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Abstract. We elaborate some key topics for a master class on recur-
sion. In particular, we show how to do recursion in an object-oriented
programming language that does not allow recursion.

This article is dedicated to Juraj Hromkovič, who has inspired me (and
many others) with his rare gift of contributing to cutting-edge research
in theoretical computer science and to the didactics and popularization of
informatics, and with his contagious enthusiasm for educating others. Good
theoretical insights can and must be passed on to the next generations.

1 Introduction

The notion of a master class originated in the field of music, where a master
musician gives a, often public, class to one or more accomplished players, usually
in a one-on-one setting to help them improve and refine their skills. Likewise,
the master class on recursion that is the subject of this article assumes prior
experience with programming, and also with recursion. The goal is to improve
and refine the skills in dealing with recursion, whether as a programmer or as
a teacher. It is not aimed at the average student, but rather at the top 5%, at
those who want to look beyond the International Olympiad in Informatics.

Recursion is considered a difficult but fundamental and even essential topic
in informatics education. Two literature surveys [17,24] review a large num-
ber of publications on the teaching of recursion. A few additional publications
are [1,3,11,12,20,25]. One of my introductions to recursion was [2], which is
now outdated. For students who are not so keen on reading, the Computerphile
videos on recursion [5,6] are informative and enjoyable. For a completely differ-
ent angle on recursion, we refer to [22]. Still, we feel that several misconceptions
about recursion keep popping up. This article (also) addresses these misconcep-
tions.

This is not an article about (research on) the didactics of informatics. Rather,
it constitutes a master class on recursion, focusing on what in my opinion are key
ingredients. The approach and notation were heavily influenced by my teachers
and mentors Edsger Dijkstra, Wim Feijen, and Netty van Gasteren, who took a
formal approach to programming, referred to by some as The Eindhoven School.
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Overview

Section 2 discusses some of the preliminaries about definitions. The syntactic
and operational aspects of recursion are addressed in Sect. 3. In particular, we
introduce the notion of a call graph, and distinguish the static call graph of a
program and the dynamic call tree of its execution. Section 4 is concerned with
the design of recursive solutions. A key insight is that operational reasoning is
not helpful, and that contractual reasoning makes recursion simple; so simple,
in fact, that it can be applied in primary school. In Sect. 5, we look at various
program transformations that somehow involve recursion. Among them are pow-
erful techniques to improve the performance of recursive designs. In a way, we
view Sect. 6 as the main reason for writing this article. There we explain how to
do recursion in an object-oriented programming language if recursive functions
are ‘forbidden’. It shows how to program a fixed-point constructor, well-known
from lambda calculus, in Java without recursive functions.

Section 7 concludes the article.

2 Preliminaries

2.1 Definitions as Abbreviations

We first look at how mathematical definitions ‘work’ (also see [26, Sect. 3.2]).
Consider for example the following definition of mid(a, b) for the number halfway
between numbers a and b:

mid(a, b) = (a + b)/2 (1)

It has some obvious properties:

mid(x, x) = x (2)
mid(x, y) = mid(y, x) (3)

mid(x, y) − x = y − mid(x, y) (4)
mid(x − c, x + c) = x (5)

And some maybe less obvious properties:

mid(x, y) = x ⇔ x = y (6)
|z − x| = |y − z| ⇔ x = y ∨ mid(x, y) = z (7)

mid(mid(a, b),mid(c, d)) = mid(mid(a, c),mid(b, d)) (8)
mid(mid(a, b),mid(b, c)) = mid(mid(a, c), b) (9)

How would we prove (8)? We can calculate with these expressions and apply the
definition of mid . Such an application involves a double substitution:

C(mid(A,B)) = C((A + B)/2) (10)
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Somewhere in an expression C (the context) occurs a usage of mid , with expres-
sions A and B as its arguments. We replace that entire occurrence with the
right-hand side of definition (1), and in that replacement, we replace every (free)
occurrence of a by A, and of b by B, simultaneously.1 We denote such a simultane-
ous substitution by a, b ← A,B. It is based on Leibniz’s principle of substituting
equals for equals. Here is an example calculation:

mid(mid(a, b),mid(c, d))
= { apply definition (1) to leftmost occurrence of mid }

(mid(a, b) +mid(c, d))/2
= { apply definition (1) to leftmost occurrence of mid }

((a + b)/2 +mid(c, d))/2
= { apply definition (1) to leftmost occurrence of mid }

((a + b)/2 + (c + d)/2)/2
= { algebra }

(a + b + c + d)/4

In a similar way, we can calculate

mid(mid(a, c),mid(b, d))
= { calculation above, with a, b, c, d ← a, c, b, d }

(a + c + b + d)/4.

Combining these two results yields (8).

Exercise. Using these properties, prove

mid(mid(x, z),mid(y, z)) = z ⇔ mid(x, y) = z. (11)

Such mathematical definitions are just abbreviations, which can always be elim-
inated by repeated substitutions. This elimination is a mechanical process that
needs to be done with care, but it requires neither intuition nor insight.

