
Making Any Attribute-Based Encryption
Accountable, Efficiently

Junzuo Lai1,2(B) and Qiang Tang3

1 Ji’nan University, Guangzhou, China
laijunzuo@gmail.com

2 State Key Laboratory of Cryptology, Beijing, China
3 New Jersey Institute of Technology, Newark, USA

qiang@njit.edu

Abstract. Attribute-based encryption (ABE) as one of the most inter-
esting multi-recipient public encryption systems, naturally requires some
“tracing mechanisms” to identify misbehaving users to foster account-
ability when unauthorized key re-distributions are taken place.

We give a generic construction of (black-box) traceable ABE which
only doubles the ciphertext size of the underlying ABE scheme. When
instantiating properly, it yields the first such scheme with constant size
ciphertext and expressive access control.

Furthermore, we extend our generic construction of traceable ABE to
support authority accountability. This property is essential for generating
an un-deniable proof for user misbehaviors. Our new generic construc-
tion gives the first black-box traceable ABE with authority accountabil-
ity, and constant size ciphertext. All properties are achieved in standard
security models.

1 Introduction

Attribute-Based Encryption (ABE), first introduced in [12,29], naturally gener-
alizes the concept of identity based encryption (IBE) to support more expres-
sive “identities” as they can be any string. Two major types of attribute based
encryption schemes exist: ciphertext-policy attribute based encryption (CP-
ABE) [2] and key-policy attribute based encryption (KP-ABE) [12]. In a CP-
ABE scheme, each ciphertext is associated with a decryption policy which can
be represented using e.g., an access structure or a boolean formula; every user’s
decryption key is associated with an attribute set which is used to describe the
key owner. A user is able to decrypt a ciphertext only if the set of attributes
associated with the user’s decryption key satisfies the decryption policy associ-
ated with the ciphertext. While in a KP-ABE scheme, the situation is reversed,
where every ciphertext is associated with a set of attributes and every user’s
decryption key is associated with an access structure.

Since its introduction, great advancements have been taken place over the
years, both on the expressibility of the decryption policy (can be as general as
an circuit [8,9]), and on the asymptotic efficiency (e.g., constant size ciphertext).
c© Springer Nature Switzerland AG 2018
J. Lopez et al. (Eds.): ESORICS 2018, LNCS 11099, pp. 527–547, 2018.
https://doi.org/10.1007/978-3-319-98989-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98989-1_26&domain=pdf

528 J. Lai and Q. Tang

Due to its expressibility, attribute based encryption could be very useful
in many settings, here we list two typical application scenarios: (i) enforcing
access control by encrypting the data with the access control policy, and issuing
decryption keys to users according to their attributes. Such mechanism can be
used in company internal networks to improve the robustness of their access
control functionality. (ii) distributing contents via a cloud or content delivery
network. The content provider simply encrypts the data and store the ciphertext
in the publicly accessible cloud, then he issues decryption keys for each subscriber
according to his subscription package. For instance, a movie producer encrypts
two versions of a movie (based on the resolutions, say) m1,m2. The decryption
policy for the ciphertext corresponding to the standard quality version m1 (say
720p) is “(status = regular user ∨ status = premier user) ∧ age ≥ 18” and the
decryption policy for the high resolution version m2 (say 1080p) is “status =
premier member ∧ age ≥ 18”. During the subscription, a premier subscriber
who paid higher fees can obtain decryption key that allows him to have access
to the high resolution version of the movie.

Despite all recent advancements and those potential applications, attribute
based encryption schemes still have not been widely deployed in practice. Besides
the potential problem of its concrete efficiency, there is another serious account-
ability problem that needs to be addressed before the deployment of attribute
based encryption (at least to the above two application scenarios). We can see
that attribute based encryption is a special kind of multi-recipient encryption
scheme in which the decryption capability (or the attributes) from different users
may overlap. Imagine in the access control example, each employee in a company
is assigned with a secret key according to his position (and the corresponding
access rights) to get access to the company documents which may contain busi-
ness secret. A natural key management policy of the company could be “do not
share your decryption key to others, especially to outsiders”. But there is no way
to prevent a “corrupted” employee from doing so. Although an employee may
not directly expose her decryption key material, she can still write a decoder pro-
gram and share a potentially more restricted decoder program to others. When
such an unauthorized decoder, which can be used to decrypt ciphertext with cer-
tain policies, is noticed, there are multiple key owners might be suspects. Thus
identifying the source of such unauthorized sharing is critical for the manager
to carry out proper punishments in order to enforce his key management policy.
Similar issue arises in the second application scenario that a pirate decoder of
movies should be trace back to the misbehaving subscriber.

The first accountability property we will pursue is to enable tracing1 from an
unauthorized decoder to the actual key owner. From the first look, such trace-
ability in ABE schemes seems to be very close to that in traitor tracing schemes
[6]. The major difference here is that in a traitor tracing scheme, every user
has the same privilege, just finding out one corrupted user is a reasonable goal.

1 We note here that the tracing mechanism we are pursuing in this paper follows a
similar vein to the well-known notion of traitor tracing [6], and it is not hard to see
that completely preventing the unauthorized leakage is essentially infeasible.

Making Any Attribute-Based Encryption Accountable, Efficiently 529

While in the setting of ABE, different user may have different access right, just
identifying one corrupted user is not satisfying. For example, in the movie distri-
bution application, the two users, one with attribute “status = premier member”
and the other with attribute “status = regular member”, collude to produce a
pirate decoder that has attribute “status = premier member”, but the tracing
algorithm may only return the user with attribute “status = regular member”,
who has less to lose. (Such difference was first pointed out and formalized by
Katz and Schroder in [13] in the setting of predicate encryption.) It turns out
that trivially combining ABE with a traitor tracing scheme would only achieve
above weak traceability and fail for the stronger traceability requirement. (see
details at the end of Sect. 3.1). A series of works tried to combine traitor tracing
and ABE in a complex way for achieving stronger traceability.

As a result, they will have to use the inefficient ABE schemes or traitor
tracing constructions, thus incur large ciphertext overhead (e.g., square root of
the number of users [22]); or only support very primitive policy [20], and white-
box traceability [23,24]. Instead, in this paper, we demonstrate how to compile
any ABE scheme to satisfy the stronger traceability. Such flexibility enables
us to choose the best possible ABE scheme to remove both hurdles above. In
particular, the size of ciphertext can be pushed down to constant.

However, having strong traceability is still not enough for resolving the
accountability problem in attribute based encryption. To see this, let us continue
with the above example. Suppose one employee is traced from an unauthorized
decoder leaked to the competing company by the manager. When the manager
shows the result and asks the employ to resign, the employee can confidently
deny and claim that the tracing result is not an non-repudiable proof thus can-
not be considered as an evidence for her misbehavior (even brought to a court).
This is true because attribute based encryption has the key escrow problem that
a key generation center is needed to issue the decryption keys. In this case, either
a corrupted user who obtains a secret key from the key generation center, or a
corrupted key generation center could be responsible.

