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Abstract. A reoptimization problem, given two similar instances of an
optimization problem and a good solution to the first instance, asks for a
solution to the second. In this paper we propose general approximation
algorithms applicable to a wide class of reoptimization problems.

1 Introduction

In this paper we propose general approximation algorithms applicable to a wide
class of reoptimization problems. We can build a reoptimization problem on top
of any optimization problem. An input instance to the reoptimization problem
is an instance of the underlying optimization problem, a good solution to it, and
a local modification to that instance. We ask for the solution to the modified
instance.

As an example imagine a train station where the train traffic is regulated
via a certain time schedule. The schedule is computed when the station is ready
to operate and, provided that no unexpected event occurs, there is no need to
compute it again. Unfortunately an unexpected event, such as a delayed train, is
in a long run inevitable. Reoptimization addresses this scenario, asking whether
knowing a solution for a certain problem instance is beneficial when computing a
solution for a similar instance. When dealing with relatively stable environments,
i.e., where changing conditions alter the environment only for a short period
of time, it seems reasonable to spend even a tremendous amount of time on
computing a good solution for the undisturbed instance, and profit from it when
confronted with a temporal change.

Due to its practical impact, a lot of work has been dedicated to reoptimiza-
tion. The term reoptimization was mentioned for the first time in [16]. The
authors studied the problem of scheduling with forbidden sets in the scenar-
ios of adding or removing a forbidden set. Subsequently various other NP-hard
problems in reoptimization settings have been successfully approached: the knap-
sack problem [2], the weighted minimum set cover problem [15], various covering
problems [8], the shortest common superstring problem [7], the Steiner tree prob-
lem [6,11,13,19,20] and different variations of the traveling salesman problem
[1,3,5,9,12,14]. We refer to [10,14,18,21] for the surveys, where [21] is the most
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up to date one. Most of the proposed reoptimization algorithms are based on
certain general problem patterns. Hence, an attempt to abstract the patterns
from the specific problems and state them on a general level appears desirable.
One such generalization was presented in [14], where the class of hereditary reop-
timization problems under the modification of vertex insertion was observed to
be a subject to a general pattern. This was an inspiration to writing this paper.

Our aim is to abstract the general patterns and properties of the problems
that lead to good reoptimization algorithms. For the characterized reoptimiza-
tion problems we propose general algorithms with provable approximation ratios.
Our characteristics are very general and apply to a variety of seemingly unrelated
problems. Our algorithms achieve the approximation ratios in [2,8,15] obtained
for each problem separately. Moreover, as discussed further in the paper, the
recent advances in reoptimization of the minimum Steiner tree problem are heav-
ily based on our general methods, see [18]. In [8], reoptimization variants of some
covering problems were considered for which the general approximation ratios
proposed in this paper were proven tight. This indicates that our methods are
unlikely to be improved on a level as general as presented here.

2 The Basics

In this section we model the concept of reoptimization formally and provide some
preliminary results. We observe that, in principle, reoptimization of NP-hard
problems is NP-hard. Most of the times approximation becomes easier, i.e., a
reoptimization problem admits a better approximation ratio than its optimiza-
tion counterpart. In principle, if the modification changes the optimal cost only
by a constant, the reoptimization problem admits a PTAS. The more interesting
situation when the optimal cost can change arbitrarily is addressed in subsequent
sections.

We now introduce the notation and definitions used further in the paper.

Definition 1 (Vazirani [17]). An NP optimization (NPO) problem Π =
(D,R, cost , goal) consists of

1. A set of valid instances DΠ recognizable in polynomial time. We will assume
that all numbers specified in an input are rationals. The size of an instance
I ∈ DΠ , denoted by |I|, is defined as the number of bits needed to write I
under the assumption that all numbers occurring in the instance are written
in binary.

2. Each instance I ∈ DΠ has a set of feasible solutions, RΠ(I). We require that
RΠ(I) �= ∅, and that every solution Sol ∈ RΠ(I) is of length polynomially
bounded in |I|. Furthermore, there is a polynomial-time algorithm that, given
a pair (I,Sol), decides whether Sol ∈ RΠ(I).

3. There is a polynomial-time computable objective function, costΠ , that assigns
a nonnegative rational number to each pair (I,Sol), where I is an instance
and Sol is a feasible solution to I.
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4. Finally, Π is specified to be either a minimization problem or a maximization
problem: goalΠ ∈ {min,max}.
An optimal solution to a problem Π is a feasible solution that minimizes or

maximizes the cost, depending on goalΠ . We denote the set of optimal solutions
to an instance I by OptimaΠ(I) and the optimal cost by OptcostΠ(I). Typically,
we write Opt ∈ OptimaΠ(I) to denote an optimal solution to an instance I
of a problem Π. To denote any solution, we write Sol ∈ RΠ(I). The costs are
referred to as Opt and Sol, respectively. We omit the index and/or the argument
if it is clear from the context.

We view an algorithm Alg solving an NPO problem Π = (D,R, cost , goal) as
a mapping from the instance set to the solution set satisfying Alg(I) ∈ R(I). We
denote the asymptotic running time of an algorithm Alg by Time(Alg), whereas
Poly(n) stands for a function polynomial in n. For the sake of simplicity, we
define an order � on the values of cost which favors better solutions: � equals
≤ if goal = min, and ≥ otherwise. An algorithm Alg is exact if, for any instance
I ∈ D,

cost(I,Alg(I)) = max
�

{cost(I,Sol) | Sol ∈ R(I)}.

Alg is a σ-approximation, if for any instance I ∈ D,

cost(I,Alg(I)) � σ max
�

{cost(I,Sol) | Sol ∈ R(I)},

where σ ≤ 1 if goal = max, and σ ≥ 1 otherwise.
We model the scenario where an instance and a corresponding solution are

known, and one needs to find a solution after the instance is modified. Hence, we
introduce a binary modification relation on the set of instances, which determines
which modifications are allowed. Additionally, the parameter ρ measures the
quality of the input solution. Formally, a reoptimization problem is defined as
follows.