2.2 Recursive Definitions, Unfolding, and Inductive Proofs

Mathematics also allows recursive definitions,2 which in general cannot be com-
pletely eliminated by substitution as described above.3 Well known is the facto-
rial function n! (n factorial) defined for natural numbers n by

n! =

{
1 if n = 0,
n · (n − 1)! if n ≥ 1.

(12)

1 If A or B also contain free occurrences of a or b, then those must not be replaced.
First replacing each a by b and then each b by a in (a+ b)/2 would yield (b+ b)/2.

2 Also known as inductive definitions but see Subsect. 2.3 for a distinction.
3 Also see Sect. 6.
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This definition allows one to compute that 4! = 24. But in the expression (a+b)!
it is not possible to eliminate the factorial in general. Note that definition (12)
involves a case distinction. When n = 0, the factorial can be eliminated, but
when n ≥ 1, a single substitution will reintroduce the factorial, albeit applied
to a smaller argument. Such a substitution is also known as an unfolding of the
definition. It treats the definition as a rewrite rule.

Another famous recursive definition is that of the Fibonacci sequence Fn,
where n is a natural number:

Fn =

{
n if n ≤ 1,
Fn−1 + Fn−2 if n ≥ 2.

(13)

Here, an unfolding reintroduces two occurrences of F . It is easy to compute the
first ten elements of the Fibonacci sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . (14)

But how can we hope to prove a property like

n∑
i=0

Fi = Fn+2 − 1 for 0 ≤ n (15)

when the definition of F cannot be eliminated? Here are some values:

n 0 1 2 3 4 5 6 7 8 9 . . .

Fn 0 1 1 2 3 5 8 13 21 34 . . .∑n
i=0 Fi 0 1 2 4 7 12 20 33 54 88 . . .

It can be tackled by an inductive proof. Observe that (15) holds for n = 0 (via
elimination by substitution). This is known as the base of the induction. To prove
the property for n ≥ 1, we now assume that it holds for n−1 (for which we have
n − 1 ≥ 0); this assumption is called the induction hypothesis. We calculate∑n

i=0 Fi

= { n − 1 ≥ 0; split off the last term, having i = n }(∑n−1
i=0 Fi

)
+ Fn

= { induction hypothesis: (15) with n ← n − 1 }
(Fn−1+2 − 1) + Fn

= { algebra }
Fn+1 + Fn − 1

= { definition (13) of Fn with n ← n + 2 }
Fn+2 − 1.

This is called the inductive step, and it completes the proof by induction on n.
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2.3 Inductive Types, Inductive Definitions, Structural Induction

The natural numbers N can be viewed as an inductive (data) type:

1. 0 ∈ N

2. succ(n) ∈ N if n ∈ N (succ(n) is commonly written as n + 1)
3. N consists only of (finite) things constructable via the preceding two steps.

A recursive definition could be

N = {0} ∪ {succ(n) | n ∈ N}. (16)

Similarly, we define the inductive type T(S) of binary trees over S by4

T(S) = {⊥} ∪ {tree(u, v, w) | u ∈ T, v ∈ S,w ∈ T}. (17)

Here, ⊥ denotes the empty tree, and tree(u, v, w) denotes the tree with left sub-
tree u, root value v, and right subtree w. It is customary to define accompanying
projection functions left , value, and right for non-empty trees by

left(tree(u, v, w)) = u, (18)
value(tree(u, v, w)) = v, (19)
right(tree(u, v, w)) = w. (20)

Definitions over inductive types are naturally given recursively. For instance,
the height5 h(t) of a tree t can be defined by

h(t) =

{
0 if t = ⊥,

1 +max (h(left(t)), h(right(t))) if t 
= ⊥.
(21)

This is usually written more concisely as an inductive definition:⎧⎨
⎩ h(⊥) = 0

h(tree(u, v, w)) = 1 +max (h(u), h(w))
(22)

Recursive definitions in the form of (21) are sometimes referred to as top-down
definitions, because they break down the given argument by projections. Induc-
tive definitions in the form of (22) are then referred to as bottom-up definitions,
because they exploit how the argument is built up from smaller parts according
to the inductive type. Although this distinction is not essential, it is good to be
aware of the alternatives.

To prove something about an inductive type, one uses structural induction.
To illustrate this, let us also define the size #(t) of binary tree t by⎧⎨

⎩ #(⊥) = 0

#(tree(u, v, w)) = #(u) + 1 +#(w)
. (23)

4 There are many definitions and notations for binary trees. We allow the empty tree.
5 This is not the most common definition for tree height, but it suits our purpose.
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We now prove by structural induction the following property relating h and #:

#(t) + 1 ≤ 2h(t) for all t (24)

For the base case, where t = ⊥, we calculate

2h(⊥)

= { definition (22) of h }

20

= { algebra }
1

= { definition (23) of # }
#(⊥) + 1.

And for the inductive step, where t = tree(u, v, w), we calculate

2h(tree(u,v,w))

= { definition (22) of h }

21+max(h(u),h(w))

= { algebra, property of max }

2 · max
(
2h(u), 2h(w)

)
≥ { property of max }

2h(u) + 2h(w)

≥ { structural induction hypothesis }
#(u) + 1 +#(w) + 1

= { definition (23) of # }
#(tree(u, v, w)) + 1.

