
Symmetric Searchable Encryption
with Sharing and Unsharing

Sarvar Patel1(B), Giuseppe Persiano1,2(B), and Kevin Yeo1(B)

1 Google LLC, Mountain View, USA
{sarvar,kwlyeo}@google.com
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Abstract. In this paper, we study Symmetric Searchable Encryption
(SSE) in a multi-user setting in which each user dynamically shares its
documents with selected other users, allowing sharees also to perform
searches. We introduce the concept of a Symmetric Searchable Encryp-
tion with Sharing and Unsharing, an extension of Multi-Key Searchable
Encryption (NSDI ’14), that supports dynamic sharing and unsharing of
documents amongst users. We also strengthen the security notion by con-
sidering a simulation-based notion that does not restrict sharing between
honest and compromised users.

We present the notion of cross-user leakage, the information leaked
about a user’s documents and/or queries from the queries of other users,
and introduce a novel technique to quantify cross-user leakage. Specifi-
cally, we model cross-user leakage by using a graph where nodes corre-
spond to users and the presence of edges between two nodes indicates
the existence of cross-user leakage between the two adjacent users. The
statistics on the connected components of the cross-user leakage graph
provide a quantifiable way to compare the leakage of multi-user schemes
which has eluded previous works.

Our main technical contribution is mx-u, an efficient scheme with
small cross-user leakage, whose security is based on the decisional Diffie-
Hellman assumption. We prove a tight bound on the leakage of mx-u
in the presence of an honest-but-curious adversary that colludes with a
non-adaptively chosen subset of users. We report on experiments showing
that mx-u is efficient and that cross-user leakage grows slowly as queries
are performed.
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1 Introduction

Symmetric Searchable Encryption (SSE), introduced by Song et al. [29], has
been the object of intensive research in the last several years. The original sce-
nario consists of a certain number of CorpusOwners, each with a distinct corpus
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D of documents. Each CorpusOwner wishes to store his own D on the Server
in encrypted form and be able to subsequently provide the Server with appro-
priate search tokens to select the ids of (or pointers to) the documents that
contain given keywords. In this context, the honest-but-curious Server tries to
learn information about the corpus and queries.

Document sharing rises naturally in large organizations where different sub-
sets of members of the organization collaborate on different documents at any
give time and, in real-world scenarios, the ability to revoke access is crucial. For
example, in organizations with many employees, it is impossible to assume that
employees do not shift to different roles, teams and/or projects. As a member
changes their responsibilities, organizations would like to revoke that member’s
access to documents which are no longer relevant as a way to reduce insider risk.
Therefore, efficient and secure revocation is an integral functionality to many
multiple user settings for searchable encryption.

In this paper, we introduce Symmetric Searchable Encryption with Sharing
and Unsharing (SSEwSU), an extension of multi-key searchable encryption intro-
duced by Popa and Zeldovich [27], where access is dynamic in the sense that a
document shared with a user can be, subsequently, unshared from the same user.
For our security notion, we adapt the simulator paradigm used by most previous
works. In particular, we prove that a scheme leaks at most some leakage function,
L, by showing the existence of a probabilistically polynomial time (PPT) simu-
lator that can compute a view for the adversary that is indistinguishable from
the real view of the adversary. In the case of the single-key/single-user schemes,
the adversary is the Server. To adapt to our multi-key/multi-user setting, the
adversary is assumed to be the Server colluding with a subset of compromised
users.

As we have noted above, the simulation-based security proof indicates that
the adversary may learn at most L information about the documents stored in
the scheme as well as the queries performed by the users. However, L is defined
as a description of information instead of a quantifiable value. As a result, it is
very difficult to compare the leakage profiles of different schemes. Furthermore,
the damage that could be inflicted by an adversary that learns such a leakage
profile of the documents and queries is not clear.

In this paper, we quantify the phenomenon, that we call cross-user leak-
age, consisting in information about one user’s documents and/or queries being
learned by the adversary as the result of the actions by another user. Intuitively,
a searchable encryption scheme with good security should guarantee that the
actions of a single user do not leak too much information about too many other
users. We introduce the concept of a cross-user leakage graph to have a quanti-
tative measure of the cross-user leakage. Specifically, each node of the cross-user
leakage graph is associated with a user and an edge between two nodes indicates
the presence of cross-user leakage between the two adjacent users. Immediately
after a system has been initialized and no user has performed any action, the
cross-user leakage graph has no edges. As actions are performed, edges are added
as cross-user leakage appears. Therefore, the cross-user leakage graph describes
the growth of leakage as more actions are performed. A connected component
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is a maximal subgraph such that all pairs of nodes are connected, and we use
statistics on the connected components of the cross-user leakage, such as the
number of connected components and means and variances on the sizes of all
the connected components, as approximations of the total cross-user leakage
learned by the adversary. Our description will be pessimistic and assume that
cross-user leakage is transitive. That is, if two users belong to the same connected
component, then we will assume that cross-user leakage has occurred between
the two users even if there is not an edge between the two users.

Our main contribution is mx-u, a searchable encryption scheme with sharing
and unsharing. We formally identify the leakage of our construction and show
that is an upper bound on the actual leakage by constructing a simulator that
simulates the view of the adversarial coalition on input the leakage. Furthermore,
we show experimentally by means of the cross-user leakage graph that the growth
of cross-user leakage in mx-u is significantly slower than other known schemes
with similar efficiency.

