as follows for all Ford and Volvo ECUs we have anal-
ysed. With the ECU in a programming session and our device authenticated, we



Beneath the Bonnet: A Breakdown of Diagnostic Security 317

send a requestDownload message. The request has two arguments: the download
address, which is located in RAM, and the size of the bootloader. If the micro-
controller uses a paging mechanism, the address consists either of a page number
and address within the page, or a physical address. Subsequently, we can transfer
the secondary bootloader using the transferData service, after which the ECU
expects a requestTransferExit message. Finally, to execute the downloaded code,
we must send a routineControl message. Arguments to this message are the rou-
tine identifier, which is 0x301, and the exact address where the microcontroller
should jump to. The mileage on this Instrument Cluster is stored on an exter-
nal Electrically Erasable Programmable Read-Only Memory (EEPROM) chip,
namely the M95320 manufactured by ST Microelectronics. The main microcon-
troller, a Renesas µPD70F3425, is connected to the EEPROM chip through a
Serial Peripheral Interface (SPI). Once we identified the pins used for the serial
communication with the EEPROM chip, we managed to arbitrarily reduce the
mileage by writing the desired value to the memory locations where the mileage
is stored. Multiple ECUs store the mileage in a modern car, meaning that an
attacker must repeat this process for all relevant ECUs if he wishes to success-
fully tamper with the mileage in a car.

It should be noted that Valasek and Miller first documented this bootloader
mechanism to reprogram a Ford Smart Junction Box in [18]. There are several
differences to the sequence denoted above compared to what Valasek and Miller
describe. Firstly, the address the authors specify in the download request to the
ECU is zero, which makes the ECU download the code to a predefined address
in RAM. Subsequently, the authors call a routine control with identifier 0x304,
making the ECU jump to the same predefined address as the download. Finally,
the code is only executed if the first four bytes of the secondary bootloader are
equal to a value stored in the firmware of the ECU. We have only encountered
this ‘security’ feature in one of the Ford ECUs we analysed.

4.2 Use Case: Reprogramming a Fiat Body System Interface

We have analysed the reprogramming process for both a current Delphi Fiat
Body System Interface (BSI) and its predecessor, which are deployed in a range
of Fiat vehicles. Execution of the secondary bootloader goes as follows for both
Fiat BSIs. The ECU must be in a programming session and ‘unlocked’ for secu-
rity level 1, following the steps from Sect. 3. In order to execute the downloaded
code after the download, we must first write the identifiers with ID’s 0xF184
and 0xF185 through the writeDataByIdentifier service. This sets a flag in mem-
ory necessary for the following routine control to complete successfully. Next,
we must execute the eraseMemory routine control with arguments the identifier
(0xFF00), the start address and end address of the memory area in RAM to
which we will download the code. In order to make the microcontroller jump
to the code, it is crucial that this range is equal to the size of the downloaded
data. Otherwise, the download will terminate normally but will not result in a
jump to RAM. If all prerequisites described above are met, the microcontroller
will jump to a predefined address in RAM after the last TransferData request.



318 J. Van den Herrewegen and F. D. Garcia

This address is set in the firmware and is dependent on the memory layout of
the microcontroller as the bootloader always resides in RAM. Hence, in order
to redirect the program flow to our code, this predefined address must be con-
tained within the download range of the bootloader. Trace 1 shows the required
diagnostic messages to execute the bootloader.

While the microcontroller runs on a 32-bit architecture, both addresses
required as arguments in the routine control preceding the download are only 3
bytes long. The ECU translates these by prepending them with 0xFF, resulting
in an address located in RAM. Before the ECU executes the downloaded code, it
activates the watchdog timer in reset mode, which generates an unmaskable reset
interrupt when the timer overflows, making the microcontroller reboot. The sec-
ondary bootloader can circumvent this mechanism by resetting the timer before
an overflow occurs, implying that the unit will only resume its normal function-
ality once the bootloader performs a manual reset, for instance by jumping to
the reset vector.

