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Abstract. Let u, m ≥ 1 be arbitrary integers and let r ≥ (u − 1)m be
any multiple of m. Consider the multiset (“class”) Hlin

u,m,r = {ha,b | 0 ≤
a, b < r} of hash functions from U = {0, . . . , u−1} to M = {0, . . . , m−1},
where ha,b(x) = �((ax + b) mod r)/(r/m)�, for x ∈ U . In a STACS paper
of 1996 it was shown that Hlin

u,m,r is 5
4
-approximately 2-wise independent

and (error-free) 2-wise independent if in addition r is a power of a prime
number. Here, we revisit this result. We prove slightly stronger bounds
(in part also shown by Woelfel (1999) with different methods) and we
discuss applications that have appeared in the meantime, e.g., complexity
lower bounds for integer multiplication, fine-grained complexity inside
the class P, and the usefulness and limitations of these simple hash classes
in combination with other applications of hashing.

Dedicated to Juraj Hromkovič on the occasion of his 60th birthday.

1 Introduction

Let u,m ≥ 1 be arbitrary integers and let r ≥ (u − 1)m be any multiple of
m. Consider the “class” Hlin

u,m,r = {ha,b | 0 ≤ a, b < r} of hash functions from
U = [u] = {0, . . . , u − 1} to M = [m] = {0, . . . , m − 1}, where

ha,b(x) = �((ax + b) mod r)/(r/m)� , for x ∈ U.

In a STACS paper [10] of 1996 it was shown that Hlin
u,m,r is 5

4 -approximately 2-
wise independent and (error-free) 2-wise independent if in addition r is a power
of a prime number. In the present paper, we revisit the contribution of 1996,
describe improvements of the results and discuss ramifications and applications
that have appeared in the meantime.

1.1 Background: Two-Wise Independence and Universality

Two-wise independent random variables and hash functions have a multitude of
applications. We mention just two: universal hashing for use in data structures
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[7,13,18,26,29,40] and amplifying randomness and derandomization [2,8,11,23,
28]. For a classical survey of applications, see [24].

Given sets U (the universe, usually finite) and M (the range, finite), we call a
function h : U → M a hash function. Elements of U are called keys. We consider
“classes” (multisets) H of hash functions. Such a class is called 1-universal if
for h chosen uniformly at random from H the collision probability is bounded
by 1/ |M |, i.e., if we have

Pr(h(x1) = h(x2)) ≤ 1
|M | , for x1, x2 ∈ U distinct. (1)

Class H is called 2-wise independent if for h chosen at random from H we have
that for arbitrary distinct x1, x2 ∈ U the random variables h(x1) and h(x2) are
uniformly and independently distributed in M , more precisely:

Pr(h(x1) = i1 ∧ h(x2) = i2) =
1

|M |2 , for x1, x2 ∈ U distinct, i1, i2 ∈ M. (2)

For applications, it is usually sufficient if (1) and (2) hold up to some relative
error, i.e., if we require that Pr(h(x1) = h(x2)) ≤ c/ |M | in (1) for some c ≥ 1
(such a class is called c-universal, which corresponds to the original definition of
the term in [7]) or (2− c)/ |M |2 ≤ Pr(h(x1) = i1 ∧ h(x2) = i2) ≤ c/ |M |2 (2) for
some c ∈ [1, 2) (then we say the class is c-approximately 2-wise independent).

By 1996, simple methods for constructing such classes had been known for
quite some time. We list examples of such constructions.1

(a) U = [p], M = [m] for a prime p and some m ≤ p, h ∈ H is given by
h(x) = ((ax + b) mod p) mod m, for a, b ∈ [p]. This class is c-approximately
2-wise independent for c = (	p/m
 m/p)2 ≤ 1 + 3m/p. For a, b ∈ [p], a �= 0,
it is 1-universal [7,18,40].

(b) U = F is a finite field of prime characteristic p, M = Zμ
p for some μ,

ξ : F → M is some Zp-linear projection, h ∈ H is given by h(x) = ξ(ax+ b),
for a, b ∈ F. This class is 2-wise independent.

(c) U = Fμ for a finite field F, M = Fν , h ∈ H given by h(x) = A · x + b, for
A ∈ Fν×μ, b ∈ M = Fν . This class is 2-wise independent.

(d) U = Fμ for a finite field F, M = Fν , h ∈ H given by h(x) = a ◦ x + b, for
a ∈ Fμ+ν−1, b ∈ M = Fν , where ◦ denotes convolution. This class is 2-wise
independent [25].