Definition 2. Let Π = (DΠ ,RΠ , cost , goal) be an NPO problem and M ⊆
DΠ ×DΠ be a binary relation (the modification). The corresponding reoptimiza-
tion problem ReρM(Π) = (DReρ

M(Π),RReρ
M(Π), cost , goal) consists of:

– a set of feasible instances: DReρ
M(Π) = {(I, I ′,Sol) | (I, I ′) ∈ M,Sol ∈

RΠ(I) and Sol � ρOptcost(I)}; we refer to I as the original instance and to
I ′ as the modified instance

– a feasibility relation: RReρ
M(Π)((I, I ′,Sol)) = RΠ(I ′).

For the sake of simplicity, we denote Re1M(Π) by ReM(Π).

We illustrate this concept on the following example.

Example 1. Consider the weighted maximum satisfiability problem (wMaxSAT),
where clauses are assigned weights and one seeks for assignment that satis-
fies a set of clauses of maximum weight. In the reoptimization scenario, a ρ-
approximate assignment Sol to formula Φ is given. The given formula Φ is
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altered for instance by adding one of its literals to one of its clauses. This is
captured by a modification relation: the original instance I and the modified
instance I ′ are a valid part of the input if and only if (I, I ′) ∈ M. The modifica-
tion is defined as follows: (I, I ′) ∈ M if and only if all the clauses but one are the
same in Φ and Φ′ and the only different clause in Φ′ contains one additional lit-
eral. The reoptimization problem ReρM(wMaxSAT), given (Φ,Φ′,Sol) such that
(Φ,Φ′) ∈ M, asks for an assignment Sol′ for Φ′ maximizing the total weight of
satisfied clauses. Let us denote the set of satisfied clauses by Sats(Φ′,Sol′).

The two consecutive lemmas show both the limits and the power of reopti-
mization.

Lemma 1 (Böckenhauer et al. [10]). Reoptimization problems of NP-hard
problems, where applying the modification a polynomial number of times can
arbitrarily change an input instance, are NP-hard, even if all input instances
contain an optimal solution.

Lemma 2 (Bilò et al. [8]). If, for every instance (I, I ′,Sol) of ReρM(Π) and
any constants b and b′, we can compute in polynomial time a feasible solution
Sol′ to I ′, such that |Sol′−OptcostΠ(I ′)| ≤ b, and a best feasible solution among
the solutions to I ′ whose cost is bounded by b′, then ReρM(Π) admits a PTAS.

Proof. Let Π be a maximization problem (for minimization problems the proof
is analogous). For a given ε > 0, we compute two solutions to I ′: Sol′ as in the
claim of the lemma, and Sol′′, a best among the feasible solutions with cost
bounded by b

ε . If OptcostΠ(I ′) ≤ b
ε , then Sol′′ is optimal. Otherwise Sol′ ≥

OptcostΠ(I ′) − b ≥ (1 − ε)OptcostΠ(I ′). 	

Example 2. We illustrate Lemma 2 on the example of the maximum satisfiability
problem under clause addition: ReM(MaxSAT), where (Φ,Φ′) ∈ M if and only
if Φ′ = Φ ∧ Cnew for Cnew /∈ Φ. Due to Lemma 2, ReM(MaxSAT) admits a
PTAS. Clearly, if Cnew contains new variables, the reoptimization is trivial, so
we focus on the case when Cnew contains only variables from Var(Φ). Optimal
assignments: Opt to Φ and Opt′ to Φ′ differ at most by one (the contribution of
Cnew). Hence, Opt as a solution to Φ′ has a cost greater or equal to Opt′ −1. To
satisfy the second condition of the lemma, we need to compute a best among the
solutions with cost bounded by a constant b in polynomial time. To that end, we
exhaustively search for at most b to be satisfied clauses. For each choice of b′ ≤ b
clauses we verify if the selected set of clauses is satisfiable. Note that b′ variables
suffices to satisfy b′ clauses, so the satisfying assignment, if it exists, can be
found in polynomial time via exhaustive search. The PTAS for ReM(MaxSAT)
follows by Lemma 2.

Lemma 2 typically applies to unweighted reoptimization problems. It implies
a PTAS for MaxSAT (maximum satisfiability) if the modification alters only a
constant number of clauses, a PTAS for maximum independent set (MaxIndSet),
maximum clique (MaxCli), minimum vertex cover (MinVerCov) and minimum
dominating set (MinDomSet) if the modification alters a constant number of
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vertices/edges in the graph [8], a PTAS for minimum set cover (MinSetCov) if
the modification alters a constant number of sets [8], and a PTAS for β-minimum
Steiner tree (β-SMT) under changing the weight of an edge and under changing
the status of a vertex [13].

3 Self-Reducibility

In the previous section we addressed the reoptimization problems where the mod-
ification alters the optimal cost only by a constant. Should that not be the case,
other measures need to be developed. As we show in the next section, typically
an adjustment of the solution given in the input provides a greedy reoptimiza-
tion algorithm. To go beyond the approximation ratio of the greedy algorithm,
we compute a solution alternative to the greedy one and return a better among
them. We propose the self-reduction method for computing the alternative solu-
tion and show how it applies to self-reducible problems. We explain the concept
of self-reducibility before moving on to the method.