In fact, the bound in (24) is tight, in the sense that equality is possible for every
height, viz. by the complete binary tree for that height.

Exercise. Reformulate the definitions of factorial and the Fibonacci sequence
as inductive definitions, viewing the natural numbers as an inductive type, and
redo the proof of (15) by structural induction.

3 Recursive Programs: Syntactic and Operational View

In mathematics, definitions (and proofs), including recursive ones, only need
to be effective. In informatics, we are interested in definitions that allow effi-
cient execution. Therefore, programs (implementations of functions) need to be
designed with an eye for computational details.
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It should be noted that early programming languages (such as Fortran)
did not allow recursive function definitions. The main reason being that the way
these languages were implemented did not support recursion [7]. In particular,
the return address for each function invocation was stored in a fixed location,
thereby precluding recursion. Only when a stack was introduced for function exe-
cution, to store actual parameters, local variables, and a return address for each
function invocation in a stack frame, did it become possible to allow recursion
in programs.

Consider a program written in the imperative core of Java. When does such
a program involve recursion? That question is less innocent than it may seem.
An answer you’ll often hear is:

A program is recursive when it contains a function whose definition con-
tains a call of that function itself.

A classical example is the factorial function:
1 long fac(int n) {
2 return n == 0 ? 1 : n * fac(n-1);
3 }

There are several issues with this answer. The first issue is illustrated by the
following example.

1 long fac_1(int n) {
2 return n == 0 ? 1 : n * fac_2(n-1);
3 }
4 long fac_2(int n) {
5 return n == 0 ? 1 : n * fac_1(n-1);
6 }

The functions fac_1 and fac_2 each compute the factorial function, and
neither definition contains a call to the function itself. But each function calls
the other.

Another issue is illustrated with these two programs:
1 void bogus() {
2 if (false) {
3 bogus();
4 }
5 System.out.println("Done.");
6 }
7 void print_abs(int x) { // print absolute value of x
8 if (x >= 0)
9 System.out.println(x);

10 else
11 print_abs(-x);
12 }
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The function bogus contains a call to itself, but that call is never actually
executed. The function print_abs is recursive, but the recursion always stops
after one call. You could call these degenerate forms of recursion, or bounded
recursion, as opposed to the ‘real thing’.

3.1 Static Call Graph and Dynamic Call Tree

To address these concerns, we distinguish two viewpoints:

– the static view, where we consider the program text only, and
– the dynamic view, where we consider the program’s execution.

The static call graph of a program (text) has

– as nodes: the function definitions in the program, and
– as arrows: f → g when definition of function f (textually) contains a call to

function g.

We say that a program has (static) recursion when its static call graph contains
a (directed) cycle. This is a purely syntactic phenomenon.

By this definition, all preceding programs have (static) recursion. We can
distinguish the following special situations:

– Direct recursion. A cycle of length 1.
– Indirect recursion. A cycle of length >1.
– Mutual recursion. A cycle of length 2.

The dynamic call tree of a program execution has

– as nodes: function invocations (active or completed), and
– as arrows: f → g when invocation f invoked g.

Note that the same function can be invoked multiple times, and these invocations
appear as separate nodes, each having their own actual parameter values, etc.
Each invocation, except the very first, has exactly one parent that caused it.
Thus, there are no (directed or undirected) cycles, and hence it is indeed a tree.

The dynamic call tree evolves over time, and can differ from execution to exe-
cution. For a program that uses no function parameters and no object-oriented
features, this tree conforms to the static call graph, in the sense that there is a
homomorphic mapping from the dynamic call tree to the static call graph that
respects the arrows: each invocation of f in the tree maps to the definition of f
in the graph.

The depth of recursion of an invocation in a call tree is the number of pre-
ceding invocations of the same function. It is useful to distinguish two types of
recursive execution, based on the call tree:

– Linear recursion. Each invocation of f leads to ≤ 1 other invocation of f .
– Branching recursion (also known as tree recursion). Some invocations of f

lead to ≥ 2 other invocations of f .
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The naive implementation of the Fibonacci function (that returns the n-th
Fibonacci number) exhibits branching recursion:
1 long fib(int n) {
2 return n <= 1 ? n : fib(n-1) + fib(n-2);
3 }

Note that

– linear recursion is possible even when a function definition contains multiple
calls of the function itself, viz. when those calls are mutually exclusive; for
instance, if they occur in different branches of an if-statement.

– branching recursion is possible even when a function definition contains only
one call of the function itself, viz. when that call occurs in a loop.

In linear recursion, the number of invocations of a recursive function equals
the maximum depth of recursion. But in branching recursion, that number of
invocations can grow exponentially in the maximum depth of recursion (recall
property (24)). And this is in fact the case for the function fib shown above.

3.2 Tail Recursion

One further distinction is relevant for efficiency. A call of function g in the
definition of function f is said to be a tail call, when execution of f is complete
once that call of g returns. Such a tail call can be executed more efficiently by
popping f ’s stack frame before invoking g, and passing f ’s return address as
that for g. That saves on memory, especially in deeply nested invocations. This
is known as tail call optimization (TCO) and compilers can do it automatically.