Related Work. The notion of Symmetric Searchable Encryption was intro-
duced by Song et al. [29] and continues to be an active research area. Boneh et
al. [3] were the first to consider the asymmetric case. The original scenario con-
sists of the CorpusOwner and the Server. In our terminology, the CorpusOwner out-
sources the storage of an encrypted version of his data on the Server while being
able to delegate searches to the Server while protecting the privacy of the data
and queries. This basic setting was extended by Curtmola et al. [9], which consid-
ered the extension of multiple users authorized by the CorpusOwner. The same
setting is considered by several subsequent papers such as [8,12,16,19,24,30].
The work by Cash et al. [6] was the first to obtain sub-linear search times for con-
junctive keyword searches. The recent work of Kamara and Moataz [17] present a
scheme that may handle keyword searches for all Boolean formulae in sub-linear
time. The work of Cash et al. [5] show that a bottleneck in searchable encryption
schemes is the lack of locality of server accesses that incur a large number of
cache misses and, subsequently, retrievals from secondary storage. Subsequent
works [1,2,7,10,11] address the tradeoffs of locality and the time required for
searching. Kamara et al. [18] consider the tradeoffs of using Oblivious RAM to
further suppress the leakage profiles and the increased efficiency costs. In another
line of work, several papers have investigated the amount of information that
can be extracted from various leakage profiles [4,14,20,22,28,32,33].

In the work described in the previous paragraph, “multiple users” means
users (other than the CorpusOwner) can perform searches using tokens provided
by the CorpusOwner. However, all users have access to the same set of documents
and all users are, typically, considered to be honest. We are interested in allowing
different users access to different and dynamically changing subsets of documents
as well as protecting against insider threats (adversarial users colluding with the
Server). The concept of Multi-key Searchable Encryption, introduced by Popa
and Zeldovich [27], is very close in spirit to our work. However, Grubbs et al. [14]
point out that the security notion considered by Popa and Zeldovich [27] is
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insufficient in real settings. In addition, the construction proposed in [27] did
not support unsharing documents (that is, revocation of sharing) as opposed to
ours that allows for efficient sharing and unsharing. A more efficient scheme was
presented by Kiayias et al. [21] but it suffers from the same security problems
of the construction of [27].

In a parallel and independent work to ours, Hamlin et al. [15] present two
multi-key searchable encryption schemes that consider a stronger security notion
similar to ours. Their first construction is based on the existence of PRFs and
uses constant-size query tokens. We note that our construction, mx-u, requires
query tokens that are linear in the number of the documents accessible to the
querying user. On the other hand, the first construction of [15], essentially, dupli-
cates a document for each user granted access while mx-u maintains a single copy
of each document for all users and is, thus, more storage efficient. The second
construction by Hamlin et al. [15] uses software obfuscation to reduce server
storage and cannot be considered practical.

2 Key Ideas

We introduce some basic notation that will be used throughout the paper. A
document is a tuple (d,Kw(d), metad) consisting of an id d, a list Kw(d) of key-
words taken from the universe W of keywords (e.g., English dictionary) and
some metadata metad (e.g., title, snippet, creation time). We denote the sub-
set of documents that are accessible to user u ∈ U by Access(u). Similarly, we
denote the subset of users with access to document d by AccList(d). The set
Access(u) of documents shared with user u varies over time as documents can
be added/removed. A search for keyword w performed by u returns all pairs
(d, metad) such that w ∈ Kw(d) and d is in Access(u) at the time the search is
performed. Typically, the user looks at the metadata of the documents returned
by the search to determine which document to fully download. A user u should be
able to perform queries only on documents in Access(u) without further interven-
tion of the CorpusOwner. Moreover, sharing and unsharing of documents should
be efficient and require only the CorpusOwner and the Server to be active.

We start by describing two constructions, zx-u and lx-u, that are direct exten-
sions of single-user SSE schemes into SSEwSU schemes. zx-u has no cross-user
leakage but is extremely inefficient. In contrast, lx-u has very large cross-user
leakage but is very efficient.

An Inefficient Construction with no Cross-User Leakage. The first construction
we consider, zx-u (for zero cross-user leakage), consists in having an independent
instance of a single-user SSE supporting addition/deletion of documents for each
user. When a document d is shared with user u, d is added to u’s instance of the
single-user SSE. Similarly, when d is unshared with user u, d is removed from u’s
instance. zx-u has no cross-user leakage since each user’s queries are performed
on their independent single-user SSE instance. This construction requires space
proportional to

∑
u∈U

∑
d∈Access(u)

|Kw(d)| = O(|U| · |D| · |W|) which is very inef-
ficient.



Symmetric Searchable Encryption with Sharing and Unsharing 211

An Efficient Construction with Large Cross-User Leakage. Following a dual app-
roach, lx-u (for large cross-user leakage) consists of an independent SSE instance
for each document d. We refer to Kd as the private key associated to the SSE
instance for document d. Kd is given to all users u with access to d. To search,
user u sends the Server a search token for each document d ∈ Access(u). The per
document partition is to ensure proper user access control. The Server stores a
list of users with access to each document d in AccList(d). Therefore, mx-u only
requires O(|D| · |W| + |D| · |U|) space.

We show lx-u has large cross-user leakage that increases as queries are being
performed. Suppose user u1 performs a query for keyword w1 by sending search
tokens for each document in Access(u1). The search tokens sent for a document
d are generated by an algorithm using Kd. Any other user u2 �= u1 with access
to d, d ∈ Access(u2), would generate search tokens in an identical manner using
the same algorithm and Kd. So, the Server can use these search tokens for all
users in AccList(d). The Server infers information for every user u2 �= u1 such that
d ∈ Access(u1)∩Access(u2). In other words, each query extends the leakage to all
users including users that never performed any query. Subsequently, suppose user
u2 searches for w2. For all documents accessible by both u1 and u2 (Access(u1)∩
Access(u2)), the Server knows exactly whether each of the documents contain
w1, w2, both and neither.

Where Does the Problem Come From? The cross-user leakage of lx-u is caused
by two factors. First, lx-u is partitioned by documents to allow the Server to
enforce access control for each document. Secondly, queries by two different users
coincide over documents accessible by both users. We see two contrasting needs
fighting here: storing keyword occurrences in documents in a user-independent
fashion for efficiency forces the queries of different users over the same document
to be identical. In other words, when one user queries, it does so on behalf of all
the other users.