The self-reducibility explains why, for many NPO problems, we can construct
a recursive algorithm, which reduces an input instance to a few smaller instances
and calls itself on each of them. Perhaps the best problem to explain what we
have in mind is MaxSAT. For a given a formula Φ in n variables, a feasible solu-
tion is a partial assignment that assigns to each variable xi ∈ Var(Φ) either 0
or 1 or nothing. The reason why it is convenient for us to allow partial assign-
ments will become clear in Sect. 4. For a partial assignment Sol to Φ, we set
cost(Φ,Sol) to be the total number of clauses satisfied by Sol. The recursive
algorithm takes the first unassigned variable x1 ∈ Var(Φ) and sets x1 = 1. It
then reduces Φ to a smaller formula Φx1=1, the solutions for which are the par-
tial assignments on the remaining n− 1 variables. The reduced formula Φx1=1 is
obtained by removing all the literals x1 and x1 and all the clauses containing x1

from Φ. The algorithm calls itself recursively on Φx1=1. The recursive call returns
a partial assignment Solx1=1 to Φx1=1. Then, a solution Sol to Φ is computed
by assigning x1 = 1 and the values of Solx1=1 to the remaining variables. The
algorithm analogously computes solution Sol′ where x1 = 0. Finally, it returns
a better solution among Sol and Sol′.

This algorithm finds an optimum for the following reasons. Firstly, it stops
after at most 2|Φ| recursive calls, as |Φx1=j | < |Φ|. Secondly, there is a one-
to-one correspondence between feasible assignments to Φ setting x1 to 1 and
the feasible assignments to Φx1=1. Observe that cost(Φ,Sol) is equal to the
number of removed clauses plus cost(Φx1=1,Solx1=1), so the aforementioned
correspondence preserves the order on the assignments induced by their cost.
We need that property to find the optimum. In what follows we formalize the
above and abstract it from MaxSAT.

We assume that the solutions to instances of NPO problems have a certain
granularity, i.e., they are composed of smaller pieces called atoms. In the above
example with MaxSAT, an atom is an assignment on a single variable, for exam-
ple x1 = 1 or x1 = 0. We denote the set of atoms of solutions to I by Atoms(I).
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We assume that the size of Atoms(I) is polynomially bounded in the size of I,
i.e., |Atoms(I)| ≤ Poly(|I|). The set of atoms of solutions to I is formally defined
by Atoms(I) =

⋃
Sol∈R(I) Sol. Note that Atoms(I) is entirely determined by

the set of feasible solutions for I. For a problem Π = (D,R, cost , goal), the set
of all atoms in all instances of Π is denoted by AtomsΠ =

⋃
I∈D Atoms(I) and

we omit the index Π if it is clear from the context. We assume that cost(I,A)
is defined for any set of atoms A ⊆ Atoms(I). We extend the function cost(I, ·)
to any set of atoms in AtomsΠ so that the atoms do not contribute unless
they are valid atoms to I. More formally, we denote A ∩ Atoms(I) by [A]I and
set cost(I,A) = cost(I, [A]I). We assume that we can extract [A]I from A in
polynomial time, i.e., we can recognize which atoms are the atoms of I for any
problem instance I. We impose a special form of the correspondence function,
i.e., a solution to the reduced instance corresponds to the union of itself and the
set containing the atom used for the reduction. Clearly, the cost should carry
over accordingly.

Definition 3. We will say that a problem Π is self-reducible if there is a
polynomial-time algorithm, Δ, satisfying the following conditions.

– Given an instance I and an atom α of a solution to I, Δ outputs an instance
Iα. We require that the size of Iα is smaller than the size of I, i.e., |Iα| < |I|.
Let R(I|α) represent the set of feasible solutions to I containing atom α. We
require that every solution Sol of Iα, i.e., Sol ∈ R(Iα), has a corresponding
solution Sol ∪ {α} ∈ R(I|α) and that this correspondence is one-to-one.

– For any set A ⊆ Solα ∈ R(Iα) it holds that cost(I,A ∪ {α}) = cost(I, α) +
cost(Iα,A).

Definition 3 is an adaptation of the corresponding definition in [17]. We illus-
trate it on a few examples.

Example 3 (Self-Reducibility of the Weighted Maximum Satisfiability). For a
given instance I = (Φ, c), the set of feasible solutions R(I) contains truth assign-
ments on the subsets of variables. A feasible truth assignment assigns either 0
or 1 but not both to each variable in some set X ⊆ Var(Φ). We represent such
assignments as a set of pairs in X × {0, 1}. For example, an assignment that
assigns 1 to x1 and 0 to x2 is represented as {(x1, 1), (x2, 0)}. Such a repre-
sentation determines the set of atoms for an instance (Φ, c) as Atoms((Φ, c)) =
Var(Φ)×{0, 1}. The cost of a subset of atoms A ⊆ Atoms((Φ, c)) is cost(Φ,A) =∑

C∈Sats(Φ,A) c(C ). The reduction algorithm Δ on atom (x, i), i ∈ {0, 1},
returns the instance (Φ(x,i), c) obtained by removing all literals x and x̄ and
all clauses containing x from Φ. Clearly, Var(Φ(x,i)) ⊆ Var(Φ) \ {x}, so any
assignment Sol(x,i) to Φ(x,i) can be extended to an assignment Sol to Φ by set-
ting Sol = Sol(x,i) ∪ {(x, i)}. Then, cost((Φ, c),Sol) = c(Sats(Φ, {(x, i)})) +
cost((Φ(x,i), c),Sol(x,i)). It may happen that, if during the reduction step from
I to Δ(I, (x, i)) two variables x and y are lost, then the solutions to I assigning 1
or 0 to y cannot be reached from solutions to Δ(I, (x, i)) by adding (x, i). They
are, however, equivalent with solutions to I assigning nothing to y, and these
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can be reached. There is a way to define Δ to meet the conditions in Definition 3
exactly, for the sake of clarity however we do not describe it here.