We note that for implementing such classes we either need prime numbers
or representations of the arithmetic in finite fields that have size |U | or at least
size |M |, or, for (c) or (d), we have to carry out vector-matrix multiplication or
a convolution over some finite field F, the most natural case being F2 = {0, 1}.
The main purpose of [10] was to provide a construction using only plain integer

1 For a natural number n, we denote the set {0, 1, . . . , n−1} by [n]; for a prime number
p, we denote by Zp the field of size p, with ground set [p].
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arithmetic without the need for prime numbers to obtain two-wise independent
hash families.

A simple first step in this direction had been made in [12]. There, for k ≥ μ ≥
1 and sets U = [2k] and M = [2μ] the class Hmult

2k,2µ of multiplicative functions

ha : U  x �→ ⌊
(ax mod 2k)/2k−μ

⌋ ∈ M

for 0 < a < 2k odd was studied. This class is not 2-wise independent; hash values
h(x) for a key x are not even uniformly distributed. However, it is 2-universal. Its
big advantage is that functions from the class can be evaluated very efficiently on
a computer—one only needs one multiplication and one or two shift operations.
The construction in [10] is a variant of this class.

1.2 Definitions and Properties of the Class

Notation. The universe is U = [u], the range is M = [m], for positive integers
u and m. We will calculate in the ring Zr of integers with operations modulo
r, where r ≥ 2 is a suitable integer. In order to keep the notation simple, we
will identify the ground set of Zr with [r]. Arithmetic operations modulo r are
denoted by ·r, +r, −r. If a positive integer x divides an integer y, we write x | y,
otherwise x � y.

Definition 1. Let u, m, and r ≥ m be given, where m | r. Let k = r/m.

(a) For a, b ∈ Zr define

ga,b(x) = a ·r x +r b, forx ∈ U, and
ha,b(x) = �ga,b(x)/k� , for x ∈ U.

(b) The class of linear hash functions from U to M modulo r is the multiset

Hlin
u,m,r = {ha,b | a, b ∈ Zr}.

This class has size r2; representing (choosing) a function from the class requires
2 	log r
 (random) bits. Following [10], Woelfel [41,42] gave several related con-
structions of substantially smaller subclasses that exhibit behaviour similar to
that of Hlin

u,m,r.
The basic result of [10] and of this paper is that Hlin

u,m,r is approximately
2-wise independent if r is large enough. (This will be proved in Sect. 3.)

Theorem 1. (i) If m,u ≥ 2 and r ≥ (u−1)m is a multiple of m, then Hlin
u,m,r is

9
8 -approximately 2-wise independent. More precisely, for i ∈ M , x ∈ U we have

Pr(h(x) = i) =
1
m

,

and for arbitrary i1, i2 ∈ M and distinct x1, x2 ∈ U we have

2 − c

m2
≤ 1

cm2
≤ Pr(h(x1) = i1 ∧ h(x2) = i2) ≤ c

m2
,
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where c = c(u,m, r) = (4z2 + 4z + 1)/(4z2 + 4z), for some z ≥ �r/((u − 1)m)�.
(ii) If r and m are powers of a prime p, and r ≥ um/p, then Hlin

u,m,r is 2-wise
independent. (The most natural value for p is 2.)

Section 2 contains technical preparations involving “gap matrices”, which
form the basis for the proof of the main theorem in Sect. 3. In Subsect. 4.1 the
main result is extended to keys that are represented as sequences of numbers, a
standard variation of hash classes, which leads to a more efficient evaluation for
very long keys. In Subsect. 4.3 we show that the approach is sufficient for con-
structing sequences in M = [m] that are sufficiently close to two-independence
for carrying out two-independent sampling in the sense of [8]. As an example,
we show that for r ≥ u3/2 · m the sequence

�(ax + b) mod r)/(r/m)� , 0 ≤ x < u,

where a, b ∈ [r] are chosen uniformly at random, is suitable. Subsection 4.4 deals
with the problem of “collapsing the universe”: Given a subset S ⊆ U of n
keys from U = [u], transform the long keys x ∈ U into ones (x′) of length
O(log log u + log n) such that this transformation is one-to-one on S. We give
a construction that uses just a linear hash function from Hlin

u,m,r to achieve the
length log r = O(log log u + log n).

Finally, Sect. 5 discusses various applications of and observations about the
hash class Hlin

u,m,r that have appeared in the literature since it was first described
in 1996.