The above further motivates us to consider the “accountability” on the key
generation center so that an un-deniable proof can be established once a misbe-
having user is caught. This is a natural generalization of accountable authority
identity based encryption proposed in Crypto’ 07 [10] in which every identity
will correspond to exponentially many keys, and the user picks one of them
obliviously. There are also works considering such a notion in ABE [25]. Unfor-
tunately, besides relying on specific ABE construction and inherit all weakness,
all those results can only work if the corrupted party (either a key owner or the
key generation center) leaks a well-formed secret key. This obviously cannot be
true in practice as the corrupted party can simply modify the key material and
give instructions about how to adapt the decryption algorithm, or even write an
obfuscated program so that the actual secret key used is never exposed. What’s
worse, this condition also puts further restriction on the definition of non-framing
property, i.e., a malicious key generation center cannot frame an innocent user.
In such a definition, the adversary is only allowed to run key generation protocol

530 J. Lai and Q. Tang

for one specific victim. However, in practice, a key generation center can always
wait until many keys are issued, and frame one of them.

We also make progress along this line. We further compile our generic trace-
able CP-ABE scheme to support authority accountability which allows black-box
tracing, i.e., the tracing algorithm only needs oracle access to an unauthorized
decoder, and no artificial restriction is put on the non-framing definition.

1.1 Our Contributions

In this paper, we give a thorough study of accountability problems in attribute
based encryption schemes. We give a generic construction of traceable ABE
schemes and further make them accountable authority. Moreover, the generic
construction only doubles the ciphertext size and supports black-box traceability
which is the standard model for tracing. The benefits of such a generic construc-
tion are twofolds:

Practical benefits—if we instantiate the generic construction with an efficient
ABE scheme, it gives the first constant size ciphertext traceable ABE scheme,
also the first accountable authority ABE scheme with black-box traceability (still
with constant size ciphertext).

Conceptual benefits—there have been various works considering ad hoc meth-
ods combining ABE schemes with traitor tracing schemes, which “obfuscate” the
essence of traceability in ABE schemes. Our generic construction peels off the
complexity of both its construction and analysis, and demonstrate a simple and
clear picture about how accountability problems in ABE could be addressed. We
use CP-ABE as an example to demonstrate our generic constructions, we note
that our technique actually can easily be adapted to KP-ABE schemes. More
concretely, our contributions are as follows:

1. We first propose a generic construction of traceable CP-ABE that can com-
pile any CP-ABE to have traceability. The traceability is done in a standard
black-box way that the tracing algorithm only need oracle access to the unau-
thorized (or pirate) decoder. Our construction utilizes a combinatorial object
of fingerprinting codes, and expands the attribute set of each user with extra
indices represented by the codeword that is assigned to him. If we pick the
famous Tardos codes [30], our generic construction only double the cipher-
text size of the underlying ABE. An overview comparing the efficiency of our
traceable CP-ABE scheme to those of other traceable CP-ABE schemes is
given in Table 1.
We emphasize that such generic construction achieves the strong traceability
that the accused traitor not only participates in producing the pirate decoder,
but also his attributes are indeed used by the pirate decoder. See Sect. 3 for
formal definitions.

2. We then further transform our generic traceable CP-ABE to be authority
accountable, which means the key generation center cannot be aware of the
user secret key completely, thus an un-deniable proof can be formed if a traitor
is caught from a pirate decoder (this is done via a new Judge protocol). The

Making Any Attribute-Based Encryption Accountable, Efficiently 531

simple structure of our generic construction of traceable CP-ABE provides us
opportunities to upgrade the construction. Inspired by the concept of asym-
metric fingerprinting codes, we adapt asymmetric Tardos codes [14] to the
setting of accountable authority CP-ABE.
This new generic construction for the first time allows black-box traceability
while preserving the efficiency of our traceable CP-ABE. An overview com-
paring the efficiency of our accountable authority CP-ABE scheme to those
of other accountable authority CP-ABE schemes is given in Table 2.
The main challenge in this setting is to ensure no inconsistency between the
tracing and the Judge protocol, i.e., an identified traitor will evade the confir-
mation from the judge. This heavily relies on the security of the asymmetric
fingerprinting scheme. We further utilize a technical building block called fin-
gerprinted data transfer for the key generation protocol to ensure that no
innocent user can be framed.

Table 1. Comparison of traceable CP-ABE schemes, where “N” denotes the total
number of users in the system, and we instantiate our generic construction with the
CP-ABE scheme proposed in [27].

Scheme Large universe Expressiveness of access
structures

Black-box
traceability

Ciphertext size

[20] × × √
O(1)

[23] × √ × O(1)

[24]
√ √ × O(1)

[22] × √ √
O(

√
N)

Ours
√ √ √

O(1)

Table 2. Comparison of accountable authority CP-ABE schemes, where we instantiate
our generic construction with the CP-ABE scheme proposed in [27].

Scheme Large universe Expressiveness of access
structures

Black-box
traceability

Ciphertext size

[25] × √ × O(1)

[32]
√ √ × O(1)

Ours
√ √ √

O(1)

1.2 Related Work

Traceable Attribute Based Encryption. Traceable ABE has been studied in vari-
ous works [20,22–24]. To the best of our knowledge, all of them consider ad hoc
combination of traitor tracing and specific attribute based encryption. In par-
ticular, the scheme in [20] only supports access structures having a single AND

532 J. Lai and Q. Tang

gate with wildcard. The schemes in [23,24] support only white-box traceability,
i.e., it only works against malicious users from leaking well-formed decryption
keys directly. Later in [22], Liu et al. proposed an expressive black-box traceable
CP-ABE, but it incurs large ciphertext size (square root to the total number of
users), thus seriously hinders its practicality. Our generic construction does not
suffer from any of the above restrictions.

Accountable Authority Attribute Based Encryption. In order to mitigate the key
escrow problem and the malicious key delegation problem in CP-ABE, the notion
of accountable authority CP-ABE was studied in [25,32]. Both constructions
only achieve white-box traceability, i.e., requires the adversary to provide a well-
formed secret key. [25] further restricts the malicious key generation center to
execute key generation protocol with only one target user. This is not only unre-
alistic, but also excludes the challenge in tracing systems: the collusion problem.
Those serious restrictions suggest that the notion of accountable authority ABE
has not been understood. Our generic construction makes a step forward.

Accountable Authority Identity Based Encryption. Goyal [10] introduced the
notion of A-IBE as an approach to mitigate the key escrow problem in IBE,
Subsequently, Goyal et al. [11] proposed a construction having traceability in
the full black-box model with large ciphertext size. Libert and Vergnaud [21]
proposed an efficient A-IBE scheme, but only is proven traceable in the weak
black-box model. Sahai and Seyalioglu [28] presented the first A-IBE scheme
which achieves full black-box traceability and adaptive security against dishon-
est users at the cost of having a linear sized ciphertext. Under non-standard
assumptions, Yuen et al. [31] gave an A-IBE scheme with constant-size cipher-
text, while has full black-box traceability and adaptive security against dishonest
users. Lai et al. [19] proposed the first A-IBE scheme with public traceability,
where tracing a decryption box only uses a public tracing key. Recently, Kiayias
and Tang [18] gave a generic A-IBE scheme using oblivious transfer, and showed
how to modify the generic construction to provide public traceability. However,
their technique cannot be trivially extended to ABE setting due to collusion.