The next few examples are built on graph problems. For such we adopt the
following notation. The neighborhood of a vertex v ∈ V (G) is denoted by ΓG(v).
Note that if G is a simple graph then v /∈ ΓG(v). The degree of a vertex v ∈ V (G)
is defined as degG(v) = |ΓG(v)|. For a set of vertices V ′ ⊆ V (G), by G − V ′ we
denote the subgraph of G induced on V (G) \ V ′.

Example 4 (Self-Reducibility of the Weighted Maximum Independent Set Prob-
lem). For a given input instance G = (V,E, c) of wMaxIndSet, the set R(G)
of feasible solutions contains all sets of vertices that are independent in G:
Sol ∈ R(G) ⇐⇒ (Sol ⊆ V (G) and Sol is independent in G). The set
of atoms for G, according to the definition, is the union of atoms over all the
solutions in R(G). Since any vertex in V (G) is in some independent set, we
obtain Atoms(G) = V (G). Given a set of atoms A ⊆ Atoms(G) (not neces-
sarily independent in G), we set cost(G,A) =

∑
v∈A c(v). We argue that this

representation of wMaxIndSet is self-reducible. The reduction algorithm Δ on
G and v ∈ Atoms(G) returns a graph Gv, obtained by removing v and its
neighborhood from G: Δ(G, v) = G − (ΓG(v) ∪ {v}). Clearly, any solution
Solv to Gv maps to the solution to G given by Sol = Solv ∪ {v}. Clearly,
cost(G,Sol) = cost(Gv,Solv)+ cost(G, v). Hence the conditions of Definition 3
are satisfied.

Example 5 (Self-Reducibility of the Minimum Steiner Tree (SMT) Problem). For
a given instance (G,S ), the feasible solutions in R((G,S )) are the subgraphs of
G spanning S . We represent solutions as sets of edges, i.e., Sol ⊆ E(G) is a
feasible solution to (G,S ) if the edges in Sol span S . This determines the set
of atoms: Atoms((G,S )) = E(G). The cost function is defined as the sum of
costs of edges in the solution: cost((G,S ),Sol) =

∑
e∈Sol c(e). The reduction

function Δ((G,S ), e) contracts edge e to a vertex and includes that vertex in the
terminal set. Clearly, this might create parallel edges and self-loops. Nevertheless,
any solution Sole ∈ R(Δ((G,S ), e)) spans S and the vertex corresponding to e
in the contracted graph. Moreover, all edges of Sole are edges in G. As a set of
edges in G, Sole forms two connected components attached to the endpoints of
e, and the component Sole ∪ {e} spans S in G.

Example 6 (Self-Reducibility of the Maximum Cut with Required Edges Prob-
lem). For a given instance (G,R), feasible solutions are sets of edges that extend
R to a cut in G. This determines the set of atoms: Atoms((G,R)) = E(G) \ R.
The cost function is, as in the previous example, defined as the sum of costs of
edges in the solution: cost((G,R),Sol) =

∑
e∈Sol c(e). The reduction function

Δ((G,R), e) reduces the cost c(e) to 0 and includes e in R. It is easy to see that
the conditions of Definition 3 hold.

The method we now introduce improves the approximation ratio of a self-
reducible optimization problem Π if every problem instance admits an optimal
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Algorithm 1: SAlg employing an approximation algorithm Alg
input : Instance I

1 forall the α ∈ Atoms(I) do
2 Sol(α) := Alg(Δ(I, α));
3 end

output: The best among Sol(α) ∪ {α}

solution containing an expensive atom. In essence, we exhaustively search for
the expensive atom through all atoms. For each atom we reduce the instance,
approximate the solution of a reduced instance using an approximation algorithm
Alg for Π and add the missing atom (See Algorithm 1 for the corresponding
algorithm SAlg). The next lemma and corollary show what we gain by using
SAlg as compared to using Alg only.

Lemma 3. If Π = (D,R, cost , goal) is self-reducible and Alg is a σ-
approximation algorithm for Π, then, for every Sol ∈ R(I) and every atom
γ ∈ Sol, it holds that cost(I,SAlg(I)) � σcost(I,Sol) − (σ − 1)cost(I, γ).

Proof. Fix Sol ∈ R(I) and γ ∈ Sol. The algorithm returns Sol(α) ∪ {α} for
some atom α which gives the best cost. This solution is feasible for I due to the
first condition of Definition 3. Further, since Sol ∈ R(I|γ), there is Solγ such
that Sol = Solγ ∪ {γ}. The estimation of cost(I,SAlg(I)) follows:

cost(I,SAlg(I))
= cost(I,Sol(α) ∪ {α}) � cost(I,Sol(γ) ∪ {γ})
= cost(I, γ) + cost(Iγ ,Sol(γ)) � cost(I, γ) + σcost(Iγ ,Solγ)
= cost(I, γ) + σ(cost(I,Sol) − cost(I, γ))
= σcost(I,Sol) − (σ − 1)cost(I, γ)

	

Corollary 1. If every instance I of Π admits an optimal solution containing an
atom α with cost(I, α) � δOptcost(I), then SAlg is a σ−δ(σ−1)-approximation.