A function is said to be tail recursive, when all its recursive calls are tail
calls. The classical factorial function shown above is not tail recursive, because
after the recursive call returns, the function must still do a multiplication before
returning. But the following generalization fac_gen of the factorial function,
that computes a · n!, is tail recursive:
1 long fac_gen(long a, int n) {
2 return n == 0 ? a : fac_gen(a * n, n-1);
3 }

Tail recursion is also important because tail recursive functions can easily be
converted into (non-recursive) loops (as we will discuss in more detail in Sect. 5).
The loop version corresponding to the tail-recursive fac_gen is:
1 long fac_gen_i(long a, int n) {
2 while (n != 0) {
3 a = a * n;
4 n = n - 1;
5 }
6 return a;
7 }
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4 Reasoning About Recursion: Design by Contract

The operational view as captured in the dynamic call tree makes recursion intim-
idating, and unnecessarily hard to understand. That view is relevant to under-
stand the implementation and performance (runtime and memory) of recursive
functions. But it is hopelessly inadequate to understand the correctness of recur-
sive functions.

There are two aspects to correctness:

– termination, and
– establishing the correct effect, also known as partial correctness.

We deal with termination in Subsect. 4.1. To reason about the correct effect
of a recursive function, is (should be) the same as reasoning about any other
function. Functions in programs are an abstraction mechanism [26]. To reason
about them effectively, it is important to separate the details of the call’s context
from the details of the function’s implementation (function body). This can be
done through a contract, expressed in terms of a precondition and a postcondition
(also see Fig. 1):

– The caller establishes the precondition.
– The body exploits this precondition and establishes the postcondition.
– The caller exploits this postcondition.
– The caller need not ‘know’ how the function body does its work.
– The body need not ‘know’ how the caller sets up the parameters and uses the

result.

Fig. 1. The relationships in two-sided contracts for functions

Adherence to the contract can typically be verified in terms of the program text,
and need not involve its execution. That is, it relates to the static call graph,
rather than the dynamic call tree. The verification consists of two parts:

1. verify that prior to each call (including recursive calls), the precondition is
satisfied;

2. verify that at the end of the function body, the postcondition is satisfied
(given that the precondition holds).

For example, the generalized factorial function fac_gen(a, n) can be under-
stood in terms of the following contract.
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– Precondition: n ≥ 0
– Postcondition: returned result equals a · n!

Note that the function header adds some conditions to the contract; in particular,
it states the types of the parameters and the result (if any). These are typically
checked by the interpreter or compiler. The body of fac_gen can be verified by
distinguishing two cases, and calculating that the desired result is returned.

Case 1 (n = 0):

a · n! (the desired result)
= { assumption n = 0, definition of n! }

a · 1
= { algebra }

a (the result returned by the body for n = 0)

Case 2 (n �= 0):

a · n! (the desired result)
= { n ≥ 1 by the precondition, definition of n! }

a · (n · (n − 1)!)
= { multiplication is associative }

(a · n) · (n − 1)!
= { postcondition of fac_gen, since its precondition n − 1 ≥ 0 holds }

fac_gen(a · n, n − 1) (the result returned by the body for n 
= 0)

Note how these two cases correspond to the base and step of an inductive proof.
In fact, we could have started with these calculations before knowing the

function’s body, and thereby derive the implementation. That is, contractual
reasoning can be used to design (recursive) programs [8,15,16]. Bertrand Meyer
coined the term design by contract for this approach in 1986 [18,19].

This approach is so natural that children in primary school, when properly
instructed, can successfully apply it [12,23]. It works best when loops are not
introduced, and recursion is the only mechanism available for repeated execution.
Of course, you would use different terminology: for every function you must
formulate a purpose (its intended effect) and assumptions on when it is supposed
to achieve that goal. You need to explain that you can break down problems into
problems of the same kind, as long as those new problems are, in some sense,
smaller than the original problem.

4.1 Termination of Recursion

That partial correctness is not enough is illustrated by the following function.
1 void miracle() {
2 miracle();
3 }
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It is easy to verify that function miracle satisfies the contract with precondition
True and postcondition False. Just consider the body, and the contract that it
satisfies. Consequently, this function solves all problems, since its precondition
is always satisfied, and False implies any other condition. Unfortunately, it does
not ‘work’, since it never terminates. But if it would terminate, it would indeed
solve all problems. Termination is a separate concern.

Termination of a direct-recursive function f can be argued by providing a
variant function, also known as bound function, or just variant, satisfying these
conditions:

1. the variant function is a mapping
– from f ’s parameters and relevant global variables that satisfy f ’s precon-

dition
– to some well-founded domain (such as the natural numbers, or a subset

of the integers that is bounded from below);
2. prior to each recursive call of f , the value of the variant function for that call

should be strictly less than its value upon entry of f ’s body.

In case of the functions fac, fib, and fac_gen, the well-founded domain of the
natural numbers suffices, and n can be used as variant function.

When the variant function maps to the natural numbers, its value can serve
as an upper bound to the depth of recursion; hence, the name ‘bound function’.
This upper bound does not have to be tight; it only concerns termination, and
not efficiency. Even if the bound is tight, the runtime and memory complexity
can be exponentially higher, as happens to be the case for the naive fib.