2 Gap Matrices

This section provides bounds on the number of 1’s in 0–1 matrices with a certain
shape.

Definition 2. Let γ, k, � ≥ 1 be integers. A k × � matrix A = (aij)0≤i<k,0≤j<�

with entries from {0, 1} is called a gap-γ (diagonal) matrix if the 1’s are arranged
in diagonals of (horizontal/vertical) distance γ, i.e., if there is some t ∈ [γ] such
that

aij = 1 ⇐⇒ j − i ≡ t (mod γ), for 0 ≤ i < k, 0 ≤ j < �.

Figure 1 shows examples of gap-γ square matrices. By NA we denote the
number of 1’s in a 0–1 matrix A. In a k × � matrix we expect NA to be about
k�/γ, if γ ≤ k, �. Even in k × k matrices there will be deviations if γ � k, as
demonstrated in Fig. 1. We provide bounds on the relative deviation NA/(k�/γ),
for k × � matrices A.

Proposition 1. Assume A is a gap-γ matrix of dimensions k × � with k, � ≥ γ.
Then we have the following:

(a) If γ | k or γ | �, then NA = k�/γ.
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Fig. 1. Some k × k gap-γ matrices, with k = 12. 1’s are represented as grey squares,
0’s as white ones. Left : γ = 3, which divides k. There are exactly k2/γ 1’s. Middle:
γ = 9, with 18 = 9

8
k2/γ many 1’s. Right : γ = 9, with 15 = 15

16
k2/γ many 1’s.

(b) If z = �k/γ� = ��/γ�, then

1
cz

≤ NA

k2/γ
≤ cz, for cz = 1 +

1
4z(z + 1)

.

(c) If y = �k/γ� ≤ z = ��/γ�, then

2 − cy,z ≤ NA

k�/γ
≤ cy,z, for cy,z = 1 +

1
4y(z + 1)

.

Remark 1. (i) Note that 1/cz = 4z(z + 1)/(4z(z + 1) + 1) = 1 − 1/(2z + 1)2

and 2 − cy,z = 1 − 1/(4y(z + 1)). In (b), the upper bound is ≤ 9
8 , the lower

bound ≥ 8
9 . Asymptotically, the upper and lower bounds in (b) and (c) are

1 ± O(γ2/k2) and 1 ± O(γ2/(k�)), respectively.
(ii) A bound |NA/(k�/γ) − 1| ≤ γ2/(4k�) for k × � gap-γ matrices was proved

in [10, Lemma 8(c)]. It depends on the concrete values of k, �, and γ if
that bound or the one from Proposition 1(b) and (c) is stronger. For γ
slightly smaller than k = � (hence y = z = 1) the new bound is smaller by
essentially a factor of 2.

(iii) The bounds in (b) are optimal. (See Remark 2 below.)

Proof (of Proposition 1). (a) If γ = �, each row contains exactly one 1, and hence
NA = k. (For an example see Fig. 2.) If γ | �, we may partition A into �/γ many
disjoint k × γ gap-γ matrices. So NA = (�/γ) · k = k�/γ. The cases γ = k and
γ | k are similar.

γ = 9 columnsγ = 9 columns

Fig. 2. A gap-γ matrix with k = 5, γ = � = 9 contains k many 1’s.
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(b) We can assume w.l.o.g. that k ≤ �. (Otherwise consider the transpose
of A.) Because of (a), we may assume that γ � k and γ � �. Let k′ = k mod γ
and �′ = � mod γ. With δ = k′/γ and ε = �′/γ we have 0 < δ ≤ ε < 1 and
k = (z + δ)γ and � = (z + ε)γ.

We partition A into four matrices, splitting after the zγ’th column and zγ’th
row. We get a (k − k′) × (� − �′) submatrix A1, a (k − k′) × �′ submatrix A2, a
k′ × (� − �′) submatrix A3, and a k′ × �′ submatrix A4. Since γ divides k − k′

and � − �′, part (a) gives that

NA1 + NA2 + NA3 =
(k − k′)(� − �′) + (k − k′)�′ + k′(� − �′)

γ
=

k� − k′�′

γ
. (3)

So
NA

k�/γ
− 1 =

NA4

k�/γ
− k′�′

k�
=

NA4 − k′�′/γ

k�/γ
. (4)

We need to bound this error term.