In what follows, we generalize the idea by introducing the concept of guessable
sets of atoms. We say that a set of atoms A ⊆ Sol ∈ R(I) is F(n)-guessable for
some instance I of a self-reducible problem Π, |I| = n, if we can determine a
collection of sets of atoms G with |G| ∈ O(F(n)) such that A ∈ G. We then call
G a set of guesses for A. Guessing A boils down to an exhaustive search through
G. This is useful when we can prove the existence of a certain set A with some
characteristic, but we have no knowledge what the elements of A are. If A is
F (n)-guessable, it is enough to iterate through O(F (n)) candidates in G to be
guaranteed that at some point we look at A. For example, a subset of Atoms(I)
of size b of maximum cost among the subsets of size b is nb-guessable: G is in
that case a collection of subsets of Atoms(I) containing exactly b atoms. Hence,
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Algorithm 2: SG
Alg employing an approximation algorithm Alg

input : Instance I
1 forall the A = {α1, . . . , α|A|} ∈ G do
2 I0 := I;
3 for (j = 1, . . . , |A|) do
4 Ij := Δ(Ij−1, αj);
5 end

6 ˜Sol|A| := Alg(I|A|);
7 for (j = 0, . . . , |A| − 1) do

8 ˜Sol|A|−j−1 := ˜Sol|A|−j ∪ {α|A|−j};
9 end

10 end

output: The best ˜Sol0 over all considered A ⊆ Atoms(I)

it is Poly(n)-guessable if b is constant (recall that we assume that |Atoms(I)| ≤
Poly(n)). Another example of a Poly(n)-guessable set applies to problems where
the instances are graphs and the solutions are the sets of vertices in the graph.
In that case, we let A ⊂ Atoms(I) be the neighborhood of a vertex that belongs
to some optimal solution (any such vertex). We know that such a set A exists
if optimum is not empty. The size of the neighborhood may not be constant as
in the previous example, however, the neighborhood itself is determined by a
single vertex. Setting G = {ΓG(v)}v∈V (G) brings us to the conclusion that A is
n-guessable as |G| = |V (G)| < n. Note that every set of atoms (including the
optimal solution) is 2|Atoms(I)|-guessable.

We modify SAlg to handle guessable sets. Let G be the set of valid guesses
for a set of atoms. The modified algorithm SG

Alg runs through all sets A ∈ G
and reduces the instance using the atoms in A one by one. It applies Alg on the
obtained instance and combines the solution with the atoms in A. The resulting
algorithm SG

Alg is presented in Algorithm 2.
Algorithm SG

Alg runs in time O(|G|(|Atoms(I)|Time(Δ) + Time(Alg))), so it
is a polynomial-time algorithm for |G| = Poly(n).

Lemma 4. If Π = (D,R, cost , goal) is self-reducible and Alg is a σ-
approximation algorithm for Π then, for every Sol ∈ R(I) and every set
A ∈ G such that A ⊆ Sol, it holds that cost(I,SG

Alg(I)) � σcost(I,Sol) −
(σ − 1)cost(I,A).

Proof. Let A = {α1, . . . , α|A|} and a solution Sol to instance I be as in the
claim of the lemma. Due to Definition 3, Sol corresponds to a solution Solα1 to
instance I1 = Δ(I, α1) such that Sol = Solα1 ∪ {α1}. Thus all atoms of Sol,
except of possibly α1, are contained in Solα1 ∈ R(Iα1). Hence, we can reduce I1
further using α2 as a reduction atom. The argument carries on to all the instances
constructed by SG

Alg . Again due to Definition 3, S̃olj = S̃olj+1 ∪ {αj+1} is
feasible to Ij for j = 0, . . . , |A|, and the following estimation of the cost of the
output holds:
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cost(I,SG
Alg(I)) � cost(I, S̃ol0) � cost(I, S̃ol1 ∪ {α1})

= cost(I, α1) + cost(I1, S̃ol1)

� · · · �
|A|∑

j=1

cost(Ij−1, αj) + cost(I|A|, S̃ol|A|)

Now let Sol0 := Sol and Solj+1 be the solution for Ij+1 which satisfies Solj =
Solj+1 ∪ {αj+1} for j := 0, . . . , |A| − 1. We continue our estimation of the cost.
Based on the second condition of Definition 3 and the fact that S̃ol|A| is a σ-
approximation the following holds.

cost(I,SG
Alg(I)) � cost(I,A) + σcost(I|A|,Sol|A|)

= cost(I,A) + σ(cost(I|A|−1,Sol|A|−1) − cost(I|A|−1, α|A|))

= cost(I,A) + σ(cost(I,Sol) −
|A|∑

j=1

cost(Ij−1, αj))

= cost(I,A) + σ(cost(I,Sol) − cost(I,A))

	

Corollary 2. If every instance I admits an optimal solution containing a set
A ∈ G with cost(I,A) � δOptcost(I), then SG

Alg is a (σ−δ(σ−1))-approximation.

4 Modifications

The main problem with the algorithm SG
Alg introduced in the previous section

is that it does not help if the optima do not contain an efficiently guessable
expensive set of atoms. Here, the reoptimization comes into play. Knowing the
solution to a similar problem instance, we can construct a greedy solution which
is an alternative to the solution computed by SG

Alg . Luckily, the bad instances for
SG
Alg are exactly the good instances for the greedy algorithm. For the remainder of

this section, let Π = (D,R, cost , goal) be a self-reducible optimization problem
and let ReρM(Π) be the corresponding reoptimization problem. Also, for the
remainder of this section, let Alg be a σ-approximation algorithm for Π.

The greedy algorithm depends on the type of modification. For example, if the
input solution Sol happens to be feasible to the modified instance I ′, we can use
it as the greedy solution. We classify in this section three types of modifications
by a combination of two classification criteria and provide general approximation
algorithms for them. For the so-called progressing modifications, feasible solu-
tions to the original instance I remain feasible to the modified instance I ′. For
example, after removing an edge from a graph, independent sets remain indepen-
dent. This is not the case when adding an edge. Then, however, an independent
set in the modified instance I ′ is also independent in the original instance I. The
latter is how we define regressing modifications.
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Table 1. Different types of local modifications with the corresponding approximation
ratios for ReM(Π)

Modification

Progressing Regressing

Subtractive Additive Additive
1

2−σ
2σ−1

σ
2σ−1

σ

Once we figured out if the modification is progressing or regressing, we can
use the solutions to one of the input instances as the solution to the other one.
Unfortunately, this does not work in the opposite direction. Our second classifi-
cation criterion describes how to modify a solution to this other instance in order
to make it feasible for the instance it is not feasible for. As a result, progressing
and regressing modifications are subdivided into two further types: subtractive
and additive. They strictly correspond to whether the problem is a maximization
or a minimization problem. The classification together with the corresponding
approximation ratios is shown in Table 1. For our approximation algorithms to
work, feasibility preservation must be accompanied by cost preservation. We
start with a few definitions that let us preserve the cost of feasible solutions in
a convenient way.