To overcome this apparent stalemate, we introduce an intermediate level
in which the user-dependent queries are translated to user-independent queries
that can be matched with encryptions of keyword-document pairs to perform
a search. The intermediate level will be implemented by means of tokens that
depend on the user and the document and a token will only be provided by
CorpusOwner if the user has access to the document. The introduction of the
extra level requires space O(|D| · |U|), which is proportional to the size of the
original access lists. These ideas lead us to our main contributions.

Our Efficient Construction with Minimal Cross-User Leakage. Our main con-
tribution, mx-u, is a construction that has minimal cross-user leakage and can
be intuitively described in terms of an abstract primitive that we call Rewritable
Deterministic Hashing (RDH). RDH is an enhancement of a two-argument hash
function H. With slight abuse of terminology, we will denote a ciphertext as the
value obtained by evaluating H on two arguments, which we refer to as the plain-
texts. For any two plaintexts A and B, it is possible to construct a token tokA→B

that, when applied to a ciphertext of A, returns a new ciphertext in which A is
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replaced with B and the other plaintext stays unchanged. Using this abstraction,
mx-u can be roughly described as follows. A more formal and precise description
that follows this informal blueprint based on RDH is presented in Sect. 4.

During the initialization phase, the CorpusOwner computes H(w, d) for every
(w, d) such that w ∈ Kw(d). We stress that this is done exactly once, indepen-
dently of the number of users that can access d. In addition, the CorpusOwner
produces authorization token toku→d for every d ∈ Access(u). All the ciperthexts
and the tokens are given to the Server. A user u that wishes to perform a query
for keyword w computes the query ciphertext H(u,w) and sends it to the server.
If u has access to d, the Server has received toku→d from the CorpusOwner and
the application of toku→d to the query ciphertext H(u,w) produces H(w, d)
that, if document d contains keyword w, has been given to the Server by the
CorpusOwner during the initialization. A more precise description of mx-u can
be found in Sect. 4.

The CorpusOwner produces
∑

d |Kw(d)| ciphertexts and
∑

u |Access(u)|
tokens. All computed tokens and ciphertexts are stored on the Server for a
total space of O(|D| · |W| + |D| · |U|). This matches the efficiency of lx-u. The
rewriting capability of RDH makes it unnecessary to duplicate the pair (w, d)
for each user that has access to document d like zx-u. So, mx-u has greatly
improved efficiency compared to zx-u. Unlike lx-u, mx-u achieves efficiency with
only minimal cross-user leakage. We show that mx-u has cross-user leakage only
when two distinct users u1 �= u2 who share at least one common document
(Access(u1) ∩ Access(u2) �= ∅) query for the same keyword. A formal analysis of
mx-u’s leakage can be found in Sect. 4.1. In addition to searching, mx-u supports
sharing and unsharing of documents very efficiently. Sharing (unsharing) a docu-
ment d with user u simply adds (removes) the authorization token toku→d from
storage on the Server. So, sharing and unsharing can be performed in constant
time.

We perform extensive experimentation on mx-u and shows that it is practical.
We also experimentally show that the cross-user leakage for mx-u accumulates
significantly slower compared to lx-u using real world data. Our experiments in
Sect. 5 show that mx-u hits the middle ground between the two extremes by
providing the same efficiency as lx-u with minimal cross-user leakage like zx-u.

3 Symmetric Searchable Encryption with Sharing
and Unsharing

We formally define the concept of a Symmetric Searchable Encryption with Shar-
ing and Unsharing (SSEwSU). We provide definitions and algorithms for the
case of one CorpusOwner. The extensions to a more complex setting in which
several CorpusOwners share documents to a set of users is obtained by consid-
ering an independent system for each CorpusOwner. A SSEwSU is a collection
of six algorithms: EncryptDoc, Enroll, SearchQuery, SearchReply, AccessGranting,
AccessRevoking for three types of players: one CorpusOwner, one Server and sev-
eral users. The algorithms interact in the following way.
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1. CorpusOwner has corpus D consisting of triplets (d,Kw(d), metad) of docu-
ment id d, the set of keywords Kw(d) in document d, and document meta-
data metad. CorpusOwner computes an encrypted version xSet of D and a
master key K by running algorithm EncryptDoc(D). CorpusOwner sends xSet
to Server and keeps K in private memory. CorpusOwner instructs Server to
initialize uSet to be empty. Both xSet and uSet are kept private by Server.

2. CorpusOwner executes Enroll to add a new user u to the system. Keys Ku for u
are returned by the algorithm. CorpusOwner stores the pair (u,Ku) in private
memory and sends Ku to u. When a user is enrolled, they do not have any
access rights, that is Access(u) = ∅.

3. To share document d with user u (that is, Access(u) := Access(u) ∪ {d}),
CorpusOwner executes AccessGranting on input the pair (u,Ku), document id
d and master key K. AccessGranting outputs authorization token Uu,d for u
and d and keys Kd for document d. Uu,d is given to Server for inclusion to
uSet and Kd is given to user u. AccessRevoking is used in a similar way by
CorpusOwner to revoke user u’s access to document d. Instead, Uu,d is given
to Server to remove from uSet.

4. To search for all documents d in Access(u) that contain keyword w, user u
executes SearchQuery on input w, Ku and {(d,Kd)}d∈Access(u) to construct the
query qSet that is passed onto Server.

5. On input qSet, Server runs SearchReply using xSet and uSet to compute Result,
which is returned to u. Using the correct keys, u decrypts Result and obtains
the ids and metadata of documents in Access(u) which contain w.

We denote the set of users with access to document d by AccList(d). So,
d ∈ Access(u) if and only if u ∈ AccList(d). With slight abuse of notation, for a
subset C of users, Access(C) is the union of Access(u) for u ∈ C.

Our definition is tailored for a static corpus of documents (no document is
added and/or edited). This is reflected by the fact that CorpusOwner computes
the encrypted version of the corpus by using EncryptDoc at the start. Note
that, even though the corpus of documents is static, each document can be
dynamically shared and unshared.