Upper Bound. Since no row in A4 contains more than one 1, we have NA4 ≤ k′.
Hence

NA4 − k′�′/γ

k�/γ
≤ k′ − k′�′/γ

k�/γ
=

δγ − δεγ

(z + δ)(z + ε)γ
=

δ(1 − ε)
(z + δ)(z + ε)

.

Since δ ≤ ε, this implies that (NA4 −k′�′/γ)/(k�/γ) ≤ δ(1−δ)/(z+δ)2. Standard
methods yield that the last fraction is maximal for δ = δz = z/(1 + 2z); the
corresponding maximal value is δz(1 − δz)/(z + δz)2 = 1/(4z(1 + z)). With (4)
we get NA/(k�/γ) ≤ 1 + 1/(4z(1 + z)), which is the claimed upper bound.

Lower Bound. According to (4), we must show that (k′�′/γ − NA4)/(k�/γ) ≤
1/(2z + 1)2.
Case 1: δ + ε ≤ 1, or equivalently k′ + �′ ≤ γ. — In this case we have

k′�′/γ − NA4

k�/γ
≤ k′�′

k�
=

δε

(z + δ)(z + ε)
. (5)

We observe that the last expression cannot be maximal if δ < ε. (Assume δ < ε.
Define a mapping

D : [0, ε − δ]  ζ �→ ln
(

(δ + ζ)(ε − ζ)
(z + (δ + ζ))(z + (ε − ζ))

)

= ln(δ + ζ) + ln(ε − ζ) − ln(z + δ + ζ) − ln(z + ε − ζ).

Since

d

dζ
D(ζ)

∣
∣
∣
ζ=0

=
1
δ

− 1
ε

− 1
z + δ

+
1

z + ε
=

z

δ(z + δ)
− z

ε(z + ε)
> 0,

the value δε/((z + δ)(z + ε)) cannot be maximal.) Thus we only have to bound
δ2/(z+δ)2 over all δ ≤ 1

2 . Clearly, this maximum is
(
1
2

)2
/
(
z+ 1

2

)2 = 1/(2z+1)2.
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Case 2: δ + ε > 1, or equivalently k′ + �′ > γ. — In this case A4 contains at
least k′ + �′ − γ = (δ + ε − 1)γ many 1’s. Hence

k′�′/γ − NA4

k�/γ
≤ δεγ − (δ + ε − 1)γ

(z + δ)(z + ε)γ
=

(1 − δ)(1 − ε)
(z + δ)(z + ε)

. (6)

As above, we observe that the last expression cannot be maximal for δ < ε.
(Define D : [0, ε − δ]  ζ �→ ln(1 − (δ + ζ)) + ln(1 − (ε − ζ)) − ln(z + (δ + ζ)) −
ln(z + (ε − ζ)). Then

d

dζ
D(ζ)

∣
∣
∣
ζ=0

= − 1
1 − δ

+
1

1 − ε
− 1

z + δ
+

1
z + ε

=
z + 1

(1 − ε)(z + ε)
− z + 1

(1 − δ)(z + δ)
.

This is positive, since the function τ �→ (1−τ)(z+τ) is decreasing for τ ∈ (0, 1).)
Thus we only have to bound (1 − δ)2/(z + δ)2 over all δ > 1

2 . This expression is
bounded by

(
1
2

)2
/
(
z + 1

2

)2 = 1/(2z + 1)2.
(c) We now turn to matrices that are not necessarily almost square: Let A

be a k × � gap-γ matrix with y = �k/γ� ≤ z = ��/γ�. Since the other cases have
been covered already, we may assume that y < z and that γ � k and γ � �. Let
δ = k/γ − y and ε = �/γ − z. Then 0 < δ, ε < 1. We extend A to an almost
square gap-γ matrix Ā by adding (z − y)γ rows at the bottom. Let k̄ = (z + δ)γ
be the number of rows in Ā. Applying part (b) yields

4z(z + 1)
(2z + 1)2

≤ NĀ

k̄�/γ
≤ 1 +

1
4z(z + 1)

. (7)

Further, by Proposition 1(a), we have NĀ − NA = (z − y)�.

Upper Bound. We have

NA

k�/γ
≤

(
1 +

1
4z(z + 1)

)
k̄

k
− (z − y)�

k�/γ

= 1 +
1

4z(z + 1)
+

(
1 +

1
4z(z + 1)

)
(z − y)γ
(y + δ)γ

− z − y

y + δ

= 1 +
1

4z(z + 1)
+

z − y

4z(z + 1)(y + δ)

≤ 1 +
1

4z(z + 1)

(
1 +

z − y

y

)
= 1 +

1
4y(z + 1)

.