Trace 1. Executing the secondary bootloader on a Fiat BSI
0x18da40f1 2 10 2 Programming s e s s i o n
0x18daf140 6 50 2 0 32 1 f4 0
0x18da40f1 2 27 1 Secur i ty a c c e s s
0 x18daf140 6 67 1 81 6e e7 f8 0
0x18da40f1 6 27 2 ac eb 3e 3e
0x18daf140 2 67 2 78 0 0 0 0
0x18da40f1 10 10 2e f1 85 1 a8 bc Write data by ID
0x18daf140 30 0 0 f f f f f f f f f f
0 x18da40f1 21 ad c f c f ce ce c9 ca
0x18da40f1 22 13 6 21
0x18daf140 3 6e f1 85 f f f f f f f f
0 x18da40f1 10 10 2e f1 84 1 a8 bc Write data by ID
0x18daf140 30 0 0 f f f f f f f f f f
0 x18da40f1 21 ad c f c f ce ce c9 ca
0x18da40f1 22 13 6 21
0x18daf140 3 6e f1 84 f f f f f f f f
0 x18da40f1 10 a 31 1 f f 0 f f ca Routine con t r o l
0 x18daf140 30 0 0 f f f f f f f f f f
0 x18da40f1 21 a0 f f c f 9 f
0 x18daf140 4 71 1 f f 0 0 0 0
0x18da40f1 10 b 34 0 44 0 f f ca Request download
0x18daf140 30 0 0 f f f f f f f f f f
0 x18da40f1 21 a0 0 0 5 0
0x18daf140 4 74 20 4 2 f f f f f f
0 x18da40f1 10 22 36 1 e0 7 60 1 Trans fe r Data

. . .

5 Building a Firmware Modification and Extraction
Framework

We demonstrate the capabilities of the secondary bootloader by developing a
firmware modification and extraction framework. Using the procedure detailed
in Sect. 4, we can execute arbitrary code on any ECU that implements this mech-
anism. The code downloaded to the ECU is binary machine code, so at the very
least we must know the architecture of the ECU. Many microcontrollers used
in ECUs are automotive-grade microcontrollers and thus incorporate at least



Beneath the Bonnet: A Breakdown of Diagnostic Security 319

Table 3. ECUs on which we implemented the firmware extraction framework

Make Year Model ECU Microcontroller Architecture

Ford 2012 Focus MK3 Body control module MC9S12XEP768 HCS12X

2012, 2014,
2016

Focus MK3 Instrument cluster µPD70F3425 V850E

2008 Fiesta MK6 Instrument cluster MC9S12HZ256 HCS12

2013, 2014,

2015, 2017

Fiesta MK7 Instrument cluster MC9S12XEQ384 HCS12X

Volvo 2015 V50 Telematics unit SH7267 SH2Aa

Fiat >2012 500 Body system interface µPD70F3379 V850E1

<2012 Grande Punto Body system interface µPD70F3237 V850E1
a We failed to extract the firmware from this unit because we did not have access to

a CAN driver

one on-chip CAN interface. This framework aims to transmit the firmware over
CAN so the code must contain a minimal microcontroller-specific CAN driver
with transmitting capabilities. Table 3 lists the ECUs on which we implemented
this framework, along with the incorporated microcontroller and the architec-
ture on which it runs. We built a cross toolchain from the GNU GCC source to
compile our code for each architecture we encountered.

Downloading and Executing the Code. The ECU only accepts downloads
to a specific area in RAM which varies in different ECUs. Additionally, some
units only accept a RequestDownload message with a 4 byte address and a 4
byte size, while others are more flexible. UDS provides a set of common nega-
tive response codes. If the ECU receives a request with the incorrect format, it
replies with a negative response with code 0x13, which means incorrect message
length or invalid format. Contrarily, if the format of the request is correct but
the address or size is not within the correct range, the unit responds with error
code 0x31, indicating request out of range. The ECU does not limit the amount
of unsuccessful download requests, so we can find this address by covering the
complete address space of the microcontroller. Provided that we know the mem-
ory layout of the microcontroller, we can limit the range significantly since the
address is located in RAM. To further reduce the range, we can increment the
address by 0x10 each time while the size remains constant. With a common ECU
RAM size of 128 KiB, that makes for a maximum of 8192 attempts.

We can transmit the firmware of an ECU over CAN by dereferencing a pointer
and transmitting it until all valid addresses are covered. It suffices to jump to the
reset vector to resume normal operation of the ECU. Additionally, we can modify
certain crucial parts of the firmware from within the secondary bootloader.