Definition 4. We say that a cost function cost is:

– pseudo-additive if the sum of the costs of two sets of atoms is greater
than or equal to the cost of the union of the sets. Formally, for any
A1,A2 ⊆ Atoms(I) such that A1 ∩ A2 = ∅ it holds that (cost(I,A1 ∪ A2)
≤ cost(I,A1) + cost(I,A2) and, if A1 ⊆ A2, then cost(I,A1) ≤ cost(I,A2)),

– additive if the cost of a set of atoms is the sum of the measures of its disjoint
subsets. Formally, for any A1,A2 ⊆ Atoms(I) such that A1 ∩A2 = ∅ it holds
that cost(I,A1 ∪ A2) = cost(I,A1) + cost(I,A2).

Definition 5. A modification M is cost-preserving if, for all (I, I ′) ∈ M and
all Sol ∈ R(I), it holds that cost(I,Sol) � cost(I ′,Sol).

Definition 6. A modification M is reversely cost-preserving if, for all (I, I ′) ∈
M and all Sol′ ∈ R(I ′), it holds that cost(I ′,Sol′) � cost(I,Sol′).

Definition 7. A modification M is:

1. progressing if feasible solutions to the original instance I are feasible also
to the modified instance: for every pair (I, I ′) ∈ M it holds that [R(I)]I′ ⊆
R(I ′),

2. regressing if feasible solutions to the modified instance I ′ remain feasible for
the original instance I: for every (I, I ′) ∈ M it holds that [R(I ′)]I ⊆ R(I).
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Definition 8. A progressing modification M is:

1. subtractive (in maximization problems) if there is an optimal solution to the
modified instance I ′ which, after removing a part of it, becomes feasible for I
and not less valuable:

∃Opt′ ∈ Optima(I ′)
∃A′ ⊆ Opt′

∣
∣
∣
∣

Opt′ \ A′ ∈ R(I)
cost(I,Opt′ \ A′) ≥ cost(I ′,Opt′ \ A′),

2. additive (in minimization problems) if, for every optimal solution Opt to the
original instance I, there is an optimal solution Opt′ to the modified instance
I ′ such that one can be transformed into the other as follows

• Opt′ (minus possibly some atoms) becomes feasible to I after adding to
it a part of Opt

• If we remove this part from Opt, it may not be feasible anymore. It
becomes feasible to I ′ after adding a part of Opt′. Formally:

∀Opt ∈ Optima(I)
∃Opt′ ∈ Optima(I ′)

∃A ⊆ Opt
∃A′,A′′ ⊆ Opt′

∣
∣
∣
∣
∣

Opt′ \ A′′ ∪ A ∈ R(I)
cost(I,Opt′ \ A′′ ∪ A) ≤ cost(I ′,Opt′ \ A′′ ∪ A)

(Opt \ A) ∪ A′ ∈ R(I ′).

We now introduce the general approximation algorithms.

Theorem 1. Let cost be pseudo-additive, M be cost preserving and progressing
subtractive and let A′ be as in Definition 8.1. Then, there is a 1

2−σ -approximation
algorithm for ReM(Π) that runs in time O(F(n)(Time(Alg)+Poly(n))) if A′ is
F(n)-guessable.

Proof. Let (I, I ′,Opt) be an input instance in DRe1M(Π). The approximation
algorithm for Re1M(Π) returns the better one of Opt and SG

Alg(I
′). Since M is

progressing, Opt ∈ R(I ′). Let Opt′ be an optimal solution for I ′. Then

cost(I ′,Opt) ≥
cost pres.

cost(I,Opt) (1)

≥
prog. subt., optimality

cost(I,Opt′ \ A′) (2)

≥
prog. subt.

cost(I ′,Opt′ \ A′) (3)

≥
ps. add.

cost(I ′,Opt′) − cost(I ′,A′). (4)

By Lemma 4, cost(I ′,SG
Alg(I

′)) ≥ σcost(I ′,Opt′) − (σ − 1)cost(I ′,A′). Simple
calculations show that at least one of the two provided solutions gives an approx-
imation ratio of 1

2−σ . 	

Note that among (1) to (4), only (4) is crucial for the theorem to hold. Hence,

Remark 1. If we are able by some means to obtain a solution with a cost bounded
from below as (4) dictates, then the claim of Theorem 1 holds.
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We next show how to generalize Theorem 1 to the case where we can guess a
larger part of Opt′ than the part that we need for estimating the cost of Opt.

Definition 9. A progressing modification is α-subtractive, α ≤ 1, if

∃Opt′ ∈ Optima(I ′)
∃A′ ⊆ Opt′

∃A′′ ⊆ A′

∣
∣
∣
∣
∣

Opt′ \ A′′ ∈ R(I)
cost(I,Opt′ \ A′′) ≥ cost(I ′,Opt′ \ A′′)

cost(I ′,A′′) ≤ αcost(I ′,A′)

Note that a 1-progressing subtractive modification is simply the progressive sub-
tractive modification from Definition 8.1.

Corollary 3. Let cost be pseudo-additive, M be cost-preserving and α-
progressing subtractive and let A′ be as in Definition 9. Then, there is a 1−σ(1−α)

1−σ+α -
approximation algorithm for ReM(Π) that runs in time O(F(n)(Time(Alg) +
Poly(n))) if A′ is F(n)-guessable.