Self-enforcement and Proactive Deterring Mechanisms. Self-enforcement was ini-
tially proposed in digital signets that leaking a decryption key leads to revealing
of some user secret [7]. Later it was systematically studied in enforcing key
management policy in public key infrastructure [16], and in deterring copyright
infringement [17]. Especially, leveraging the properties of cryptocurrency, [16,17]
studied how to realize the deterrence that unauthorized re-distribution of pirate
decoder leads to the loss of coins directly. Considering proactive deterring mech-
anisms in ABE would be interesting open problems.

2 Preliminaries

Basic Notations. If S is a set, then s ← S denotes the operation of picking
an element s uniformly at random from S. Let N denote the set of natural
numbers. If n ∈ N then [n] denotes the set {1, . . . , n}. Let z ← A(x, y, . . .)

Making Any Attribute-Based Encryption Accountable, Efficiently 533

denote the operation of running an algorithm A with inputs (x, y, . . .) and output
z. A function f(λ) is negligible if for every c > 0 there exists a λc such that
f(λ) < 1/λc for all λ > λc.

Robust Fingerprinting Code. A binary fingerprinting code [15] is a pair of
algorithms (Gen,Trace), where Gen is a probabilistic algorithm taking a num-
ber n (upper bound on the number of codewords in the system), an optional
number t ∈ [n] = {1, . . . , n} (upper-bound on the detected coalition size), and
security parameter ε as input and outputs n bit-strings C = {C1, . . . , Cn} (called
codewords), where Ci = ci

1 . . . ci
� for i ∈ [�] and a tracing key tk. Trace is a deter-

ministic algorithm inputting the tracing key tk and a “pirate” codeword C∗,
and outputting a subset Uacc ⊆ [n] of accused users. A code is called bias-based
[1] if each codeword Cj = cj

1 . . . cj
� is sampled according to a vector of biases

〈p1, . . . , p�〉, where ∀j ∈ [n],∀i ∈ [�],Pr[cj
i = 1] = pi, and pi ∈ [0, 1].

A fingerprinting code is called t−collusion resistant (fully collusion resistant
if t = n) if for any adversary A who corrupts up to t users (whose indices form
a set Ucor ⊂ {1, · · · , N}), and outputs a pirate codeword C∗ = c∗

1 . . . c∗
n (which

satisfies the marking assumption, i.e., for each i ∈ [�], c∗
i = cj

i for some j ∈ Ucor),

Pr[Uacc = ∅ or Uacc ⊆ Ucor : Uacc ← Trace(tk, C∗)] ≤ ε

This characterizes that the probability that no users are accused or an innocent
user is accused is bounded by ε.

A fingerprinting code is δ−robust if the pirate code is further allowed to
contain the symbol of ‘?’ (not more than δ�, where � is the code length) without
violating the marking assumption: now for each i ∈ [�], eitherc∗

i = cj
i for some

j ∈ Ucor, or c∗
i = ‘?′.

We also recall the Tardos code [30] Fntε here, it has length n = 100t2k,
with k = log 1

ε . The Gen algorithm generates a codeword as follows. For each
segment index j ∈ [�], it chooses a bias pj ∈ [0, 1] according to a distribution
μ (see [30] for the definition of μ). Each bias satisfies 1

300t ≤ pj ≤ 1 − 1
300t ,

where t is the collusion size. For each codeword C = c1 . . . c� outputted by Gen,
Pr[cj = 1] = pj , and Pr[cj = 0] = 1 − pj for all j ∈ [�]. Regarding security,
there is a Trace algorithm such that, for any coalition of size at most t, with
probability at least 1 − εt/4 accuses a member of the coalition, while any non-
member is accused with probability at most ε. Note that Tardos code can be
made robust if we extend the code length (see [3] for details).

Fingerprinted Data Transfer. Our accountable authority ABE scheme will
rely on a more advanced abstraction – fingerprinted data transfer protocol – that
was defined in [14]. A fingerprinted data transfer (FDT) (corresponding to a bias-
based binary fingerprinting code) involves two parties, a sender S and a receiver
R. The sender inputs two biases p0, p1 ∈ [0, 1], four messages (m0

0,m
1
0), (m

0
1,m

1
1),

and a bit c ∈ {0, 1}; At the end of the protocol, R outputs {mbi
i } for i, bi ∈ {0, 1}

such that Pr[bi = 1] = pi; while S outputs bc. The fingerprinted data transfer
functionality can be expressed as:

FDT[⊥, ((p0, p1), (m0
0,m

1
0,m

0
1,m

1
1), c)] = [(mb0

0 ,mb1
1), bc],where Pr[bi = 1] = pi.

534 J. Lai and Q. Tang

The security of a fingerprinted data transfer protocol follows the standard
simulation based paradigm, for details we refer to AppendixA.1.

3 Generic Construction of Traceable Attribute Based
Encryption

In this section, we will discuss our generic construction of traceable CP-ABE
scheme. First we present the formal definitions.

3.1 Definition and Security Models

Traceable CP-ABE. Concretely, a traceable CP-ABE scheme consists of the
following five algorithms:

Setup(n, λ): The setup algorithm takes as input the number of users n in the sys-
tem and a security parameter λ, outputs a master secret key msk, a potential
tracing key tk and the public parameters mpk.

KeyGen(mpk,msk, i, Si): The key generation algorithm takes as input the public
parameter mpk, the master secret key msk and a set of attributes Si. It
outputs a private decryption key ski,Si

, which is assigned and identified by a
unique index i ∈ {1, . . . , n}.

Enc(mpk,m,A): The encryption algorithm takes as input the public parameters
mpk, a message m and a decryption policy that is represented by an access
structure A. It outputs a ciphertext c.

Dec(ski,Si
, c): The decryption algorithm m takes as input the public parameters

mpk, a private decryption key ski,Si
and a ciphertext c. It outputs a message

m or ⊥.
TraceDS (mpk, tk, S) The tracing algorithm takes as input the public parameters

mpk, the tracing key tk, and has black-box access to a δ-useful pirate decoder
DS

2 for a set of attributes S. It outputs an index set I ⊆ {1, . . . , n} which
identifies the set of malicious users.

Security of Traceable CP-ABE. The security of traceable CP-ABE is com-
posed of the standard semantic security and traceability. For the standard seman-
tic security, we refer to Appendix A.2, and here we only define the strong trace-
ability. Intuitively, the goal of the tracing algorithm to identify at least one of
the colluder users, and such identified traitor’s attributes should be “critical” for
the pirate decoder, (also at the same time, no innocent user should be accused).
Consider the following traceability game (which could be describing either weak
traceability and strong traceability):

2 For a non-negligible δ, a pirate decoder DS for a set of attributes S is δ-useful,
i.e. for any message m and any access structure A which is satisfied by S, if
Pr[DS(Enc(mpk, m,A)) = m] ≥ δ.

Making Any Attribute-Based Encryption Accountable, Efficiently 535

Setup: The challenger runs the Setup algorithm to generate public parameters
mpk, tracing key tk, and master secret key msk. It gives mpk to the adversary
A and keeps tk and msk to itself.