Gaining Access to All Diagnostic Security Levels. In order to be able
to authenticate to the ECU on all security levels, an attacker must only recover
one secret, namely the secret required for downloading the secondary bootloader



320 J. Van den Herrewegen and F. D. Garcia

to the ECU. In the ECUs we have analysed this was always security level 1 in
programming mode. The bootloader can extract the firmware, which includes the
cipher secrets for additional levels of security. This renders the multiple levels of
security defined in diagnostic standards obsolete, provided that an attacker can
locate the secrets in the firmware of the ECU.

6 Mitigation

The only security measure preventing an attacker from downloading code to
the unit is the security access service. It is therefore crucial that the chal-
lenge-response protocol implemented by the manufacturer is cryptographically
sound. Khan [15] proposes the use of the Advanced Encryption Standard for
the challenge-response protocol. Given the keys are diversified per car and ECU
this would enhance the seed-key security significantly. However, since AES is
a symmetric key encryption scheme, the encryption key must be stored in the
firmware of the ECU. Unless special hardware is used to protect against reading
this encryption key, an attacker can recover the secret key and use it on other
ECUs which employ the same key.

A public-key based approach would mitigate the key diversification issues and
does not require additional hardware. When a diagnostic client is connected, no
time constraints are in place since the car is meant to be stationary during diag-
nostic maintenance. To mitigate the risk of replay attacks, the challenge is 128
bits long. The diagnostic client generates the response by signing the received
challenge with its private key. The ECU verifies the response under the public
key, which can be stored in the firmware of the unit. With the computational
limitations of ECUs in mind, often running on a 32-bit or even 16-bit architec-
ture, the Elliptic Curve Digital Signature Algorithm (ECDSA) with curve NIST
P-256 [21] would be a suitable candidate [8], resulting in a response length of
512 bits.

Moreover, to mitigate the risk of unauthorised code execution on the ECU,
the manufacturer can take a similar public-key based approach. If the ECU only
accepts downloaded code signed with authorised private keys, no attacker can
execute code through this mechanism without knowledge of a valid private key.
An attacker with access to the firmware could overwrite the public key with their
own public key, which allows them to download code to the unit signed with the
attacker’s private key. However, we argue that an attacker with the possibility to
overwrite the public key can equally overwrite any code in the ECU, making the
bootloader mechanism obsolete. Even with access to the firmware, an attacker
can’t recover any private keys necessary to execute code on other similar ECUs.

Finally, more secure CAN communication would mitigate the risk of an
attacker controlling the complete network from a previously compromised node.
Radu et al. proposed LeiA [22], a light-weight authentication protocol for ECUs
connected to the CAN bus. In order to transmit on a certain CAN ID, a node
must have the authentication key corresponding to that identifier. A node trans-
mits a Message Authentication Code (MAC) along with each message. Receiving



Beneath the Bonnet: A Breakdown of Diagnostic Security 321

nodes can check the validity of the sender simply by computing the same MAC.
In this scenario, a node would be secure against attacks from the internal network
if no other node has the authentication key for its diagnostic CAN ID.

7 Discussion

Security of Diagnostic Authentication Mechanisms. All the ciphers stud-
ied in Sect. 3 use some form of proprietary cryptography, with an insufficient
challenge and response size of 24 or 32 bits, and an equally small internal state
of the cipher. We have shown that if an attacker can obtain a challenge-response
pair they can then often recover secret keys of the cipher. No time constraints
exist when the ECU is connected to a testbench, as described in [19], making a
successfull attack over CAN possible.

Efficiently generating and diversifying cryptographic keys for each individ-
ual car and ECU remains a difficult issue to solve for manufacturers, as shown
in previous research [7,28]. Valasek and Miller raised the issue of diagnostic
key diversification when extracting a set of secrets from a diagnostic device.
They (re)used these secrets to authenticate to two ECUs under test. We have
encountered similar issues for diagnostic secrets. From our experiments, diagnos-
tic secrets are not diversified for ECUs in each car. An attacker who can recover
the secrets for one ECU often has access to other ECUs of the same type or
function, since manufacturers reuse these across different models.

Implications. There are several implications of the insecurity of the bootloader
mechanism. Firstly, by dumping the firmware of security sensitive ECUs (such as
the Passive Keyless Entry or immobilizer), an attacker can recover cryptographic
keys necessary to unlock or start the vehicle. An attentive reader might say
that an attacker with access to the internal network does not need to recover
cryptographic keys. However, Checkoway et al. present an analysis of remote
attack services in [4]. More remote vulnerabilities are covered in the literature [6,
23,24]. These are often generic to the model or even make of the car, implicating
that if an attacker gains access to a car through one of these generic remote
channels, they could read out cryptographic keys specific to that car.