Lower Bound. By (7) we have

NA

k�/γ
≥ 4z(z + 1)

(2z + 1)2
· k̄

k
− (z − y)�

k�/γ

= 1 − 1
(2z + 1)2

+
(

1 − 1
(2z + 1)2

)
z − y

y + δ
− z − y

y + δ

= 1 − 1
(2z + 1)2

(
1 +

z − y

y + δ

)
≥ 1 − 1

4z(z + 1)
· z

y
= 1 − 1

4y(z + 1)
.

��



264 M. Dietzfelbinger

Remark 2. There are arbitrarily large k × k matrices for which the bounds in
Proposition 1(b) are optimal. For the upper bound we first consider z = 1. In the
middle k × k matrix of Fig. 1 we have γ = 9 and k = 12, and NA = 18 = 9

8k2/γ
many 1’s. In the same way one gets 12h × 12h gap-9h matrices for arbitrary
h ≥ 1 that realize excess ratio c1 = 9

8 . For arbitrary z, we define a k × k matrix
for k = 2z(z + 1), as follows. We choose γ = 2z + 1 and obtain k′ = k − γz = z.
If we place 1’s on the main diagonal, the k′ × k′ submatrix in the lower right
corner has k′ many 1’s; hence the total number of 1’s is (k2 − k′2)/γ + k′. One
easily checks that ((k2 − k′2)/γ + k′)/(k2/γ) evaluates to 1+1/(4z(1+ z)) = cz.
For the lower bound we first consider k = 9 and γ = 6, hence z = 1. We obtain
a matrix A with the minimum number of 1’s by placing them in the diagonals
running from (0, 3) to (5, 8) and from (3, 0) to (8, 5), which gives NA = 12, hence
NA/(k2/γ) = 12/(92/6) = 8

9 = 1/c1. Again, it is easy to find larger matrices
with ratio 1/c1 and examples for arbitrary z with ratio 1/cz.

3 Proof of Universality Properties

In this section we show that Hlin
u,m,r is approximately two-wise independent in

general and two-wise independent if r is a prime power.
We will assume throughout this section that U = [u] = {0, . . . , u − 1} for

some u ≥ 2 and M = [m] = {0, . . . , m − 1} for some m ≥ 2, and that r = km is
a multiple of m.

As preparation for the proof, we provide some observations and lemmas.

Fact 1. Let z ∈ Zr and let γ = gcd(z, r). Then for arbitrary t ∈ Zr the following
holds:

|{x ∈ Zr | x ·r z = t}| =

{
γ if γ | t;
0 otherwise.

Proof. Using the fact (“Bézout’s Lemma”) that we may write γ = αr + βz for
certain α, β ∈ Z, one sees that the range mz(Zr) of the mapping mz : Zr 
x �→ x ·r z ∈ Zr is (γ), the set of all multiples of γ in Zr. The fundamental
homomorphism theorem from group theory applied to the group homomorphism
mz (with respect to the additive group structure (Zr,+r, 0)) yields that

∣
∣m−1

z (t)
∣
∣

is the same for all t ∈ mz(Zr) = (γ). Since |(γ)| = r/γ, the claim follows. ��
Recall that h(x) = �g(x)/k�, where g(x) = ga,b(x) = a ·r x +r b, for a, b ∈

Zr chosen uniformly at random. We make some simple observations on the
distributions of g(x) and h(x).

Lemma 1. For each x ∈ U the following holds:

(a) g(x) is independent of a and uniformly distributed in Zr;
(b) h(x) is independent of a and uniformly distributed in M .
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Proof. (a) For s ∈ Zr and α ∈ Zr fixed we calculate:

Pr(g(x) = s | a = α) = Pr(b = s − αx | a = α) =
1
r
.

Thus g(x) and a are independent. Since the events {a = α}, α ∈ Zr, partition
the probability space, we also get Pr(g(x) = s) = 1/r.
(b) This follows immediately from (a), since k divides r, and hence the operation
s �→ �s/k� maps exactly k elements of Zr to each element i of M . ��

From here on, assume that x1, x2 ∈ U with x2 < x1 are fixed. Let

z = x1 − x2 ( = x1 −r x2) and γ = gcd(z, r).

Then 0 < z < u and 1 ≤ γ < u. Now we can describe the joint distribution of
g(x1) and g(x2) (see Fig. 3 below).