Key Query: The adversary adaptively queries the challenger for secret keys
corresponding to sets of attributes S1, . . . , Sq for users with indices k1, . . . , kq.
In response, the challenger runs the key generation algorithm and gives the
corresponding secret key skki,Si

to the adversary for 1 ≤ i ≤ q.
Output: A outputs a δ-useful pirate decoder DS for an attributes set S.

Let C = {ki|1 ≤ i ≤ q} be the indices of the users corrupted by the adversary and
I is the indices of the identified traitors, i.e. the output of TraceDS (mpk, tk, S).
The adversary A wins the strong traceability game if: (1) I = ∅, i.e., no one
is accused; (2) or I ⊆ C, i.e., an innocent user is accused; (3) or none of the
identified traitors’ attributes set includes S as a subset. The meaning of the
third condition characterizes that the identified traitors have to contribute to
the pirate decoder their actual functional key according to their attributes.

The advantage of an adversary in the game is defined as the probability that
A wins the strong traceability game, where the probability is taken over the
random bits used by the challenger and the adversary.

Definition 1. A traceable CP-ABE scheme is strongly traceable if all polynomial
time adversaries have at most negligible advantage in the above game.

Note that the adversary A wins the weak traceability game if we only require
the adversary the first two conditions. With only such a weaker requirement, it is
possible that the identified traitor does not really have the decryption capability
as the decoder. Consider the following trivial generic solution: we run an ABE
scheme and a traitor tracing scheme in parallel, the encryption algorithm will
first split the message m into m1⊕m2 for a randomly chosen m1, and encrypts m1

using ABE scheme and m2 using the encryption algorithm of the traitor tracing
scheme. Such trivial construction can already achieve the weak traceability to
identify one of the corrupted users due to the property of traitor tracing scheme.
However, as these two systems are not tightly bound together, it cannot satisfy
the strong traceability: User i who has the attribute Si and user j who has the
attribute Sj can collude to produce a pirate decoder that has attribute Si, where
user i contributes his partial keys of the ABE system and user j contributes
his partial keys of the traitor tracing system. In this way, user j will always
be identified as a traitor even if he does not have the attributes of the pirate
decoder at all, i.e. attribute Si.

3.2 A Generic Construction from Tardos Codes

Basic Intuition. The above trivial solution shows that the traitor tracing sys-
tem has to be embedded into the ABE system. While it might be feasible to
be based on concrete algebraic structure, from the first look, it is not clear how
we can have a generic construction as ABE itself does not offer traceability. We
observe that instead of considering combing a traitor tracing scheme with an

536 J. Lai and Q. Tang

ABE, we may go to a lower level to identify some combinatoric objects that
could be useful: (1) It enables identifying source with collusion resistance; (2) It
can be embedded to the ABE system generically. In particular, we observe that
fingerprinting codes do offer such properties simultaneously.

In more detail, in a binary fingerprinting code, everyone is assigned with a bit-
string as the codeword. A collusion of corrupted users can pool their codewords
together to produce a pirate code (only restricted by the marking assumption,
see Sect. 2 above for details). There is a tracing algorithm that can identify a
source codeword from such a pirate codeword. Moreover, such traceability can
be easily built into multi-recipient encryption schemes (not only for traitor trac-
ing). The crux here is that each codeword is just a bit string, which can be used
as index for user to assign keys. In the setting of CP-ABE, we can use such
string to select extra dummy attributes, and the encryption policy will expand
the original policy to include such dummy attribute. During regular encryption,
both ciphertext encrypting the same message regarding both dummy attributes
will be present, thus the extra dummy attribute will not influence the original
policy. Tracing can be facilitated by feeding two ciphertext carrying different
plaintext. Based on the responses, tracer can recover a pirate codeword (that
might include ‘?’). The robust fingerprinting code then can be used to find one
corrupted codeword, thus the traitor.

We remark that the marking assumption is enforced simply by the semantic
security of the encryption. More importantly, we do not run the tracing system
in parallel with ABE, instead, each codeword is entangled with the attributes
set, thus the identified traitor’s attributes will be needed for the decoder for sure.
Next, we present the formal description of the construction and analysis.

Detailed Construction. Let (Setup,KeyGen,Enc,Dec) be any CP-ABE
scheme, and (Gen,Trace) be a robust binary fingerprinting code (e.g. robust
Tardos code [3]). Our generic construction of traceable CP-ABE works as
follows:

Setup(n, λ): Let ε = 1/2λ. Run Setup(λ) and obtain (mpk,msk); also run
Gen(n, ε, δ) to obtain {W1, . . . , Wn} := Γ , and tracing key tk, where Wi ∈
{0, 1}�, for i = 1, . . . , n. Choose dummy attributes Attr0, Attr1, and {Attri}
for i = 1, . . . , �, and set

mpk = (mpk, Attr0, Attr1, Attr1, . . . , Attr�), msk = (msk, Γ).

KeyGen(mpk,msk, Si): Suppose user i has attribute set Si. For k = 1, . . . , �, let
w

(i)
k ∈ {0, 1} be the k-th bit of Wi and Si,k = Si ∪ {Attrw

(i)
k } ∪ {Attrk}, run

skSi,k
← KeyGen(mpk,msk, Si,k)

Output the private key ski,Si
= {Wi, skSi,k

}k∈[�].
Enc(mpk,m,A): Choose a random position j ∈ {1, . . . , �} and set Ab = A ∧

{Attrj} ∧ {Attrb}, where b ∈ {0, 1}. Compute

c0 ← Enc(mpk,m,A0), c1 ← Enc(mpk,m,A1)

Making Any Attribute-Based Encryption Accountable, Efficiently 537

Output the ciphertext c = (j, c0, c1).
Dec(mpk, ski,Si

, c): Parse the private decryption key ski,Si
as (Wi, {skSi,k}k∈[�]),

and the ciphertext c as (j, c0, c1). If w
(i)
j = 0, output Dec(mpk, skSi,j

, c0);

otherwise (i.e. w
(i)
j = 1), output Dec(mpk, skSi,j

, c1).
TraceDS (mpk, tk, S): On input the public parameters mpk, the tracing key tk,

and the claimed attribute set S of the pirate decoder, the Trace algorithm
has oracle access to a δ-useful pirate decoder DS and does the following: For
each j in {1, . . . , �}, proceed as follows:
1. Choose an access policy A, it is only satisfied by the attributes set S and

not satisfied by any subset of S.
2. Set Ab = A ∧ {Attrj} ∧ {Attrb}, where b ∈ {0, 1}.
3. According to δ, choose proper parameter N = O(λ2 ln �) and repeat the

procedure of trying decryption for N times: Choose two random message
m, compute

c0 = Enc(mpk,m,A0), c1 = Enc(mpk, 0,A1),

c′
0 = Enc(mpk,m,A0), c′

1 = Enc(mpk,m,A1).

Set c = (j, c0, c1) and c′ = (j, c′
0, c

′
1).

If DS(c) = m0, set wj = 0;
else if DS(c′) = m for more than

√
λ times, set wj = 1;

else, set wj = ‘?′.3

4. Set the pirate codeword W ∗ = w1 . . . w�, and run the tracing algorithm
of the fingerprinting code Trace(W ∗, tk) and output the traitor set I.