If the recursive function is defined over an inductive type using the bottom-
up style (see Subsect. 3.1), then termination is guaranteed, since the inductive
type can serve as well-founded domain, and the function’s parameter as variant
function.

For functions involving indirect recursion, proving termination is more com-
plex, and beyond the scope of this article.

5 Program Transformations

It can be hard work to design (derive) a program from scratch, even if you ignore
efficiency. It would be unfortunate if you had to redesign a program completely
to improve its efficiency. This is where program transformations come to the
rescue. A correctness-preserving program transformation is a technique that you
can apply to a program text to obtain a program that is equivalent, as far as
correctness is concerned. Usually the aim of such a transformation is to improve
the program in some way, for instance, its performance. There is then no need
to redesign it from scratch.

Numerous program transformations are available, in particular also in the
area of recursion. We cannot treat them here in any depth. Instead, we will show
a couple of examples.
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5.1 From Loops to Recursion, and Back

We already mentioned a relationship between loops and recursion in Subsect. 3.2.
Every loop can be transformed into an unbounded while-loop, having the form

1 T var = expr;
2 while (cond) {
3 body;
4 }
5 finish;

where var represents the local variables initialized by expression expr, cond a
boolean condition, and body and finish a group of statements. Such a loop can
be transformed into the call

1 tail(expr);

of a tail-recursive function tail defined by

1 void tail(T var) {
2 if (cond) {
3 body;
4 tail(var);
5 }
6 else {
7 finish;
8 }
9 }

This transformation can also be applied in the other direction: from a void tail-
recursive function to while-loop. For non-void tail-recursive functions there is a
similar transformation, as illustrated above with fac_gen.

It is well-known that any collection of (mutually) recursive functions can
be replaced by non-recursive functions and one while-loop, using a stack. The
stack holds the intermediate state of each active recursive invocation in a stack
frame. At any time, one such invocation is being executed. A recursive call
will temporarily suspend execution of the invoking function, and activate a new
invocation that will then be executed. When a recursive invocation terminates,
its stack frame is popped from the stack, and control returns to its invoker.

Sometimes, such a stack can be implemented simply by an integer variable
that is incremented for each new recursive invocation, and decremented when the
invocation terminates. Consider, for instance, a function that recognizes whether
parentheses in a string are balanced.

5.2 Accumulation Parameters and Continuations for Tail Recursion

A function that is not tail recursive can be transformed into tail recursive form.
We have seen that with fac_gen, which introduced a so-called accumulation
parameter (a). In the case of factorial, this generalization is inspired by the
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calculation for n ≥ 2:

n!
= { apply definition of factorial, using n ≥ 1 }

n · (n − 1)!
= { apply definition of factorial, now using n − 1 ≥ 1 }

n · ((n − 1) · (n − 2)!)
= { multiplication is associative }

(n · (n − 1)) · (n − 2)!

Compare this to the correctness proof of facgen given in Sect. 4. So, in general,
we are apparently interested in a calculation of the form

a · n! (25)

Thus, we arrive at the generalization facgen(a, n) = a ·n!. Here, a is the accumu-
lation parameter which gathers (accumulates) the final result.

The general transformation takes the following form. Assume that our recur-
sive function f looks like this:

1 /** Return f(n) for n >= 0 */
2 long f(int n) {
3 if (n == 0)
4 return base_expr;
5 else
6 return G(f(n-1));
7 }

This function f is not tail recursive, because after the recursive call, function
G still needs to be applied. If your programming language somehow supports
function parameters (and preferably also closures), then we can employ the
continuation-passing style (CPS) for generalizing f to f_cps and G to g:

1 /** Return g(f(n)) for n >= 0 */
2 long f_cps(Function<Long, Long> g, int n) {
3 if (n == 0)
4 return g.__(base_expr);
5 else
6 return f_cps(x -> g.__(G(x)), n-1);
7 }

where Function<D, R> is a type for functions from domain type D to range
(result) type R, and x -> g.__(G(x)) is a function that maps x to g(G(x)).

More in detail, Function<D, R> is a generic interface in Java defined by
1 @FunctionalInterface
2 interface Function<D, R> {
3 public R __(D x);
4 }
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This is a so-called functional interface (introduced in Java 8), which is an inter-
face with just one method.6 Any object, say obj, of any class that implements
Function<D, R> can serve as a function object, and its function is invoked as
obj.__(...).

The expression x -> E(x), where E(x) is an expression involving x, is a
so-called lambda expression (also introduced in Java 8), that provides a com-
pact syntax for defining an object of an anonymous inner class implementing a
functional interface.

The resulting function f_cps is tail recursive. It pushes all the work that
still needs to be done after the original recursive invocation returns, into the
continuation parameter g, which accumulates an unevaluated composition of
deeper and deeper nested calls of G: g equals x -> G(G(...G(x)...)). When
the base case is encountered, this composition g is finally evaluated. Here is our
standard factorial function transformed into continuation-passing style:
1 /** Return g(n!) */
2 long fac_cps(Function<Long, Long> g, int n) {
3 if (n == 0)
4 return g.__(1L);
5 else
6 return fac_cps(x -> g.__(n * x), n-1);
7 }

Now, the call fac_cps(x -> x, n) returns n factorial. Fortunately, as in the
case of factorials, it is often possible to simplify g.__(G(x)), and replace the
passing of a function by the passing of an evaluated expression.