Additionally, an attacker with access to the CAN bus through the OBD-
II port, a compromised ECU or maybe by simply pulling a camera or parking
sensor can reprogram or even disable connected ECUs. They can escalate an
existing vulnerability to take control over ECUs on the same CAN bus as the
compromised node, potentially magnifying the impact of a remote exploit. This
would make the notion of an automotive worm possible.

Responsible Disclosure. Following standard responsible disclosure practise,
we have informed the relevant car manufacturers of the vulnerabilities described
in this paper in April 2018, five months ahead of publication. It should be noted
that, even though the production of an ECU is outsourced to a third party (a
Tier 2 or 3 supplier), the OEMs specify the required diagnostic functionality in
their ECUs.



322 J. Van den Herrewegen and F. D. Garcia

8 Conclusion

In this paper we expose several vulnerabilities in diagnostic security. Firstly, we
demonstrate how an attacker can bypass the challenge-response security used in
diagnostic protocols. All the studied ciphers use some sort of proprietary cryp-
tography, namely a slighlty adapted version of the Galois-LFSR. 32- or 24-bit
challenges and responses and an equally small internal state further add to the
insecurity of the ciphers. We demonstrate this by conducting an attack over CAN
and recovering secrets through a limited amount of challenge-response pairs. Fur-
thermore, we document the secondary bootloader, a piece of machine code which
a CAN node can download to the RAM of a connected ECU through various
diagnostic functions. An attacker can abuse this mechanism to recover crypto-
graphic keys, adjust variables in memory or simply disable the ECU. Utilising
the functionality implemented for this secondary bootloader, we build a generic
firmware modification and extraction framework. To conclude, the challenge-
response protocol is the main (and often only) access control mechanism on
the ECUs we have studied. The proprietary ciphers used in this protocol are
substandard, making it possible for an attacker to bypass these and control all
peripherals of the microcontroller through the secondary bootloader, which they
can download to RAM. Well deployed public-key cryptographic primitives would
mitigate both of these issues.

References

1. The Universal Measurement and Calibration Protocol Family. Standard, Associa-
tion of Standardisation and Automation and Measuring Systems (2016)

2. Bogdanov, A.: Linear slide attacks on the KeeLoq block cipher. In: Pei, D., Yung,
M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 66–80. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79499-8 7

3. Bono, S., Green, M., Stubblefield, A., Juels, A., Rubin, A.D., Szydlo, M.: Secu-
rity analysis of a cryptographically-enabled RFID device. In: Proceedings of the
14th USENIX Security Symposium (USENIX Security 2005), pp. 1–16. USENIX
Association (2005)

4. Checkoway, S., et al.: Comprehensive experimental analyses of automotive attack
surfaces. In: 20th USENIX Security Symposium (USENIX Security 2011). USENIX
Association (2011)

5. European Directive: 98/69/EC of the European Parliament and of the Council of
13 October 1998 relating to measures to be taken against air pollution by emissions
from motor vehicles and amending Council Directive 70/220/EEC. Official J. Eur.
Communities L 350(28), 12 (1998)

6. Foster, I., Prudhomme, A., Koscher, K., Savage, S.: Fast and vulnerable: a story
of telematic failures. In: Proceedings of the 9th USENIX Conference on Offensive
Technologies, WOOT 2015 (2015)

7. Garcia, F.D., Oswald, D., Kasper, T., Pavlidès, P.: Lock it and still lose it-on
the (in) security of automotive remote keyless entry systems. In: 25th USENIX
Security Symposium (USENIX Security 2016), pp. 929–944. USENIX Association
(2016)

https://doi.org/10.1007/978-3-540-79499-8_7


Beneath the Bonnet: A Breakdown of Diagnostic Security 323

8. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve
cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-28632-5 9

9. Indesteege, S., Keller, N., Dunkelman, O., Biham, E., Preneel, B.: A practical
attack on KeeLoq. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
1–18. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 1

10. Road vehicles - controller area network (CAN) - part 1: data link layer and physical
signalling. Standard, International Organization for Standardization, Geneva, CH
(2015)

11. Road vehicles unified diagnostic services (UDS) specification and requirements.
Standard, International Organization for Standardization, Geneva, CH (2006)