Security Notion for SSEwSU. We give our security definition for SSEwSU by fol-
lowing the real vs. simulated game approach. In our trust model, we assume the
CorpusOwner to be honest. If this is not the case, since CorpusOwner has access
to its whole corpus D, then there is nothing to be protected from compromised
users. We assume the Server is honest-but-curious and computes query results
as prescribed by SearchReply, stores xSet as received from the CorpusOwner, and
updates uSet as instructed by the CorpusOwner. In traditional SSE schemes, the
Server is assumed to be curious with access to all observed ciphertexts (in this
case, the xSet, the uSet and all queries). In the multi-user setting of SSEwSU, we
have to consider that the Server might be colluding with a set of active, compro-
mised users, C. The Server gains access to all private keys of every compromised
user in C.

In the real game with a set of users U , we consider the server view, sViewU,C

where the Server colludes with the non-adaptively chosen subset C ⊆ U of users
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gaining access to all user keys of compromised users, {Ku}u∈C , and all document
keys where the document is accessible by any compromised user, {Kd}d∈Access(C).

We assume no revocation (unsharing) is made as a curious Server may
keep all authorization tokens Uu,d provided. All queries are assumed to
be performed after all sharing operations as a curious server can always
postpone or duplicate the execution of a query. The view is relative to a
snapshot of the system (that is xSet and uSet) resulting from a sequence
of sharing operations by CorpusOwner whose cumulative effect is encoded
in Access(u) for all u ∈ U . We define an instance of SSEwSU, I =
{D, {d,Kw(d), metad}d∈D, {Access(u)}u∈U , {(ui, wi)}i∈[q]}, consisting of: a set of
documents {d,Kw(d), metad}d∈D, a collection {Access(u)}u∈U of subsets of doc-
ument ids, the set of search queries Qi = (ui, wi), for i ∈ [q], and the i-th query
is performed by user ui for keyword wi. We define the view with respect to secu-
rity parameter λ of the Server colluding with the set, C, of compromised users
on instance I of SSEwSU, as the output of the Real experiment sViewU,C(λ, I).

sViewU,C(λ, I)

1. Set (xSet, K) ← EncryptDoc(1λ, D, {d,Kw(d), metad}d∈D);

2. Set {Ku}u∈U ← Enroll(1λ, U);
3. Set (uSet, {{Kd}d∈Access(u)}u∈U ) ← AccessGranting({Ku}u∈U , {Access(u)}u∈U , K);
4. For each i ∈ [q]

qSeti ← SearchQuery(wi, Kui{(d, Kd, Kenc
d )}d∈Access(ui));

Resulti ← SearchReply(qSeti);
5. Output (Ku, Ku)u∈C , xSet, uSet, (qSeti,Resulti, )i∈[q];

We slightly abuse notation by passing a set of values as a parameter to an
algorithm instead of a single value. By this, we mean that the algorithm is
invoked on each value of the set received and that outputs are collected and
returned as a set. For example, “Enroll(1λ,U)” denotes the sequential invocation
of algorithm Enroll on input (1λ, u) for all u ∈ U .

We now present a formal definition of our security notion.

Definition 1. We say that a SSEwSU is secure with respect to leakage L if
there exists an efficient simulator S such that for every coalition C and every
instance I

{sViewU,C(λ, I)} ≈c {S(1λ,L(I, C))}.

4 SSEwSU Based on Decisional Diffie-Hellman

In this section, we describe mx-u, a concrete construction of SSEwSU based on
decisional Diffie-Hellman (DDH) that follows the blueprint based on the con-
cept of a Rewritable Deterministic Hashing (RDH) (see Sect. 2 for an informal
description). We perform an experimental evaluation of mx-u to evaluate both
the leakage and performance in Sect. 5.

We start by describing a simple version that does not offer adequate security.
Assume that all document ids (d), user ids (u), and keywords (w) are mapped
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to group elements. The occurrence of w ∈ Kw(d) is encoded by CorpusOwner
by computing the x-pair, consisting of the product w · d and of an encryption
of metad. All x-pairs are given to the Server. The fact that u ∈ AccList(d) is
encoded by computing authorization token d/u and giving it to the Server. The
set of all x-pairs and authorization tokens produced by CorpusOwner are called
the xSet and uSet respectively. To search for a keyword w in Access(u), user u
produces the query consisting of u · w. The Server multiplies the query by the
corresponding authorization token. If the result appears as a first component of
an x-pair, the second component is returned to the user to decrypt. Correctness
is obvious but very weak security is offered. Suppose that two users u1 and u2

query for the same keyword w thus producing qct1 = u1 · w and qct2 = u2 · w.
Then the ratio qct1/qct2 can be used to turn an authorization token for u1 to
access document d into an authorization token for user u2 for the same document.
Indeed d/u1 ·qct1/qct2 = d/u2, so the Server can extend u2’s ability to perform
queries to all documents in Access(u1) ∪ Access(u2).

So, we move to a group where DDH is conjectured to hold. Consider x-pairs
consisting of an x-ciphertext computed as gw·d along with a y-ciphertext that is
an encryption of metad. Authorization tokens are computed in the same way as
before, that is, d/u. A query is computed as gu·w as well as pointers to relevant
authorization tokens. In performing the search, the Server uses the authorization
tokens as an exponent for the query ciphertext (that is, gu·w is raised to the power
d/u). The value obtained is looked up as the first component of an x-ciphertext. If
found, the associated y-ciphertext is returned. Using the exponentiation one-way
function in a group in which DDH is conjectured to hold does not suffice as the
set of documents and keywords might be small enough for the Server to conduct
dictionary attacks. Instead, we replace document ids, user ids and keywords with
their evaluations of pseudorandom functions under the appropriate document
and user keys. Document keys are distributed depending on whether a document
is shared with a user while each user only has their own user key. The main
technical difficulty is to prove that DDH and pseudorandomness are sufficient to
limit the leakage obtained by Server that has corrupted a subset of users. This
means Server has gained access to the xSet, uSet and all keys from compromised
users. Server also knows the patterns of accessing the xSet and uSet when users
are performing search queries.