Security Analysis. First, semantic security is straightforward. The new encryp-
tion algorithm is simply run the ABE scheme twice. Furthermore, each ciphertext
is encrypted using a more restricted policy. We omit the details for this property.

Next, we discuss why our construction satisfies strong traceability. First, for
simplicity, let us consider the case for δ = 1, i.e., the decoder works perfectly on
S. Suppose for a position i, if all w

(j)
i = 0 for j ∈ Ucor (the corrupted users), then

due to the semantic security, DS will always output the correct decryption, as the
tracing ciphertext c now looks indistinguishable from the regular ciphertext, thus
we can correctly capture wi = 0. Similarly, if all w

(j)
i = 1 for j ∈ Ucor, we can see

that DS will never answer m in the first stage of tests and will always answer m
in the second stage of tests, and we again correctly captures wi = 1. The complex
case is that there are both 0 and 1 for this position i, then the pirate decoder
has to make a decision (including not responding, which yields a “?” that can
be handled by a robust fingerprinting code). If the decoder answers m correctly,
we will set wi = 0; otherwise, the Trace algorithm moves to the second stage of
tests. Now because c′ is identically distributed as a regular ciphertext, according
to correctness, DS will answer correctly and Trace can correctly capture wi = 1.

3 The tracing idea is similar to the tracing mechanism due to Boneh, Naor [4].

538 J. Lai and Q. Tang

To summarize above, the Trace algorithm will always return a pirate code-
word that satisfies the marking assumption, i.e., for each i ∈ [�], wi = w

(j)
i for

some j ∈ Ucor. Then the traceability of the fingerprinting code scheme ensures
I = ∅ ∧ I ⊆ Ucor, where I is the indices of the identified traitors, i.e. the out-
put of TraceDS (mpk, tk, S). Last, let us argue that there exist j ∈ I, such that
Sj ⊆ S. Suppose DS only uses keys whose attributes do not satisfy the policy
A, then it can never decrypt correctly due to semantic security (especially the
collusion resistance of ABE itself). As our Trace algorithm takes action mostly
based on a correct answer, this means the “useful” keys in the pirate decoder
are all those whose attribute set includes S. To put it another way, the pirate
codeword captured by the Trace algorithm is actually generated using codewords
of those “useful” keys only.

An imperfect decoder can also be addressed by repetition (and also the
robustness of the fingerprinting codes). As the pirate decoder DS satisfies δ-
correctness, that means for ciphertext policy that the claimed attribute set S
satisfies, the decoder will answer correctly with probability at least δ. It follows
that at most for δ · n positions, DS stops working, i.e., for δn many positions i,
try decryption using DS by feeding (i, c0, c1) do not give meaningful responses,
which yields wi =‘?’. For other positions, DS will function properly, and the
above analysis still holds.

As the intuition is not too involved and due to space limit, we defer the
complete analysis to the full version and we summarize the security as follows:

Theorem 1. If the underlying CP-ABE (Setup,KeyGen,Enc,Dec) is semanti-
cally secure, and the fingerprint code (Gen,Trace) is δ-robust and fully collusion
resistant, then above CP-ABE scheme is semantically secure and strongly trace-
able.

4 Enforcing Authority Accountability

4.1 Definitions and Security Models

As we mentioned in the introduction, the main requirement of authority account-
ability in traceable ABE is for the following reason: suppose user i is identified
from a leaked decoder, however there is also possibility that the decoder is leaked
by the key generation center. This ambiguity gives malicious users excuses to
evade the punishment. Similar to the concept of asymmetric traitor tracing [26]
and accountable authority identity based encryption, we consider the following
idea: there will be exponentially many keys per user, and the user will choose
one of them obliviously. The technical challenge is to still ensure the structure
of the keys (fingerprinted) to maintain the tracing capability.

The KeyGen algorithm now becomes an interactive protocol between the key
generation center and each user. After a pirate decoder is noticed, the Trace
algorithm will return an index set denoting the corrupted users. There will be
an extra Judge protocol that is run among the key generation center, a judge
and an accused user to decide whether the user is indeed responsible for the

Making Any Attribute-Based Encryption Accountable, Efficiently 539

leakage of the pirate box. From above description, we see that the difference
of an accountable authority ABE is at the KeyGen, Judge protocols, while the
other algorithms are the same as those of traceable ABE. For detailed formal
definition, we refer to AppendixA.3.

Security of Accountable Authority ABE. Again, semantic security can be
easily adapted from standard definitions. Here we focus more on the security
regarding traceability. The first one is the same as traceable ABE, at least one
malicious user should be identified as in traceable ABE and further accused by
the judge. The challenge in this new setting is that the corrupted users may try
to arrange in a way that the result of Trace and Judge to be inconsistent. It is
easy to see that the traceability in this setting simply adds one more requirement
that the Judge protocol should at least accuse one user from the Trace output
(actually we can achieve a much stronger requirement that the Judge will accuse
all malicious traitors identified by Trace algorithm). We refer formal definition
of traceability in AppendixA.3.

The second property is that innocent user cannot be framed by a key gener-
ation center, in this way, an accused user will have no excuse to deny. Consider
the following non-framing game:

Setup: The adversary A plays the role of a malicious key generation center,
generates mpk,msk and sends mpk to the challenger C.

Key Generation: The adversary and the challenger engage in the KeyGen pro-
tocol to generate secret keys for all users. In particular, A selects attribute
sets S1, . . . , Sn and generate secret keys for those attribute sets. The chal-
lenger will receive secret keys skS1 , . . . , skSn

, and the adversary will receive
the tracing key tk.

Output: The adversary outputs a decryption box DS for an attributes set S.

Let I be the indices of the identified traitors, i.e. the output of
TraceDS (mpk, tk, S), and I ′ will be the confirmed traitor indices after the Judge
protocol. The adversary A wins the non-framing game if I ′ = ∅.

Definition 2. An accountable authority CP-ABE scheme is non-framable if all
polynomial time adversaries have at most negligible advantage in the above game.

Remark 1. Previous work [25,32] considered only white-box traceability, thus
in the non-framing game, they also have to specify one single target and only
allows the adversary to run KeyGen for this single user. This essentially excludes
the main challenge of traceability in the multi-recipient encryption—to defend
against collusion. What’s worse, this restricts adversary’s power too much. As
a malicious key generation center, she can obviously output the pirate decoder
after issuing keys to multiple, even to all users in the system. Instead, our model
removes all those restrictions and tries to capture more realistic scenarios. We
also remark that we did not consider here to allow the adversary to issue decryp-
tion queries after the key generation phase [11]. We leave this as an open problem.

540 J. Lai and Q. Tang

4.2 Generic Construction of Accountable Authority CP-ABE

Basic Intuition. As illustrated above, the basic idea is that each user will be
corresponding to exponentially many secret keys, and the user will choose one
of them obliviously. However, note that in our generic construction of traceable
ABE, secret key of each user is with special structure and selected according to
a fingerprinting code. Suppose we extend the length of the fingerprinting code,
then this dummy part can correspond to many keys for one user, and this part
could be oblivious to the key generation center. The major technical challenge is
to achieve traceability and non-framing property simultaneously. We now draw
support from the idea of an asymmetric fingerprinting.