Proof. Analogous to the proof of Theorem1. In (2) we substitute A′ with A′′.
Then (4) gives cost(I ′,Opt) ≥ cost(I ′,Opt′)− cost(I ′,A′′). Using the fact that
cost(I ′,A′′) ≤ αcost(I ′,A′), we obtain a lower bound on cost(I ′,Opt) given by
cost(I ′,Opt) ≥ cost(I ′,Opt′)−αcost(I ′,A′). The alternative solution, SG

Alg(I
′),

by Lemma 3 satisfies cost(I ′,SG
Alg(I

′)) ≥ σcost(I ′,Opt′) − (σ − 1)cost(I ′,A′).
Again simple calculations lead to the approximation ratio as claimed. 	

Corollary 4. Let the assumptions be as in Corollary 3. Then, there is
a ρ 1−σ(1−α)

1−σ+αρ -approximation algorithm for ReρM(Π) that runs in time
O(F(n)(Time(Alg) + Poly(n))) if A′ is F(n)-guessable.

Proof. We plug in a multiplicative factor of ρ in (2). The rest of the proof is
analogous to the proof of Corollary 3. 	


The use of Corollary 4 is illustrated by the following example.

Example 7. Consider wMax-k-SAT under clause addition: ReρM(wMax-k-SAT)
where (Φ,Φ′) ∈ M if and only if Φ′ = Φ ∧ Cnew for Cnew /∈ C(Φ). Recall that
solutions to Φ are partial assignments and cost(Φ,Sol) =

∑
C∈Sats(Sol) c(C ).

Observe that the cost function is pseudo-additive (as in Definition 4). Since
Var(Φ) ⊆ Var(Φ′), a feasible assignment to Φ is feasible to Φ′, and its cost
does not decrease, hence M is progressive and cost-preserving (as in Defini-
tions 5 and 7). To prove that it is also additive, let A′ be the set of atoms in
Opt′ that satisfy Cnew, i.e., the atoms of form (x, 1) for x ∈ Cnew and (x, 0)
for x ∈ Cnew. Clearly, |A′| ≤ k, so |A′| is nk-guessable if n is the size of the
instance. The conditions of Definition 8.1 are satisfied, as Opt′ \ A′ is feasible
to Φ and its cost is the same with respect to both Φ′ and Φ. Thus, Corollary 4
applies with α = 1 and we obtain a ρ

1−σ+ρ -approximation algorithm that runs
in polynomial time if k is constant. For instance, for ReM(wMax-3-SAT) this
gives an approximation ratio of 0.83, whereas wMax-3-SAT admits an approx-
imation ratio of 0.8. As a matter of fact, following Remark 1 we can apply our
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Table 2. Some reoptimization problems where Corollary 4 applies. In the remarks
column we state if we meet the earlier approximation ratio for the same problem.
Corollary 4 gives polynomial-time algorithms even if a constant number of items is
added, removed, or change their cost.

Problem Modification Remarks

wMaxIndSet Edge removal Corollary 4 applies with α = 0.5 for
edge removal; implies ratio from [8]Vertex addition

wMaxCli Edge addition Analogous to wMaxIndSet; implies
ratio from [8]Vertex addition

wMax-k-SAT, const. k Clause addition See Example 7

wMaxSAT Addition of a variable to
arbitrary number of
clauses

Knapsack Item addition Implies ratio from [2]

ReqMaxCut Edge cost increase See Example 6 for self-reducibility;
implies approximation algorithm
for MaxCut under edge cost
increase with the same ratio

algorithm to the wMaxSAT problem under addition of a clause as well. It suf-
fices to observe that, for any atom xi = j ∈ Opt′ satisfying Cnew, it holds that
cost(I ′,Opt) ≥ cost(I ′,Opt′) − c(Cnew) = cost(I ′,Opt′) − cost(I ′, (xi, j)).

Table 2 shows the power of Corollary 4, i.e., we list there the problems, where
Corollary 4 directly applies.

Theorem 2. Let cost be additive, M be cost preserving and progressing additive
and A,A′ be as in Definition 8.2. Then there is a 2σ−1

σ -approximation algorithm
for ReM(Π) that runs in time O(F(n)(Time(Alg) + Poly(n))) if A and A′ are
F(n)-guessable.

Proof. Let Opt and Opt′ be the optima of I and I ′. The algorithm computes
two solutions (Opt \ A) ∪ A′ and SG

Alg(I
′), and returns the better one. Let us

first estimate the cost of (Opt \ A) ∪ A′:

cost(I ′, (Opt \ A) ∪ A′)
≤

ps. add.
cost(I ′,Opt \ A) + cost(I ′,A′)

≤
additivity

cost(I ′,Opt) − cost(I ′,A) + cost(I ′,A′)

≤
cost pres.

cost(I,Opt) − cost(I ′,A) + cost(I ′,A′)

≤
optimality

cost(I, (Opt′ \ A′′) ∪ A) − cost(I ′,A) + cost(I ′,A′)

≤
additivity

cost(I ′, (Opt′ \ A′′) ∪ A) − cost(I ′,A) + cost(I ′,A′)
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≤
ps. add.

cost(I ′,Opt′) + cost(I ′,A′).

By Lemma 4, cost(I ′,SG
Alg(I

′)) ≤ σcost(I ′,Opt′) − (σ − 1)cost(I ′,A′). Putting
the inequalities together gives the desired result. 	


Theorem 2 does not generalize to the case where an approximate solution is
given as a part of the input, see [8] for the proof of this fact. A straightforward
example of a problem where Theorem 2 applies is the weighted minimum vertex
cover problem under edge removal.