We now formally present the algorithms of mx-u. Both AccessGranting and
AccessRevoking will be implemented using a single algorithm AuthComputing.
For user u, on input of user keys Ku, K̃u, document id d, and master keys
K1,K2,K3 returns authorization token Uu,d allowing u to access document d,
pointer (identifier) to the authorization token uidu,d and the set of keys Kd

for document d. Algorithm AccessGranting is executed by CorpusOwner to grant
user u access to document d. It consists in running AuthComputing to obtain Kd,
that is sent to user u, and the pair (uidu,d, Uu,d) that are sent to the Server for
insertion of Uu,d at uSet[uidu,d]. Algorithm AccessRevoking runs AuthComputing
and sends uidu,d to the Server for deletion of uSet[uidu,d]. Once Uu,d has been
removed from uSet, user u can still produce a query ciphertext qctd for document
d in the context of searching for keyword w but the Server will not contribute
the y-ciphertext to Result even if w ∈ Kw(d).
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EncryptDoc(1λ, D)
Executed by CorpusOwner to encrypt

the corpus D.

1. Randomly select (g, G) ← GG(1λ)
and initialize xSet ← ∅;

2. Randomly select three master keys
K1, K2, K3 ← {0, 1}λ;

3. For every document d:
– Set Kd ← F(K1, d);

– Set ˜Kd ← F(K2, d);
– Set Kenc

d ← G(K3, d);
4. For every document d with metadata

metad and keyword w ∈ Kw(d):

– Set Xw,d ← gF( ˜Kd,d)·F(Kd,w));
– Set Yw,d ← Enc(Kenc

d , metad);
5. All pairs (Xw,d, Yw,d) are added in

random order to the array xSet;
6. Return (xSet, K1, K2, K3);

Enroll(1λ, u)
Executed by CorpusOwner to enroll

user u.
1. Randomly select Ku, ˜Ku ← {0, 1}λ;

2. Return (Ku, ˜Ku);

AuthComputing((u, Ku, ˜Ku), d,
(K1, K2, K3))
Executed by CorpusOwner to either

share or unshare document d with

user u.
1. Compute keys Kd ← F(K1, d), ˜Kd ←

F(K2, d), and Kenc
d ← G(K3, d);

2. Set Uu,d ← F( ˜Kd, d)/F(Ku, d);

3. Set uidu,d ← F( ˜Ku, d);
4. Set Kd ← (d, Kd, Kenc

d );
5. Return (uidu,d, Uu,d, Kd);

SearchQuery(w, (u, Ku, ˜Ku),
{(d, Kd, Kenc

d )}d∈Access(u))
Executed by user u to search for

documents with keyword w.

1. For each (d, Kd, Kenc
d ),

– Set uidu,d ← F( ˜Ku, d);
– Set qctd ← gF(Kd,w)·F(Ku,d);

2. All pairs (uidu,d, qctd) are added in
random order to the array qSet;

3. Return qSet;

SearchReply(qSet)
Server replying to u’s search query

consisting of s query ciphertexts.

1. Set Result ← ∅;
2. For each (uidu,d, qctd) ∈ qSet:

– Set ct ← qct
uSet[uidu,d]

d ;
– If (ct, Y ) ∈ xSet, then Result ←

Result ∪ {Y };
3. Return Result;

4.1 The Leakage Function L
In this section, we formally define the leakage L(I, C) that Server obtains about
instance I from the view sViewU,C(λ, I) when corrupting users in C. In the
security proof (see the full version [26]), we will show that nothing more than L
is leaked by our construction by giving a simulator that, on input L, simulates
the entire view.

A Warm-up Case. We start by informally describing the leakage obtained by
Server when no user is compromised (C = ∅). Looking ahead, the leakage for
C = ∅ corresponds to items 0 and 7 in the general case when C �= ∅.

If C = ∅, the Server observes xSet, uSet, the query ciphertexts and their inter-
action with xSet and uSet, including whether each query ciphertext is successful.
The size n := |xSet| leaks the number of pairs (d,w) such that w ∈ Kw(d) and
the size m := |uSet| leaks the number of pairs (u, d) such that d ∈ Access(u).
Note, the xSet by itself does not leak any information about the number of key-
words in a document or the number of documents containing a certain keyword
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(we will see, under the DDH, it is indistinguishable from a set of random group
elements). The length of each query ciphertext leaks the number of documents
the querier has access to. Note that leakage of (an upper bound on) the size of
data is unavoidable.

The interaction of the query ciphertexts with xSet and uSet also leak some
information. We set q to be the number of queries, and denote l :=

∑
i∈[q] nqi

where lqi := |qSeti|. A query ciphertext is uniquely identified by the triple
(u,w, d) of the user u, the searched keyword w, and the document d for which
the query ciphertext is searching.

Roughly speaking, we show that in mx-u, the Server only learns whether
two query ciphertexts share two of three components. We assume that no user
searches for the same keyword twice and so no two query ciphertexts share all
three components. We remind the reader that in lx-u, the Server would learn
whether two queries are relative to the same document and this allowed the
propagation of cross-user leakage. In contrast, two query ciphertexts of two dif-
ferent users would only leak if they were for the same document and the same
keyword in mx-u. In other words, the only way to have cross-user leakage is two
users with at least a common document must perform a query for the same
keyword.