Let us recall the main properties and building blocks of an asymmetric fin-
gerprinting. Suppose we are using the famous Tardos codes [30], which is a bias
based codes. In the asymmetric setting [14], the length of the codeword is dou-
bled. The basic requirements are that the authority is only aware of half of the
codeword, and the user is not aware of where exactly are the locations that the
authority knows the corresponding codeword bits. To facilitate such a goal, a
fingerprinted data transfer protocol for the bias based codes was designed [14].
After the protocol, the user will obtain a codeword (or corrected fingerprinted
data) with length 2�, and each bit (or the corresponding data) will be distributed
according to the bias. And the authority will obtain half of the codeword oblivi-
ously according to his choice of locations. Following the security analysis of [14],
we can run the original tracing algorithm of Tardos codes to identify traitors.
While the judge, using the other half of the codeword, will confirm the accu-
sation. One note we would like to emphasize is that in order to ensure the
consistency during the revealing phase to the judge, each party should store the
transcripts from the other, and force the other party to open correctly if a judge
needs to get involved. We refer detailed protocol to [14].

Now let us look at how to upgrade our traceable ABE to support authority
accountability. The key generation center first prepares the corresponding 2�
keys for each user (those keys are also based on the extended attribute set).
Then using the biases of Tardos codes and the keys as data, the key generation
center and the user execute a fingerprinted data transfer protocol as the KeyGen
protocol. When a pirate decoder is noticed, the authority will run the tracing
algorithm of Tardos codes using the half-codes and the bias as the tracing key.
This will yield a set of colluders. If a user i claimed non-guilty, the Judge protocol
will be initiated. The idea is to mimic the judge in the (asymmetric) Tardos
codes setting. The user and the authority has to supply the judge with the
corresponding fingerprinted data transfer protocol transcripts. The judge checks
the validity of the fingerprinted data transfer protocol transcripts and uses the
other half of the codeword to confirm the accusation.

Detailed Construction. Let (Setup,KeyGen,Enc,Dec) be a CP-ABE system.
We also use a fingerprinted data transfer system FDT regarding robust Tardos
code as a major building block. Our generic construction of accountable author-
ity CP-ABE works as follows:

Making Any Attribute-Based Encryption Accountable, Efficiently 541

Setup(λ): It first runs Setup(λ) to obtain (mpk,msk). Let � be the code length of
robust Tardos code. For each j ∈ [2�], choose bias pj ∈ [0, 1] according to the
distribution defined by Tardos code. Pick a bitstrings v ∈ {0, 1}� uniformly at
random, and choose dummy attributes Attr0, Attr1, Attri for i = 1, . . . , 2�.
Initialize a set W = ∅, and set the tracing key tk = ({pj}j∈[2�], v,W). Set

mpk = (mpk, Attr0, Attr1, {Attri}i∈[2�]), msk = (msk, {pj}j∈[2�], v)

and output the public parameters mpk.
KeyGen(·): This is a protocol between the key generation center and the user.

The key generation center inputs mpk,msk, Sk, and the user inputs mpk, Sk,
where Sk is an attribute set.
The key generation center parses the master secret key msk as (msk,
{pj}j∈[2�], v), and write v as v1 . . . v� where vi ∈ {0, 1} is the i-th bit of v for
i ∈ [�]. For each i ∈ [2�] and b ∈ {0, 1}, let Sb

k,i = Sk ∪ {Attri} ∪ {Attrb},
and run

sk
b

Sk,i
← KeyGen(mpk,msk, Sb

k,i)

Then, for each i ∈ [�], the authority and the user runs the fingerprinted data
transfer protocol (FDT), where the authority inputs two biases p2i−1, p2i, four
messages (sk

0

Sk,2i−1
, sk

1

Sk,2i−1
), (sk

0

Sk,2i
, sk

1

Sk,2i
), and a bit vi.

At the end of the protocol, the user obtains sk
w2i−1

Sk,2i−1
, sk

w2i

Sk,2i
where w2i−1, w2i

∈ {0, 1} and Pr[w2i−1 = 1] = p2i−1,Pr[w2i = 1] = p2i, and the authority
obtains the bit w2i−1+vi

denoted as w̄i. Note that the fingerprinted data
transfer may already contain the necessary committing or zero-knowledge
proof steps to ensure both parties to follow the protocol.
The user’s private key is set as skSk

= (w = w1 . . . w2�, {sk
wi

Sk,i
}i∈[2�]).

The authority uses the half-codeword w̄ = w̄1 . . . w̄� (which is part of the user
codeword) to identify the user, and adds the codeword w̄ to the set W, which
is used to store the half-code of all the users.

Enc(mpk,m,A): Choose a random position j ∈ {1, . . . , 2�} and set Ab = A ∧
{Attrj} ∧ {Attrb}, where b ∈ {0, 1}. Compute

c0 ← Enc(mpk,m,A0), c1 ← Enc(mpk,m,A1)

Output the ciphertext c = (j, c0, c1).
Dec(mpk, skSk

, c): Parse the private decryption key skSk
as (w = w1 . . . w2�,

{sk
wi

Sk,i
}i∈[2�]), and the ciphertext c as (j, c0, c1). If wi = b, output

Dec(mpk, sk
b

Sk,i
, cb).

TraceDS (mpk, tk, S, δ): The Trace algorithm has only oracle access to a pirate
decoder DS . Parse the master secret key msk as (msk, {pj}j∈[2�], v =
v1 . . . v�). Let T = {2i − 1 + vi}i∈[�] be the subset of locations that the key
generation center knows the half-code of the user. For each j ∈ T , run the
Trace algorithm of our traceable ABE scheme in Sect. 3 and output a set I of
traitor indices.

542 J. Lai and Q. Tang

Judge(·) This is a protocol among the key generation center, an identified traitor
i who does not commit guilty and the judge. The key generation center is
with input (mpk,msk,DS , tk), the user is with input (mpk, skSk

), and the
judge is with input (mpk,DS).
1. The user first reveals the complete codeword of her, and prove its cor-

rectness according to the FDT protocol transcript.
2. The key generation center sends the judge the set T = {2j − 1 + vj}j∈[�]

of locations that the key generation knows the half-code of the user, and
proves its validity to the FDT protocol transcripts.

3. The judge then runs the Trace algorithm on the locations of [2�]−T (i.e.,
the set {2j − vj}j∈[�]) via oracle access to DS , and obtains another half
pirate codeword. Then the judge runs a slightly different tracing algorithm
for the underlying Tardos fingerprinting code to decide whether user i is
accused for this half of the pirate codeword (see [14] for details), output
1 if yes.

4. If the judge outputs 1 in the above step, the user will be accused; other-
wise, the user will not be accused.

Remark 2. During the protocols, to enforce each party to be honest, we carried
zero-knowledge proofs at various steps. However, there are several simple opti-
mizations from [14]. As it is enough to demonstrate the idea here, we omit the
details and refer to [14] for optimizations. Furthermore, [14] even achieved group
accusation, i.e., all identified traitors can be confirmed by the judge.

Security Analysis. Semantic security is straightforward as in the traceable
ABE case. Now let us take a closer look at the traceability and non-framing
properties.