12. Road vehicles diagnostic systems keyword protocol 2000 part 3: application layer.
Standard, International Organization for Standardization, Geneva, CH (1999)

13. Diagnostic Connector Equivalent to ISO/DIS 15031–3. Standard, SAE, Interna-
tional (2012)

14. Kasper, M., Kasper, T., Moradi, A., Paar, C.: Breaking KeeLoq in a flash: on
extracting keys at lightning speed. In: Preneel, B. (ed.) AFRICACRYPT 2009.
LNCS, vol. 5580, pp. 403–420. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02384-2 25

15. Khan, J.: ADvanced Encryption STAndard (ADESTA) for diagnostics over CAN.
SAE Int. J. Passeng. Cars - Electron. Electr. Syst. 8(2), 296–305 (2015)

16. Kleinknecht, H.: Can calibration protocol version 2.1. Germany: ASAM eV, pp.
2–18 (1999)

17. Koscher, K., et al.: Experimental security analysis of a modern automobile. In:
2010 IEEE Symposium on Security and Privacy (SP), pp. 447–462. Institute of
Electrical and Electronics Engineers (2010)

18. Miller, C., Valasek, C.: Adventures in automotive networks and control units. Def.
Con. 21, 260–264 (2013)

19. Miller, C., Valasek, C.: Car hacking: for poories. Technical report, IOActive Report
(2015)

20. Nolte, T., Hansson, H., Norström, C., Punnekkat, S.: Using bit-stuffing distribu-
tions in can analysis. In: IEEE Real-Time Embedded Systems Workshop at the
Real-Time Systems Symposium (2001)

21. Pornin, T.: Deterministic Usage of the Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA). RFC 6979 (2013)

22. Radu, A.-I., Garcia, F.D.: LeiA: a lightweight authenticatiton protocol for CAN.
In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016.
LNCS, vol. 9879, pp. 283–300. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45741-3 15

23. Rouf, I., et al.: Security and privacy vulnerabilities of in-car wireless networks: a
tire pressure monitoring system case study. In: 19th USENIX Security Symposium
(USENIX Security 2010). USENIX Association (2010)

24. Valasek, C., Miller, C.: Remote exploitation of an unaltered passenger vehicle.
Technical report, Illmatics (2015)

25. Vector Informatik: Product Catalog 5 (2010)
26. Verdult, R., Garcia, F.D.: Cryptanalysis of the megamos crypto automotive immo-

bilizer. USENIX; login, pp. 17–22 (2015)

https://doi.org/10.1007/978-3-540-28632-5_9
https://doi.org/10.1007/978-3-540-28632-5_9
https://doi.org/10.1007/978-3-540-78967-3_1
https://doi.org/10.1007/978-3-642-02384-2_25
https://doi.org/10.1007/978-3-642-02384-2_25
https://doi.org/10.1007/978-3-319-45741-3_15
https://doi.org/10.1007/978-3-319-45741-3_15


324 J. Van den Herrewegen and F. D. Garcia

27. Verdult, R., Garcia, F.D., Balasch, J.: Gone in 360 s: hijacking with Hitag2. In: 21st
USENIX Security Symposium (USENIX Security 2012), pp. 237–252. USENIX
Association (2012)

28. Verdult, R., Garcia, F.D., Ege, B.: Dismantling megamos crypto: wirelessly lock-
picking a vehicle immobilizer. In: 22nd USENIX Security Symposium (USENIX
Security 2013), pp. 703–718. USENIX Association (2013)


	Beneath the Bonnet: A Breakdown of Diagnostic Security
	1 Introduction
	2 Background
	2.1 Unified Diagnostic Services
	2.2 Diagnostic Communication Channels
	2.3 Universal Measurement and Calibration Protocol

	3 Cryptanalysis of Diagnostic Protocols
	3.1 Obtaining and Analysing ECU Firmware Images
	3.2 Analysis of the Ford Challenge-Response Cipher
	3.3 Analysis of the Fiat Challenge-Response Cipher
	3.4 Analysis of the Volkswagen Group Cipher

	4 Remote Code Execution over CAN
	4.1 Use Case: Changing the Odometer on a Ford Instrument Cluster
	4.2 Use Case: Reprogramming a Fiat Body System Interface

	5 Building a Firmware Modification and Extraction Framework
	6 Mitigation
	7 Discussion
	8 Conclusion
	References