A useful way to visualize the growth of cross-user leakage is a graph G in
which the users are vertices and a query of a user u1 leaks about the documents
of user u2 if and only if u1 and u2 are in the same connected component. The
larger the connected components in the graph, the more cross-user leakage each
query entails. For both constructions, the graph starts with no edges and edges
are added as queries are performed. In lx-u, for every query of user u1 for keyword
w, an edge is added to all vertices of users u2 that have at least one document in
common with u1, independently of w. In mx-u, an edge is added to all vertices
of users u2 that have at least document in common with u1 and have performed
a query for keyword w. Thus, cross-user leakage accumulates for every query
in lx-u whereas in mx-u cross-user leakage grows slower and only accumulates
across users for queries for repeated keywords.

Let us now explain where the leakage comes from. Consider two query cipher-
texts, (uid1, qct1) and (uid2, qct2), identified by (u1, w1, d1) and (u2, w2, d2),
respectively. Start by observing that if u1 = u2 = u and w1 = w2 = w, then
(uid1, qct1) and (uid2, qct2) are part of the same query qSet issued by user u for
keyword w. Thus, they can be easily identified as such by the Server. Next, con-
sider the case in which (uid1, qct1) and (uid2, qct2) are queries from the same
user and relative to the same document. That is, u1 = u2 = u and d1 = d2 = d
but w1 �= w2. This can be easily identified by the Server since uid1 = uid2. Note
the leakage described so far is relative to queries from the same user. Suppose
now that (uid1, qct1) and (uid2, qct2) are for the same document and the same
keyword. That is, w1 = w2 = w and d1 = d2 = d but u1 �= u2. In this case, when
qct1 and qct2 are coupled with Uu1,d and Uu2,d, respectively, they produce the
same test value for the xSet (that belongs to the xSet if and only if w ∈ Kw(d)).
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By summarizing, the leakage provides three different equivalence relations,
denoted ≈d,≈w,≈u, over the set [l] of the query ciphertexts defined as follows.
Denote by (ui, wi, di) the components of the generic i-th query:

1. i ≈d j iff ui = uj and wi = wj ; that is the i-th and the j-th query cipher-
text only differ with respect to the document; we have q equivalence classes
corresponding to the q queries performed by the users;

2. i ≈w j iff ui = uj = u and di = dj = d; that is the i-th and the j-th query
ciphertext only differ with respect to the keyword. We denote by r the number
of the associated equivalence classes D1, . . . , Dr. Equivalence class Di can be
seen of consisting of pairs of the index of a query ciphertext and the index of
an x-ciphertext.

3. i ≈u j iff wi = wj and di = dj ; that is the i-th and the j-th query cipher-
text only differ with respect to the user; we denote by t the number of the
associated equivalence classes E1, . . . , Et. Equivalence class Ei can be seen of
consisting of pairs of the index of a query ciphertext and a token.

Note that the equivalence classes of ≈w can be deduced from those of ≈u but
we keep the two notions distinct for clarity.

The General Case. We now consider the case where the adversarial Server cor-
rupts a subset C �= ∅ of users. As we shall see, in this case, all information about
documents shared to users in C are leaked to the Server. For documents instead
that are not accessible by users in C, we fall back to the case of no corruption
and the leakage is the same as described above.

In determining the leakage of our construction, we make the natural assump-
tion that a user u knows all the keywords appearing in all documents d ∈
Access(u). This is justified by the fact that keywords are taken from a poten-
tially small space and that u could search for all possible keywords in the doc-
ument d (or u could just download d). If u is corrupted by the Server, then we
observe that the Server is able to identify the entry of the xSet relative to (w, d)
and the entry of uSet relative to (u, d) (this can be done by constructing an
appropriate query ciphertext using the keys in u’s possession). From these two
entries, and by using the keys Ku, K̃u,Kd and K̃d in u’s possession, F(K̃d, d),
F(Kd, w),F(K̃u, d) and F(Ku, d) can be easily derived. Moreover, we assume that
the set AccList(d) of users with which d is shared is available to u. In this case,
we make the assumption that for all v ∈ AccList(d), Server can identify the entry
of uSet corresponding to Uv,d from which the two pseudo-random values con-
tributing to token Uv,d can be derived. In general, we make the conservative
assumption that knowledge of F(k, x) (or of any expression involving F(k, x))
and k allows the adversarial Server to learn x by means of a dictionary attack.
In our construction, the argument x of a PRF is either a keyword or a docu-
ment id. In both cases, they come from a small space where dictionary attacks
are feasible. We stress that these assumptions are not used in our construction
(for example, honest parties are never required to perform exhaustive evalua-
tions) but they make the adversary stronger thus yielding a stronger security
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guarantee. If this assumption is unsupported in a specific scenario, our security
guarantees still hold and stronger guarantees can be obtained for the same sce-
nario. We remind the reader that the view of Server when corrupting users in C
for instance I, includes (Ku, K̃u,Du)u∈C , where Du is {d,Kd,K

Enc
d }d∈Access(u).

Additional the view contains xSet, uSet and the set (qSeti,Resulti)i∈[q] of query
ciphertexts and the results for each query. Without loss of generality, we assume
that no two queries are identical (that is, from the same user and for the same
keyword). First, Server learns from the view n, the number of x-ciphertexts (and
y-ciphertexts), m, the number of tokens, q, the number of queries, and lqi , the
number of query ciphertexts for each query i ∈ [q], and if each query is successful
or not.

0. n,m, q and nqi = |qSeti| for i ∈ [q];

In addition, we make the natural assumption that Server learns the following
information regarding documents and queries for each user u ∈ C.

1. Access(u) of documents that have been shared with u ∈ C;
2. Kw(d) of keywords and the metadata metad, for each d ∈ Access(C);
3. AccList(d) of users, for each d ∈ Access(C);
4. (ui, wi) for all i ∈ [q] such that ui ∈ C;

Therefore, Server obtains keywords, metadata, and set of users that have
access, for all documents that can be accessed by at least one Server corrupted
user u ∈ C. Moreover, Server also knows all queries issued by the corrupted users.