Example 8. We illustrate Theorem 2 on the example of the weighted mini-
mum vertex cover problem under edge removal, i.e., ReM(wMinVerCov), where
(G,G′) ∈ M if and only if V (G) = V (G′) and E(G′) = E(G) \ {e} for some
e ∈ E(G). For an instance G of wMinVerCov, a feasible solution is a set of
vertices Sol ⊆ V covering all the edges in G. This defines the set of atoms
of G as Atoms(G) = V (G). The cost function cost(G,Sol) =

∑
v∈Sol c(v) is

clearly additive. The self-reducibility manifests itself with the reduction function
Δ which removes a vertex from the graph together with the adjacent (covered)
edges: Δ(G, v) = G−v. A vertex cover remains feasible when an edge is removed
from the graph, hence M is progressing. The cost of any set of vertices is the
same for G and G′, hence M is cost-preserving. Let Opt be an optimal solution
for the original graph and Opt′ for the modified graph. We expose the sets A, A′

and A′′ = ∅ satisfying Definition 8.2. Adding any endpoint of the removed edge
e to Opt′ makes it feasible for the original instance, as it covers e. One of the
endpoints of e however, say v, must be in Opt. We set A = {v}. Observe that
v /∈ Opt′ implies ΓG(v) ⊆ Opt′ and set A′ = ΓG(v) to be the second augment-
ing set. Since both A and A′ are Poly(n)-guessable, there is a polynomial-time
1.5-approximation algorithm for this variant of wMinVerCov reoptimization by
Theorem 2 (the approximation ratio for wMinVerCov is σ = 2 [4]).

Other reoptimization problems where Theorem2 applies are the minimum
Steiner tree problem under removing a vertex from the terminal set and under
decreasing the cost of an edge. The direct application of Theorem2 results in
approximation algorithms with O(nlog n+b) running time for both these problems
where b is a constant, however parametrization allows reducing the running time
to polynomial by an arbitrary small constant increase in the approximation ratio,
see [18] for the details.

Definition 10. A regressing modification M is additive (in minimization prob-
lems) if every feasible solution (possibly without some atoms) of the original
instance I becomes feasible by adding a part of an optimal solution for the mod-
ified instance I ′:

∀Sol ∈ R(I)
∃Opt′ ∈ Optima(I ′)

∃A ⊆ Sol
∃A′ ⊆ Opt′

∣
∣
∣
∣
∣

(Sol \ A) ∪ A′ ∈ R(I ′)
cost(I ′,Sol \ A) ≤ cost(I,Sol \ A)



492 A. Zych-Pawlewicz

Theorem 3. Let cost be pseudo-additive, M be reversely cost-preserving (Def-
initions 5 and 6) and regressing additive, and A′ be as in Definition 10. Then
there is a 2σ−1

σ -approximation algorithm for ReM(Π) with O(F(n)(Time(Alg)+
Poly(n))) running time if A,A′ are F(n)-guessable.

Proof. The approximation algorithm for reoptimization receives (I, I ′,Opt) as
input. Let Opt′ ∈ Optima(I ′). The algorithm returns the better of (Opt\A)∪
A′ and SG

Alg(I
′). Observe that, by Definitions 6 and 7.2,

cost(I ′,Opt \ A) ≤
reg. add.

cost(I,Opt \ A)

≤
ps. add.

cost(I,Opt)

≤
regressing

cost(I,Opt′)

≤
rev. cost p.

cost(I ′,Opt′). (5)

We estimate what follows based on pseudo-additivity and the above observation:

cost(I ′,Opt \ A ∪ A′) ≤
ps. add.

cost(I ′,Opt \ A) + cost(I ′,A′)

≤
obs.

cost(I ′,Opt′) + cost(I ′,A′).

By Lemma 3, cost(I ′,SG
Alg(I

′)) ≤ σcost(I ′,Opt′) − (σ − 1)cost(I ′,A′). Simple
calculations show that one of the provided solutions gives an approximation ratio
of 2σ−1

σ . 	

Corollary 5. Let the assumptions be as in Theorem3. Then ReρM(DΠ) for any
ρ ≤ σ admits a σ−ρ+σρ

σ -approximation algorithm with O(F(n)(Time(Alg) +
Poly(n))) running time if A′ is F(n)-guessable.

Proof. Plug in a factor of ρ in (5) in the proof of Theorem3. The rest of the
proof is the same. 	


Below we provide an example application of Theorem3. In addition to that
Table 3 lists other problems where Corollary 5 applies.

Example 9. We illustrate Theorem 3 with the weighted minimum vertex cover
problem under edge addition: ReM(wMinVerCov). The self-reducible represen-
tation of the wMinVerCov problem was introduced in Example 8. The addition
of an edge can make a vertex cover infeasible, but the solution in the modified
instance must cover this edge with one of its endpoints. Therefore, adding this
endpoint (A′ satisfying Definition 10 contains only this endpoint) to the solution
for the original instance makes it feasible for the modified one. Hence, Theorem 3
implies a 1.5-approximation algorithm that runs in polynomial time.
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Table 3. The lists of the reoptimization problems where Corollary 5 applies. In case of
the SMT problem, the resulting running times are sub-exponential, but can be reduced
to polynomial by a simple parametrization. For the other problems, the corollary gives
polynomial-time algorithms even if a constant number of items is altered.

Problem Modification Remarks

wMinVerCov Edge addition Implies ratios from [8]

Vertex addition

wMinDomSet Edge removal Implies ratio from [8]

wMinSetCov Removal of an element
from an arbitrary
number of sets

See [18]

Removal of a set of a
bounded size

Removal of a bounded
number of elements
from a set

Implies ratios from [8,15]

SMT A non-terminal becomes
a terminal

See [18,19]

Edge weight increase

wMinFvs Edge addition
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6. Bilò, D., et al.: Reoptimization of steiner trees. In: Gudmundsson, J. (ed.) SWAT
2008. LNCS, vol. 5124, pp. 258–269. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-69903-3 24
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