5.3 Tupling

When dealing with multiple functions, on the same arguments, and following the
same recursion pattern, these functions can be combined into a single function
returning a tuple of the values returned by those functions. This technique is
known as tupling [13,14].

Let’s reconsider the Fibonacci function again, which involves a branching
recursion. We can redefine it using two mutually recursive functions:

fib(0) = 0 (26)
fib(n + 1) = gib(n) for n ≥ 0 (27)

gib(0) = 1 (28)
gib(n + 1) = gib(n) + fib(n) for n ≥ 0 (29)

6 To be as unobtrusive as possible, we have named that one method __. A single
underscore is discouraged as identifier in Java, since it is reserved for ‘future use’.
We have avoided the predefined generic java.util.functions.Function, which
has one method apply, whose name we find too long.
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The functions fib and gib follow the same recursion pattern. Hence, it makes
sense to consider the new function fib_pair defined by

fib_pair(n) = (fib(n), gib(n)). (30)

It can be computed recursively, using a 2-element array as pair:
1 long[] fib_pair(int n) {
2 if (n == 0)
3 return new long[] {0, 1};
4 else {
5 long[] p = fib_pair(n-1); // p = {fib(n-1), fib(n)}
6 return new long[] {p[1], p[0] + p[1]};
7 }
8 }
9 Function<Integer, Long> fib_1 = n -> fib_pair(n)[0];

This program has a runtime linear in n.
Tupling is a transformation technique dual to accumulation parameters.

6 Recursion Without Recursion in an OO Language

I have occasionally been guilty of telling the following story in introductory
programming classes.

In the beginning, there is data, of various types, and accompanying
expressions to operate on data. Variables are used to store data. At each
moment in time, a variable has one specific value. Assignment statements
modify variables by assigning a value computed from an expression. A
selection statement (also known as if -statement) provides conditional exe-
cution. All this is relatively easy, but it is still a poor programming formal-
ism: the number of execution steps is bounded by the size of the program.

Then come loops, a game changer. First bounded loops, with a precom-
puted upper bound (a.k.a. for-loops), and next unbounded loops (a.k.a.
while-loops). Now, program size is no longer an upper bound on program
execution: loops can repeatedly execute the same program fragments. This
also makes reasoning about programs harder.

At this point, I tell them that they know all that is needed to program
anything that can be computed. The formalism is now universal.

For convenience (or if you don’t have unbounded integers), we intro-
duce arrays or lists. And also functions, as possibly parameterized abbre-
viations for program fragments. And when they are ready for it (or not),
I introduce them to recursive functions.

And then I tell them that when you have recursive functions, you can
drop the loops, and you still can program everything that is computable.
You either need loops or recursion in a programming language to be uni-
versal, and both are hard.
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Why ‘guilty’? Because the statement ‘You either need loops or recursion in a
programming language to be universal’ is not correct. Of course, I know this from
Lambda Calculus [27], but that is not imperative programming. Only recently
did it dawn upon me how to connect this to object-oriented programming.

Let’s look again at the example of computing factorials. We have already
considered generalizations for this problem. Here is another generalization, which
we call f . Rather than calling the function itself in the ‘inductive step’, we
let it call a function that was provided as argument. That is, we introduce a
function parameter, say g (not to be confused with the continuation parameter
of Subsect. 5.2):

f(g, 0) = 1 (31)
f(g, n) = n × g(n − 1) for 0 < n (32)

This function f is not recursive. It does not compute the factorial of n, but
does something more general.7 If, however, you supply for g any function that
computes the factorial (expressible as a pre-post contract for g, which is part of
the precondition for f), then f (also) computes the factorial (a postcondition
for f):

(∀m :: g(m) = m!) ⇒ f(g, n) = n! (33)

Thus, the factorial function fac is a fixed point of f :

f(fac, n) = fac(n) (34)

Using currying,8 this can be rewritten as

f(fac)(n) = fac(n). (35)

or even more concisely as

f(fac) = fac. (36)

This might seem to be circular, and therefore pretty useless. But the situation
is a bit more subtle. The condition that g should compute the factorial is actually
too strong. We can weaken it:

(∀m : m < n : g(m) = m!) ⇒ f(g, n) = n! (37)

(You could weaken it further, because only m = n−1 when 0 < n is needed. But
that is a bit less convenient to formulate, and we don’t need this even weaker
condition.)