Consider x-ciphertext Xw,d = gF(K̃d,d)·F(Kd,w). If d ∈ Access(C), then w and d
are available to Server by Points 1 and 2 above. Therefore, Server knows exactly
all the entries of the xSet corresponding to documents in Access(C) and nothing
more. This implies that if no query is performed, no information is leaked about
documents not available to the members of C.

More leakage is derived from the queries. Let us consider a generic query
ciphertext,

uidui,d = F(K̃ui
, d), qctd = gF(Kd,wi)·F(Kui

,d)

for document d produced as part of the i-th query qSeti issued by user ui for
keyword wi. If ui ∈ C, then Kd,Kui

and K̃ui
are available to Server and thus

(ui, wi, d) is leaked. If ui �∈ C and d ∈ Access(C) then Kd is available (whence,
by our conservative assumption, wi is available too) but Kui

and K̃ui
are not

available. In this case, d and wi are leaked. We further observe that query cipher-
texts from the same user ui �∈ C and document d ∈ Access(C) are easily clustered
together since they all share exponent, F(Kui

, d), and uidui,d, F(K̃ui
, d). We

define ûi to be the smallest index j ≤ i such that uj = ui and dj = d. We say
that if ui �∈ C and d ∈ Access(C), then (ûi, wi, d) is leaked.

Suppose ui �∈ C, d �∈ Access(C) but Access(ui) ∩ Access(C) �= ∅; that is ui

shares document d′ �= d with C. Then qctd′ leaks wi (and d′ as discussed in the
previous point) and this leakage is extended to all the query ciphertexts from the
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same query. We say (ûi, wi,⊥) is leaked. Notice that identity of d �∈ Access(C) is
not leaked.

Finally, let us consider ui �∈ C and Access(ui) ∩ Access(C) = ∅, in which
case we say that qctd is a closed query ciphertext. This is the case described
for the passive case (as in the case all query ciphertexts are closed) and Server
can cluster together the closed query ciphertexts that are for the same keyword
and document and those that are for the same user and document. We can thus
summarize leakage derived from query ciphertexts as follows.

5. For every qctd ∈ qSeti (the i-th query for keyword wi by user ui);
(a) If ui ∈ C, then (ui, wi, d) is leaked; the query is called an open query;
(b) If ui �∈ C and d ∈ Access(C), then (ûi, wi, d) is leaked;
(c) If ui �∈ C, d �∈ Access(C) and Access(ui)∩Access(C) �= ∅, then (ûi, wi,⊥)

is leaked; the query is called an half-open query;
6. Equivalence classes D1, . . . , Dr over the set of pairs of closed query cipher-

texts and ciphertexts.
7. Equivalence classes E1, . . . , Et over the set of pairs of closed query cipher-

texts and tokens.

In what follows we will denote by L(I, C) the leakage described in Point 0–7
above. In the next theorem (see the full version [26] for the proof), we show that
our construction does not leak any information about an instance I other than
L(I, C) where Server corrupts users in C. We do so by showing that there exists
a simulator S for SSEwSU that takes as input a coalition C of users along with
L(I, C) and returns a view that is indistinguishable from the real view of Server.

We start by reviewing the DDH Assumption and then state our main result.
A group generator GG is an efficient randomized algorithm that on input 1λ

outputs the description of a cyclic group G of prime order p for some |p| = Θ(λ)
along with a generator g for G.

Definition 2. The Decisional Diffie-Hellman (DDH) assumption holds for
group generator GG if distributions D0

λ and D1
λ are computational indistinguish-

able, where Dξ
λ =

{
(g,G) ← GG(1λ);x, y, r ← Z|G| : (gx, gy, gx·y+ξ·r)

}
.

Theorem 1. Under the DDH assumption, mx-u is secure with respect to leakage
L as defined in Sect. 4.1.

For the proof of the theorem above, we will use the following assumption
that is equivalent to the DDH Assumption. Let x ∈ Z

l0
p , y ∈ Z

l1
p . Then, x × y

is the l0 × l1 matrix whose (i, j)-entry is xi · yj . For a matrix A = (ai,j), we set
gA = (gaij ).

Lemma 1. If DDH holds for GG then for any l0, l1 that are bounded by a poly-
nomial in λ, the distributions D0

l0,l1,λ and D1
l0,l1,λ are computational indistin-

guishable, where

Dξ
l0,l1,λ =

{
(g,G) ← GG(1λ);x,← Z

l0
|G|,y,← Z

l1
|G|, r ← Z

l0·l1
|G| : (gx, gx, gx×y+ξ·r)

}
.
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5 Experiments

In this section, we investigate the costs of mx-u and experimentally evaluate the
growth of leakage as queries are being performed. All experiments are conducted
on two identical machines, one for the Server and one for the user. The machines
used are Ubuntu PC with Intel Xeon CPU (12 cores, 3.50 GHz). Each machine
has 32 GB RAM with 1 TB hard disk.

Our experiments will only measure costs associated with mx-u. In practice,
mx-u is accompanied by some storage system that allows retrieval of encrypted
data. We ignore costs that would be incurred by such a storage system.

All associated programs are implemented using C++ and do not take advan-
tage of the multiple cores available. We use SHA-256-based G and F and AES
under Galois Counter Mode for (Enc,Dec). These cryptographic functions imple-
mentations are from the BoringSSL library (a fork of OpenSSL 1.0.2). The length
of the keys used are 128 bits. All identifiers (document and user) are also 128
bits. We use the NIST recommended Curve P-224 (which has the identifier
NID secp224r1 in OpenSSL) as G. All group exponents are serialized in big-
endian form. Elliptic curve points are serialized to octet strings in compressed
form using the methods defined by ANSI X9.62 ECDSA.

5.1 Performance

We measure the computation time and bandwidth of uploading and search-
ing documents of mx-u (see Fig. 1(a)–(d)). As expected, the upload and search
metrics grow linearly in the number of unique terms and number of owned docu-
ments respectively. Furthermore, we note that the amount a user’s computational
time is much smaller than the server. This is very important as single machine
users are more limited in computational power compared to large cloud service
providers.