Lemma 2. (a) For arbitrary t ∈ Zr we have

Pr(g(x1) −r g(x2) = t) =

{
γ/r if γ | t;
0 otherwise.

(b) For arbitrary s1, s2 ∈ Zr we have

Pr(g(x1) = s1 ∧ g(x2) = s2) =

{
γ/r2 if γ | (s1 −r s2);
0 otherwise.

Proof. (a) Clearly, for g = ga,b, we have

g(x1) −r g(x2) = a ·r (x1 −r x2) = a ·r z.

Thus, the claim follows immediately from Fact 1.
(b) Since g(x1) and a are independent by Lemma 1(a) and g(x1)−r g(x2) = a ·r z
is a function of a, the random variables g(x1) and g(x1)−rg(x2) are independent.
Thus, using part (a) we may calculate:

Pr(g(x1) = s1 ∧ g(x2) = s2)
= Pr(g(x1) = s1 ∧ g(x1) −r g(x2) = s1 −r s2)
= Pr(g(x1) = s1) · Pr(g(x1) −r g(x2) = s1 −r s2)

(∗)
=

{
(1/r) · (γ/r) = γ/r2 if γ divides s1 −r s2;
(1/r) · 0 = 0 otherwise.

(For (∗) we use both (a) and Lemma 1(a).) Thus (b) is proved. ��
Finally we are ready to formulate and prove the central theorem about our

hash functions. Let

Γu,m,r = max({0} ∪ {γ ∈ {1, . . . , u − 1} | γ divides r ∧ γ � k}). (8)

(The definition from [10] is changed in the clever way suggested in [41] to take
the special case into account where all γ ≤ u − 1 that divide r also divide k.)
Note that Γu,m,r ≤ u − 1.
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Observation 1.(a) If r is a power of a prime p and r ≥ um/p, then Γu,m,r = 0.
(b) If r ≥ (u − 1)m, then Γu,m,r ≤ k.

Proof. (a) Since r = mk, the numbers m and k are also powers of p. Now if
γ < u divides r, it is a power of p itself, strictly smaller than u ≤ rp/m. So γ
divides r/m = k. This shows that Γu,m,r = 0. (b) This is trivial. ��

Even if no assumption about r is made, we will always be able to make sure
that Γu,m,r ≤ k, so that the following is well-defined. With Γ = Γu,m,r, let

cu,m,r =

⎧
⎨

⎩

1 if Γ = 0,

1 +
1

4 �k/Γ � (�k/Γ � + 1)
if Γ > 0.

Note that 1 ≤ cu,m,r ≤ 9
8 and that cu,m,r = 1 + O(u2/k2).

Theorem 2 (Main Theorem). Let h be chosen at random from Hlin
u,m,r, where

m | r. Then the following holds, for arbitrary i1, i2 ∈ M and distinct x1, x2 ∈ U :
(a) If r is a power of a prime p and r ≥ um/p, then

Pr(h(x1) = i1 ∧ h(x2) = i2) =
1

m2
,

i.e., in this case Hlin
u,m,r is 2-wise independent.

(b) If r ≥ (u − 1)m, then Pr(h(x1) = i1) = 1/m and

2 − cu,m,r

m2
≤ 1

cu,m,r
· 1
m2

≤ Pr(h(x1) = i1 ∧ h(x2) = i2) ≤ cu,m,r

m2
,

i.e., in this case Hlin
u,m,r is cu,m,r-approximately 2-wise independent.

Remark 3. A weaker version of the upper bound in (b), a similar lower bound,
and (a) were shown in [10]. Woelfel [41] was the first to prove the upper bound
in (b), with a different method.

Proof. Our aim is to find upper and lower bounds on

Q = Q(x1, x2, i1, i2) =
Pr(h(x1) = i1 ∧ h(x2) = i2)

1/m2
.

From the definition of ha,b it is immediate that with Ii = {ki, ki + 1, . . . , k(i +
1) − 1}, for i ∈ M , we have

Pr(h(x1) = i1 ∧ h(x2) = i2) = Pr(g(x1) ∈ Ii1 ∧ g(x2) ∈ Ii2) .