Regarding traceability, compared with that in the traceable ABE, there are
two more chances for a malicious user to evade tracing. The first is during the
key generation protocol, whether the user can obtain information about keys
she is not supposed to know, or reveal incorrect information about half of her
codeword. It is easy to see that this cannot happen due to the (sender) security of
the fingerprinted data transfer protocol. The second is whether the malicious user
can cause inconsistency during the Trace and Judge phases. We note here that as
we can extract both halves of the codeword out, this problem essentially reduces
to the property of the underlying Tardos fingerprinting code. Fortunately, this
property of Tardos code was formally demonstrated in [14]. The last is during
the Judge protocol to fool the judge about her complete codeword, the soundness
of the proofs in those steps ensures that this cannot happen.

Regarding non-framing property, there are only a few places that the mali-
cious key generation center can cheat. The first is in the key generation protocol,
there is more information leaked to the key generation center (KGC) than half of
the codeword chosen according to the locations by KGC. This can be prevented
by the security of the (receiver) security of the FDT protocol. The second is
during the Judge protocol, again, the proofs are easily verifiable.

Making Any Attribute-Based Encryption Accountable, Efficiently 543

We remark that the FDT protocol satisfies the standard simulation secu-
rity, thus the composition lemma [5] can be applied and we can replace such
functionality as an oracle during the analysis.

With the above security intuitions, and due to page limit, we defer detailed
security proof to the full version, and we summarize the security as follows:

Theorem 2. If the underlying CP-ABE (Setup,KeyGen,Enc,Dec) is semanti-
cally secure, and the fingerprint code (Gen,Trace) is δ-robust and fully collusion
resistant, and the fingerprinted data transfer protocol satisfies the simulation
security, then above CP-ABE scheme is semantically secure, strongly traceable
and non-framable.

Acknowledgement. We are grateful to the anonymous reviewers for their helpful
comments. The work of Junzuo Lai was supported by National Natural Science Foun-
dation of China (No. 61572235), and Guangdong Natural Science Funds for Distin-
guished Young Scholar (No. 2015A030306045). Qiang Tang was partially supported by
NSFC Fund for Oversea Chinese Scholars (No. 61728208).

A Omitted Definitions

A.1 Simulation Based Security of Fingerprinted Data Transfer

If a protocol satisfies the following properties, we say that it securely implements
fingerprinted data transfer.

Correctness: The receiver will obtain (mb0
0 ,mb1

1), satisfying that Pr[bi = 1] = pi

for i = 0, 1. The sender will receive bc with probability 1.

Receiver Security: The joint distribution of sender’s view and the outputs in a
real the protocol can be simulated by the inputs and outputs of the sender alone
together with the ideal outputs of the functionality. That is, ∀PPT semi-honest
sender S, ∃ PPT S ′, s.t., V IEWS ◦OUTPUT is computationally indistinguish-
able from S ′([(p0, p1), (m0

0,m
1
0,m

0
1,m

1
1), c], bc) ◦ (mb0

0 ,mb1
1 , bc).

Sender Security: The joint distribution of receiver’s view and the outputs in
a real protocol can be simulated by the inputs and outputs of the receiver
alone, together with the ideal outputs. That is, ∀PPT semi-honest receiver R,
∃ PPT R′, s.t., V IEWR ◦ OUTPUT is computationally indistinguishable from
R′(mb0

0 ,mb1
1) ◦ (mb0

0 ,mb1
1 , bc). (here we assume the bits of the codeword {bi} are

publicly recoverable from {mbi
i }.)

A.2 Semantic Security of Traceable ABE

Semantic Security Game. The game between a challenger and an adversary pro-
ceeds as follows:

Setup. The challenger runs the Setup algorithm to generate public parameters
mpk, tracing key tk and master secret key msk. It gives mpk to the adversary
and keeps tk and msk to itself.

544 J. Lai and Q. Tang

Query Phase 1. Proceeding adaptively, the adversary can repeatedly query
the challenger for secret keys corresponding to sets of attributes. In response,
the challenger runs the key generation algorithm and gives the corresponding
secret key to the adversary.

Challenge. The adversary submits two equal length messages m0, m1 and a
challenge access structure A

∗ such that none of the queried attributes sets in
Query Phase 1 satisfies the challenge access structure A

∗. The challenger
flips a random coin β ∈ {0, 1}, and runs Enc(mpk,mβ , A∗) to get the challenge
ciphertext c∗. The resulting c∗ is given to the adversary.

Query Phase 2. The adversary continues to adaptively issue private key queries
as Query Phase 1 with the restriction that the adversary can not issue
queries on sets of attributes which satisfy the access structure A

∗.
Guess. Finally, the adversary A outputs a guess β′ ∈ {0, 1}. The adversary wins

if β′ = β.

The advantage of A in this game is defined as |Pr[β′ = β] − 1
2 |, where the

probability is taken over the random bits used by the adversary A and C.

Definition 3. A traceable CP-ABE scheme is semantically secure if all polyno-
mial time adversaries have at most negligible advantage in the above game.

A.3 Accountable Authority CP-ABE

Concretely, an accountable authority CP-ABE scheme consists of the following
five algorithms:

Setup. The setup algorithm takes as input a security parameter λ, outputs a
master secret key msk, the tracing key tk and the public parameters mpk.

KeyGen. This is an interactive protocol between the key generation center and a
user. The common input to key generation center and the user are the public
parameters mpk and the attributes set S of the user. The private input to key
generation center is the master secret key msk. At the end of the protocol, the
user receives a private key skS , which is assigned and identified by a unique
index.

Enc. The encryption algorithm takes as input the public parameters mpk, a
message m and an access structure A. It outputs a ciphertext c.

Dec. The decryption algorithm m takes as input the public parameters mpk, a
private decryption key skS and a ciphertext c. It outputs a message m or ⊥.

Trace. The tracing algorithm takes as input the public parameters mpk, the
tracing key tk, and has black-box access to an δ-useful pirate decoder DS

for a set of attributes S. It outputs an index set I which identifies the set of
malicious users.

Judge. This is an interactive protocol among the key generation center, a user
who does not commit guilty and the judge. The common input to the key
generation center, the user and the judge are the public parameters mpk and
a δ-useful pirate decoder DS . Additionally, the key generation center is with
input the tracing key tk, and the user is with input his/her private key skS .
At the end of the protocol, the judge decides whether the user is acquitted.

Making Any Attribute-Based Encryption Accountable, Efficiently 545

Traceability in Accountable Authority ABE. Consider the following
(strong) traceability game:

Setup: The challenger runs the Setup algorithm to generate public parameters
mpk, tracing key tk, and master secret key msk. It gives mpk to the adversary
A and keeps tk and msk to itself.

Key Query: The adversary adaptively queries the challenger for secret keys
corresponding to sets of attributes S1, . . . , Sq for users with indices k1, . . . , kq.
In response, the challenger runs the key generation algorithm and gives the
corresponding secret key to the adversary for 1 ≤ i ≤ q.

Output: A outputs a δ-useful pirate decoder DS for an attributes set S.