Now comes the interesting thing. We could use f itself for its own g, if only g
would take an additional function parameter. But that is easy to accommodate
by ‘upgrading’ the specification of f , so that g takes an extra function parameter:

f(g, 0) = 1 (38)
f(g, n) = n × g(g, n − 1) for 0 < n (39)

7 The best way to reason about this f is through contracts.
8 f(x, y) = (f(x))(y) = f(x)(y).
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Equation (39) features a self-application of g. We now have the property:

f(f, n) = n! (40)

The proof (omitted) is by induction on n, using (37) for the ‘upgraded’ f :

(∀m : m < n : f(f,m) = m!) ⇒ f(f, n) = n! (41)

6.1 Function Parameters and Self-Application in Java

The Java programming language does allow recursive function definitions. But
let’s pretend that these are forbidden. In Subsect. 5.2, we have seen how we can
do function parameters in Java, by using an object as ‘carrier’ of a function via
an instance method. We define the functional interface PreFunction:9

1 @FunctionalInterface
2 interface PreFunction {
3 public long __(PreFunction g, int n);
4 }

Here is the code for our generalized factorial function f , using a lambda expres-
sion:
1 PreFunction f = (g, n) -> n == 0 ? 1 : n * g.__(g, n-1);

This is shorthand for
1 PreFunction f = new PreFunction() {
2 @Override
3 public long __(PreFunction g, int n) {
4 if (n == 0)
5 return 1;
6 else
7 return n * g.__(g, n-1);
8 }
9 };

It is now possible to invoke f(g, n) as f.__(g, n). We could invoke this f
with as argument for g the identity function id. First, we define this function id
by implementing PreFunction (anonymously) through a lambda expression:
1 PreFunction id = (g, n) -> n; // independent of g

And then test it:10
1 for (int n = 0; n < 5; ++n) {
2 System.out.println("id(null, " + n + ") = " + id.__(null, n));
3 }

It produces as output:
9 The Pre part in the name reminds us that this function is a precursor of another

function. By the way, it is true that this is a recursive type definition, because
PreFunction occurs on the right-hand side. That is unavoidable because Java is a
strongly typed language. But there is nothing strange about that. A class Fraction
could have methods that take Fraction objects as arguments and return them,
without there being any recursion.

10 It does not matter what its g argument is; we chose null.
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id(null, 0) = 0
id(null, 1) = 1
id(null, 2) = 2
id(null, 3) = 3
id(null, 4) = 4

We now invoke f with id as parameter:
1 for (int n = 0; n < 5; ++n) {
2 System.out.println("f(id, " + n + ") = " + f.__(id, n));
3 }

This produces as output:

f(id, 0) = 1
f(id, 1) = 0
f(id, 2) = 2
f(id, 3) = 6
f(id, 4) = 12

In general, f(id, n) will return n(n − 1), except for n = 0 where it returns 1.
Finally, we invoke f with f as parameter:

1 for (int n = 0; n < 5; ++n) {
2 System.out.println("f(f, " + n + ") = " + f.__(f, n));
3 }

obtaining as output:

f(f, 0) = 1
f(f, 1) = 1
f(f, 2) = 2
f(f, 3) = 6
f(f, 4) = 24

We could even introduce a type for functions of one int argument returning a
long:
1 @FunctionalInterface
2 interface Function {
3 public long __(int n);
4 }

We can then define Function fac by
1 Function fac = n -> f.__(f, n);

And test it:
1 for (int n = 0; n < 5; ++n) {
2 System.out.println("fac(" + n + ") = " + fac.__(n));
3 }

To recap, we have defined a non-iterative non-recursive function f which we
used to define a non-iterative non-recursive function fac to compute factorials.
Of course, there is something loopy: f is called repeatedly, because fac supplies
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f as argument to f. This is known as self-application. But this is not a classical
‘static’ recursion, and also not recursive in the data. You could say that fac

has ‘dynamic’ recursion, because it is set up at runtime. To emphasize this even
further, we could have defined the factorial function as fac2 in the following
manner:
1 Function fac2 =
2 i -> ((PreFunction) (g, n) -> n == 0 ? 1 : n * g.__(g, n-1))
3 .__((g, n) -> n == 0 ? 1 : n * g.__(g, n-1),
4 i
5 );

Here it is obvious that there is no (static) recursion: since all functions in the
definition are anonymous there is no way they can refer to themselves.11

It is a bit unfortunate that you have to pass along this g parameter all of
the time, especially since it is always the same function. In the object-oriented
setting, we can avoid such copying by putting it in an instance variable, and
providing a setter. Instead of an interface, we define an abstract class for this,
having an instance variable g and providing a setter method set_g():
1 abstract class PreFunction2 {
2 protected PreFunction2 g;
3 public void set_g(PreFunction2 g) {
4 this.g = g;
5 }
6 public abstract long __(int n); // can call g.__()
7 }

We now define PreFunction2 f2 by
1 PreFunction2 f2 = new PreFunction2() {
2 @Override
3 public long __(int n) {
4 return n == 0 ? 1 : n * g.__(n-1);
5 }
6 };

Note how much it resembles the definition of f above. We configure and test it
as follows:
1 f2.set_g(f2);
2 for (int n = 0; n < 5; ++n) {
3 System.out.println("f2(" + n + ") = " + f2.__(n));
4 }

Now, we do have recursion in the data: the object f2 has obtained a reference
to itself via the setter.