As usual, let γ = gcd(x1 − x2, r). Adding the equation given in Lemma 2(b) for
all s1 ∈ Ii1 , s2 ∈ Ii2 , we obtain

Pr(h(x1) = i1 ∧ h(x2) = i2) = |Si1,i2 | · γ/r2,



Revisiting Hashing via Integer Arithmetic Without Primes 267

Fig. 3. The distribution of (g(x1), g(x2)) with r = 20, γ = gcd(x1 − x2, r) = 4, m = 4,
hence k = 5. We see m2 = 16 many gap-4 matrices of dimension 5 × 5. Each grey
position is attained with probability 4

400
= 1

100
. Some submatrices have probability

6
100

< 1
16

, some have probability 7
100

> 1
16

.

where Si1,i2 = {(s1, s2) ∈ Ii1 × Ii2 | γ divides s1 −r s2}, hence

Q =
|Si1,i2 | · γ · m2

r2
=

|Si1,i2 |
k2/γ

. (9)

We can regard (the characteristic function of) Si1,i2 as being represented by a
k × k matrix with row indices s1 from Ii1 and column indices s2 from Ii2 , with
the entry for (s1, s2) being 1 if γ divides s1 −r s2 and 0 otherwise. (Figure 3
shows all these matrices in one picture, for an example.) Clearly this is a gap-γ
matrix as considered in Sect. 2, with shifted row and column numberings. So we
can apply the estimates from there.

Case 1: γ | k. — In this case the quotient in (9) equals 1, by Proposition 1(a).
Since the hypothesis of (a) implies that γ divides k (as seen in Observation 1),
we have proved (a).

Case 2: γ � k. — With Proposition 1(b) we may estimate:

(
1 +

1
4 �k/γ� (�k/γ� + 1)

)−1

≤ Q ≤ 1 +
1

4 �k/γ� (�k/γ� + 1)
. (10)

We have γ ≤ Γ , hence �k/Γ � (�k/Γ � + 1) ≤ �k/γ� (�k/γ� + 1), so (10) implies
part (b). ��
Remark 4. One can utilize the construction in Remark 2 of gap-γ matrices that
realize the upper and lower bounds for the number of 1’s to find u, m, and r for
which the bounds in Theorem 2 are optimal. The details are left to the reader.
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3.1 Generalization: r Not Divisible by m

We have proven the central universality properties of Hlin
u,m,r. However, we always

had to assume that m, the size of the range, is a divisor of r, which may not
always be convenient. For example, we might wish to use as r some power of 2,
because computer arithmetic in Zr is particularly efficient in this case, but on the
other hand wish to use some m that is not a power of 2. Another such case arises
when we want to choose r randomly from some range and do not have control
over the divisors of r. (See Subsect. 4.4 for such a situation.) For this reason
we note here that the methods developed so far make it possible to construct
approximately 2-wise independent classes also with a ring Zr = {0, . . . , r − 1}
where r is not a multiple of m.

Partition Zr into m intervals I0, . . . , Im−1, where I0, . . . , I(r mod m)−1 have
length k = 	r/m
 and Ir mod m, . . . , Im−1 have length k = �r/m�. Let ha,b(x) =
i if ga,b(x) ∈ Ii. Arithmetically, this is expressed as follows: Precompute k and
k, as well as B = r mod m and T = B · k. Then let

ha,b(x) =

{⌊
ga,b(x)/k

⌋
if ga,b(x) < T ;

B + �(ga,b(x) − T )/k� otherwise.

The resulting class serves all hash values with almost the same probability in
the case r � m, since

Pr(h(x) = i) =

{
	r/m
/r ≤ (1 + 1/�r/m�)/m, for 0 ≤ i < B;
�r/m�/r ≥ (1 − 1/	r/m
)/m, for B ≤ i < m.

The class of all ha,b, a, b ∈ [r], is again called Hlin
u,m,r. This class sat-

isfies approximate independence conditions, which can be proved in analogy
to Theorem 2(b), using Proposition 1(b) for � ∈ {k − 1, k, k + 1}. (Assume
γ = gcd(x1 − x2, r) as in the proof of Theorem 2. Following that proof, we
will have |Ii1 | , |Ii2 | ∈ {k, k}. Since the error-free formula from Proposition 1(a)
applies if at least one of the numbers |Ii1 | and |Ii2 | is divisible by γ, the quotients
y = �|Ii1 | /γ� and z = �|Ii2 | /γ� can be assumed to be the same.) The reader is
invited to work out the details of the proof of the following statement.

Proposition 2. Assume r ≥ (u − 1)m, and consider the generalized version of
class Hlin

u,m,r as just described. Let x1, x2 ∈ U = [u] be distinct and i1, i2 ∈ M =
[m] be arbitrary. Then we have, with cu,m,r as defined for Theorem 2:

2 − cu,m,r ≤ Pr(h(x1) = i1 ∧ h(x2) = i2)
Pr(h(x1) = i1)Pr(h(x2) = i2)

≤ cu,m,r .