Let C = {ki|1 ≤ i ≤ q} be the indices of the users corrupted by the adversary and
I is the indices of the identified traitors, i.e. the output of TraceDS (mpk, tk, S).
The adversary A wins the strong traceability game if (1) I = ∅, i.e., no one
is accused; (2) or I ⊆ C, i.e., an innocent user is accused; (3) or none of the
identified traitors’ attributes set includes S as a subset; (4) Judge algorithm does
not accuse any of the member in C.

The advantage of an adversary in the game is defined as the probability that
A wins the strong traceability game, where the probability is taken over the
random bits used by the challenger and the adversary.

Definition 4. An accountable authority CP-ABE scheme is strongly traceable
if all P.P.T adversaries have at most negligible advantage in the above game.

References

1. Amiri, E., Tardos, G.: High rate fingerprinting codes and the fingerprinting capac-
ity. In: SODA, pp. 336–345 (2009)

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

3. Boneh, D., Kiayias, A. Montgomery, H.W.: Robust fingerprinting codes: a near
optimal construction. In: DRM, pp. 3–12 (2010)

4. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: CCS, pp.
501–510 (2008)

5. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

6. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48658-5 25

7. Dwork, C., Lotspiech, J.B., Naor, M.: Digital signets: self-enforcing protection of
digital information (preliminary version). In: STOC, pp. 489–498 (1996)

8. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40084-1 27

9. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC, pp. 545–554 (2013)

https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/978-3-642-40084-1_27
https://doi.org/10.1007/978-3-642-40084-1_27

546 J. Lai and Q. Tang

10. Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74143-5 24

11. Goyal, V., Lu, S., Sahai, A., Waters, B.: Black-box accountable authority identity-
based encryption. In: ACM Conference on Computer and Communications Secu-
rity, pp. 427–436 (2008)

12. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

13. Katz, J., Schröder, D.: Tracing insider attacks in the context of predicate encryp-
tion schemes. In: ACITA (2011)

14. Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang, Q.: Communication opti-
mal tardos-based asymmetric fingerprinting. In: Nyberg, K. (ed.) CT-RSA 2015.
LNCS, vol. 9048, pp. 469–486. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-16715-2 25

15. Kiayias, A., Pehlivanoglu, S.: Encryption for Digital Content. Advances in Infor-
mation Security, vol. 52. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
1-4419-0044-9

16. Kiayias, A., Tang, Q.: How to keep a secret: leakage deterring public-key cryp-
tosystems. In: ACM CCS 2013, pp. 943–954 (2013)

17. Kiayias, A., Tang, Q.: Traitor deterring schemes: using bitcoin as collateral for
digital contents. In: ACM CCS 2015, pp. 231–242 (2015)

18. Kiayias, A., Tang, Q.: Making any identity-based encryption accountable, effi-
ciently. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS,
vol. 9326, pp. 326–346. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24174-6 17

19. Lai, J., Deng, R.H., Zhao, Y., Weng, J.: Accountable authority identity-based
encryption with public traceability. In: Dawson, E. (ed.) CT-RSA 2013. LNCS,
vol. 7779, pp. 326–342. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36095-4 21

20. Li, J., Huang, Q., Chen, X., Chow, S.S.M., Wong, D.S., Xie, D.: Multi-authority
ciphertext-policy attribute-based encryption with accountability. In: ASIACCS,
pp. 386–390 (2011)

21. Libert, B., Vergnaud, D.: Towards black-box accountable authority IBE with short
ciphertexts and private keys. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 235–255. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-00468-1 14

22. Liu, Z., Cao, Z., Wong, D.S.: Blackbox traceable CP-ABE: how to catch people
leaking their keys by selling decryption devices on eBay. In: ACM Conference on
Computer and Communications Security, pp. 475–486 (2013)

23. Liu, Z., Cao, Z., Wong, D.S.: White-box traceable ciphertext-policy attribute-based
encryption supporting any monotone access structures. IEEE Trans. Inf. Forensics
Secur. 8(1), 76–88 (2013)

24. Ning, J., Cao, Z., Dong, X., Wei, L., Lin, X.: Large universe ciphertext-policy
attribute-based encryption with white-box traceability. In: Kuty�lowski, M., Vaidya,
J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 55–72. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11212-1 4

https://doi.org/10.1007/978-3-540-74143-5_24
https://doi.org/10.1007/978-3-319-16715-2_25
https://doi.org/10.1007/978-3-319-16715-2_25
https://doi.org/10.1007/978-1-4419-0044-9
https://doi.org/10.1007/978-1-4419-0044-9
https://doi.org/10.1007/978-3-319-24174-6_17
https://doi.org/10.1007/978-3-319-24174-6_17
https://doi.org/10.1007/978-3-642-36095-4_21
https://doi.org/10.1007/978-3-642-36095-4_21
https://doi.org/10.1007/978-3-642-00468-1_14
https://doi.org/10.1007/978-3-642-00468-1_14
https://doi.org/10.1007/978-3-319-11212-1_4

Making Any Attribute-Based Encryption Accountable, Efficiently 547

25. Ning, J., Dong, X., Cao, Z., Wei, L.: Accountable authority ciphertext-policy
attribute-based encryption with white-box traceability and public auditing in the
cloud. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS,
vol. 9327, pp. 270–289. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24177-7 14

26. Pfitzmann, B., Schunter, M.: Asymmetric fingerprinting. In: Maurer, U. (ed.)
EUROCRYPT 1996. LNCS, vol. 1070, pp. 84–95. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-68339-9 8

27. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: CCS, pp. 463–474 (2013)

28. Sahai, A., Seyalioglu, H.: Fully secure accountable-authority identity-based encryp-
tion. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS,
vol. 6571, pp. 296–316. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19379-8 19

29. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

30. Tardos, G.: Optimal probabilistic fingerprint codes. J. ACM 55(2), 10:1–10:24
(2008)

31. Yuen, T.H., Chow, S.S., Zhang, C., Yiu, S.M.: Exponent-inversion signatures and
IBE under static assumptions. Cryptology ePrint Archive, Report 2014/311 (2014).
http://eprint.iacr.org/

32. Zhang, Y., Li, J., Zheng, D., Chen, X., Li, H.: Accountable large-universe attribute-
based encryption supporting any monotone access structures. In: Liu, J.K.K., Ste-
infeld, R. (eds.) ACISP 2016. LNCS, vol. 9722, pp. 509–524. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40253-6 31

https://doi.org/10.1007/978-3-319-24177-7_14
https://doi.org/10.1007/978-3-319-24177-7_14
https://doi.org/10.1007/3-540-68339-9_8
https://doi.org/10.1007/978-3-642-19379-8_19
https://doi.org/10.1007/978-3-642-19379-8_19
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-319-40253-6_31

	Making Any Attribute-Based Encryption Accountable, Efficiently
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	3 Generic Construction of Traceable Attribute Based Encryption
	3.1 Definition and Security Models
	3.2 A Generic Construction from Tardos Codes

	4 Enforcing Authority Accountability
	4.1 Definitions and Security Models
	4.2 Generic Construction of Accountable Authority CP-ABE

	A Omitted Definitions
	A.1 Simulation Based Security of Fingerprinted Data Transfer
	A.2 Semantic Security of Traceable ABE
	A.3 Accountable Authority CP-ABE

	References