6.2 Fixed-Point Combinator in Java

We can generalize this approach further. Suppose you want to define a recursive
function D → R from domain D to range R without using (static) recursion. We
define the generic type Function<D, R> for this:
11 Though a special syntax would be imaginable for recursive anonymous functions.
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1 @FunctionalInterface // D -> R
2 interface Function<D, R> {
3 public R __(D n);
4 }

For the recursive calls you introduce a function parameter of the same type D →
R. By currying (see above footnote 2), you define a function (D → R) → (D →
R), which is isomorphic to a function with two parameters, one of type D → R
and another of type D. For this we define the generic type PreFunction<D, R>:
1 @FunctionalInterface // (D -> R) -> (D -> R)
2 interface PreFunction<D, R> {
3 public Function<D, R> __(Function<D, R> g);
4 }

For example, for the factorial function, you define
1 PreFunction<Integer, Long> pre_fac =
2 g -> (n -> n == 0 ? 1 : n * g.__(n-1));

What we still need is a function Y that, when given such a precursor function f ,
such as pre_fac, returns its least fixed point. That is, it returns a ‘least’ function
r such that

f(r) = r. (42)

Thus, Y must have the property

f(Y (f)) = Y (f). (43)

It is tempting try the following recursive definition of method Y_rec_ for Y :
1 <D, R> Function<D, R> Y_rec_(PreFunction<D, R> f) {
2 return f.__(Y_rec_(f));
3 }

But it will not work (it leads to a stack overflow), because the call Y_rec_(f)
starts an infinite recursion. Java follows the so-called strict evaluation strategy,
where all arguments of a function are evaluated before evaluating the function’s
body. We can fix that by a simple trick: delay evaluation of that argument by
surrounding it with a lambda abstraction:
1 <D, R> Function<D, R> Y_rec(PreFunction<D, R> f) {
2 return f.__(n -> Y_rec(f).__(n));
3 }

In general, a function F is equivalent to λx.F (x). But in Java, a lambda expres-
sion is only evaluated when it is supplied with a concrete argument. Therefore,
(the body of) the outer application of f is now executed first, and it may invoke
its argument (the lambda abstraction) if so desired. We now have an indirect
self-application of f to f.

There is also a non-recursive strict way of defining method Y_rec for Y :
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1 <D, R> Function<D, R> Y(PreFunction<D, R> f) {
2 return ((Selfish<D, R>) x -> x.__(x))
3 .__(x -> f.__(n -> x.__(x).__(n)));
4 }

We named it Y, and it uses self-application based on the function type:
1 @FunctionalInterface // S = S -> (D -> R)
2 interface Selfish<D, R> {
3 public Function<D, R> __(Selfish<D, R> x);
4 }

The self-application appears outside f. The factorial function is then defined by
1 Function<Integer, Long> fac_r = Y_rec(pre_fac);

In the Lambda Calculus, this fixed-point combinator Y is written concisely as

Y = λf.(λx.x(x))(λx.f(λn.x(x)(n))). (44)

Here, the term (λx.x(x)) captures the self-application. If you look carefully, you
recognize this structure in the Java code for Y above. But the Java syntax is still
obscuring the beauty of this construction.

Remarks.

– It should be noted that in a formalism like Lambda Calculus, the evaluation
of functions, even when defined through a fixed-point combinator, is purely
based on substitutions and needs no stack. Nowadays, we would call that
self-modifying code.

– It is sobering to realize that the Y-combinator was discovered (invented?) by
Haskell Curry long before computing machines existed, possibly as early as
1929 [4]. Alan Turing published his Θ fixed-point combinator in 1937.

– Self-application lies at the heart of Gödel’s proof of his famous Incompleteness
Theorem.

7 Conclusion

For informatics teachers and anyone who wants to understand more of program-
ming, it is mandatory to know more about recursion. We have presented some
key topics for a master class on recursion, thereby highlighting several important
aspects of recursion that are often not touched upon in introductory courses.

Important questions both for students and teachers are: What to learn/teach
about recursion, and when to do so? The contractual approach explained in
Sect. 4 is general, that is, not only applicable to recursive functions, but it is
especially helpful in the context of recursion. You cannot go wrong by start-
ing there. For practical programming, the program transformation techniques
discussed in Sect. 5 are important. For better theoretical understanding, the
preliminaries of Sect. 2, the syntactic and operational view of Sect. 3, and the
fixed-point combinator of Sect. 6 are recommended.
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The article is not a complete master class on recursion. In particular, more
examples and exercises are needed. The following topics were omitted due to
space limitations, though they should certainly be included:

– How to nest loops where the nesting depth is controlled by a variable;
– Backtracking, to traverse complex search spaces systematically;
– Dynamic programming, to trade memory and runtime; we recommend [10];
– Branch & bound, to improve performance; see [9] for an abstract approach;
– Recursive descent parsing, to analyze structured texts.

You may have brushed continuation passing (Subsect. 5.2) and fixed-point
combinators (Sect. 6) aside as exotic beasts that only appear in the academic
world. It is then good to realize that modern programming languages (such as
Java) are evolving to incorporate the features underlying these concepts, espe-
cially functions as first-class citizens, for a reason. Functional programming is
the future. To quote Peyton Jones [21]:

“If you want to see which features will be in mainstream program-
ming languages tomorrow, then take a look at functional programming
languages today. [. . . ]

Writing software is all about managing complexity, the only thing that
limits how ambitious the software that we write is, is really our ability to
manage complexity, and functional languages give you much sharper tools
for managing complexity than imperative ones do.”
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