Enron Email Dataset. We consider using mx-u to store the Enron email
dataset [13]. We have 150 users and any user that is the sender, recipient, cc’d
or bcc’d of an email will be given search access to that email. The sender will be
granted access. Every recipient of the email will be given access with 1

2 probabil-
ity. The server storage required is 5–6 times the size of the emails being uploaded
(see Fig. 1(e)). We remark that SSE might be insecure for emails (e.g., see injec-
tion attacks of [33]) and we use the dataset as a means to test practicality.

Ubuntu Chat Corpus. In a separate experiment, we store the Ubuntu Chat
Corpus (UCC) [31] with over 700000 users using our scheme. Like emails, the
chat logs provide an excellent framework for multi-user searchable schemes. We
split the chat corpus into days. That is, each day of history becomes a single
file. All users who appear in the chat log for a day will have read rights. Each
of the appearing users will also receive write rights with probability 1

2 . For this
dataset, we also stem the input for each language and the server storage growth
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with the number of days considered is found in Fig. 1(f). Stemming removes
common words as well as providing pseudonyms.

5.2 Leakage Growth

Figures 1(g)–(i) report the results of experiments in which we compare the rate of
leakage growth of lx-u and mx-u as queries are performed1. The cross-user leakage
graph G for mx-u has a node for each vertex and we have an edge between users
u1 and u2 means that queries by u1 or u2 leak information about documents in
Access(u1)∩Access(u2). For mx-u, an edge (u1, u2) exists iff both users queried for
the same keyword w and share at least one document in common. On the other
hand, an edge exists in lx-u if both users share at least one document in common
and either user ever queried. Furthermore, cross-user leakage is transitive. If two
users are in the same component, their queries can leak information about their
intersection.

As G becomes more connected, cross-user leakage grows. If G has no edges
(and consists of |U| connected components, one for each user), there is no cross-
user leakage, and this is the status of the system before queries have been per-
formed. Conversely, the complete graph has cross-user leakage for every pair of
users. The vector of the sizes of the connected components of G at any given
point in time describes the current cross-user leakage. The initial vector consists
of |U| 1’s (each vertex is in a connected component by itself). We pad with 0’s
to keep the vector of dimension |U|. We measure how the length of this vector
grows as queries are performed by looking at the L2 norm (the square root of
the sum of the squares of component sizes) and the L∞ norm (the size of the
largest component). We also plot the total number of components.

We compute these metrics for both lx-u and mx-u, using 2500 days of UCC
data with approximately 55000 users. Keywords are drawn from the global dis-
tribution of terms in UCC after stemming. The user that performs the query is
drawn uniformly at random from all users. We see that mx-u leakage grows sig-
nificantly slower than lx-u in all three metrics. In particular, for all three metrics,
lx-u approaches a single connected component after about 100 queries. For mx-u,
it is possible to perform hundreds of thousands queries before this threshold is
reached. In fact, it takes at least 80000 queries to reach 1/3 of the metrics of a
single component.

6 Extensions

In the full version of this paper, we discuss several extensions to our results.

1 Note that all considerations about leakage growth apply to mx-u independently of
the underlying RDH.
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Fig. 1. (a) Upload computation time, (b) Upload bandwidth, (c) Search computation
time, (d) Search bandwidth, (e) Enron Email server storage, (f) Ubuntu Chat server
storage, (g) Sqrt sum of squares of component sizes, (h) Maximum component size, (i)
Number of components.
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Fig. 1. (continued)

Different Access Types. In the above constructions, we simply designate access
as search access or the ability to search for keywords in documents. We show
that the techniques in mx-u can be extended to handle multiple access types
(such as ownership or editing). The main idea is to duplicate the uSet for each
type of access type that we wish to enforce.

Reducing Leakage using Bilinear Pairings. We present a scheme that uses bilin-
ear pairings which reduces the cross-user leakage compared mx-u in exchange
for larger server computation. In particular, we show that cross-user leakage for
two different users querying for the same keyword is present if and only if the
keyword exists in a document shared by both users. However, the server must
now perform computation for all elements in the xSet.

Sharing by Non-CorpusOwner Users. In mx-u, we only present techniques that
CorpusOwner may construct authorization tokens to enable other users to search
over documents in CorpusOwner’s corpus. We present an algorithm that allows
a non-CorpusOwner user that already has access to a document to share with
another user without requiring the interaction of CorpusOwner.

Key Rotation by CorpusOwner. We present an efficient key rotation algorithm
that can be performed by CorpusOwner for mx-u while simultaneously trying
to prevent cross-user leakage accumulation. The goal is to rotate all the keys
of ciphertexts in both the uSet and xSet while ensuring that the Server cannot
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determine whether an old and a new ciphertext contain the same plaintexts
under different keys. We will use an oblivious shuffling algorithm [23] to achieve
our goal by randomly permuting the elements of the xSet in a manner oblivious
to Server. During the shuffle, CorpusOwner will select new keys and replace old
RDH evaluations with new RDH evaluations under the new keys. As our shuffling
algorithm, we use the K-oblivious shuffling variant of the CacheShuffle [25] which
can leverage the fact that some N - K items of the xSet are never involved in
searches to improve the efficiency of the shuffling algorithm.

7 Conclusions

In this work, we introduce the concept of Symmetric Searchable Encryption
with Sharing and Unsharing, which extends previous multi-user definitions by
requiring dynamic access allowing both sharing and unsharing. We present the
cross-user leakage graph, a novel method to bound and quantify the leakage of
searchable encryption schemes in multiple user settings. As a result, we are able
to quantitatively compare different schemes, which is an important need that
previous techniques had yet to achieve. As our main technical contribution, we
present mx-u. We directly compare mx-u with previous schemes and show that
other schemes are either inefficient or have greater cross-user leakage than mx-u.
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