��

4 Variations of the Construction

4.1 Vectors as Keys and Range Elements

If keys are very long, it may be inconvenient in practice to treat them as integers
in a universe U = [u], since one has to carry out long integer multiplication. How
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can one deal with longer keys, e.g., given as vectors in a universe U ′ = U �, for
U = [u], when the range is M = [m]? It is well known that 2-independence can be
ensured by just using 2-independent hashing on the � components separately and
taking the sum of the results modulo m. In [10] it was sketched how to proceed
just utilizing the ring Zr with r ≥ (u−1)m and k = r/m, as before. An advantage
is that fewer random bits are needed and that, as observed by Woelfel [41,42],
a parsimonious extension to a range that is also a set of vectors is possible. A
hash function is specified by a coefficient vector a = (a0, . . . , a�−1) ∈ Z�

r and
b ∈ Zr. The hash function ha,b is defined by

ha,b((ξ0, . . . , ξ�−1)) =
⌊( ∑(r)

0≤λ<�

aλ ·r ξλ +r b

) /
k

⌋
,

for x = (ξ0, . . . , ξ�−1) ∈ [u]�. (The superscript “(r)” indicates summation in Zr.)
The resulting class exhibits the same universality properties as Hlin

u,m,r, as stated
in Theorem 2. The proof is very similar to that of Theorem 2. The idea is simple.
Two different keys x (1),x (2) ∈ U � must have one component in which they differ,
ξ
(1)
0 �= ξ

(2)
0 , say. One fixes a1, . . . , a�−1 and studies the joint distribution of the

pair

Z2
r  (a0, b) �→

⌊(
a0 ·r ξ

(i)
0 +r b +r

∑(r)

1≤λ<�

aλ ·r ξ
(i)
λ

︸ ︷︷ ︸
=Ci

)
/k

⌋
, i = 1, 2,

of random variables. The values C1 and C2 are regarded as constant. The analysis
is practically identical to that in the proof of Theorem 2.

Example: Assume we work on a computer with fast 64-bit arithmetic, the keys
are bit strings of arbitrary, fixed length given as a sequence of words, and the
range is M = [2μ] for some μ ≤ 32. Then we may let u = 232 and r = 264. A
key x is split into 32-bit pieces ξ0, ξ1, . . . , ξ�−1 for a suitable �. A hash function
is represented as a sequence (a0, . . . , a�−1, b) of 64-bit integers a0, . . . , a�−1, b.
The modulo r operation is for free, since the standard hardware carries out
multiplication and addition modulo 264. The final division by 264−μ is done by
a shift.

This construction is helpful if the range M is not too big— the ring size
r must be bigger than (u − 1)m or um/p in the case that r is a power of a
prime number p. Woelfel [41,42] gave a more general, very elegant construction
to remove this restriction. It resembles the convolution construction over finite
fields studied in [25], but is made to work over the ring Zr. Assume the range is
a set M ′ = M� = [m]� of vectors. Of course, we could use � many independent
hash functions with range M to build one with range M�. However, then the
number (�+1)� of required random coefficients from Zr grows with the product
of � and �.

To save random bits, and storage space, Woelfel proposed using convolution
(or “polynomial multiplication”) over Zr. A hash function is given by vectors
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a = (a0, . . . , a�+�−2) and b = (b0, . . . , b�−1) with coefficients from Zr For a key
x = (ξ0, . . . , ξ�−1) ∈ U � and 0 ≤ κ < � component κ of the hash value h(x ) is
given by

(ha,b((ξ0, . . . , ξ�−1)))κ =
⌊( ∑(r)

0≤λ<�

aκ+λ ·r ξλ +r bκ

) /
k

⌋
.

The resulting class of hash functions from U ′ = U � to M ′ = M� is called
Hconv,�,�

u,m,r . In the “clean” case where r is a power of a prime number p and
r ≥ um/p one can show that Hconv,�,�

u,m,r is 2-wise independent. If we only have
that m divides r and r ≥ (u − 1)m, then Hconv,�,�

u,m,r is (cu,m,r)�-approximately
2-wise independent, for cu,m,r the approximation constant for class Hlin

u,m,r as in
Theorem 2. (For details, see [41,42]. There it is also discussed how the parameter
spaces for the coefficients may be reduced.)

4.2 Higher Independence

In [10] it was proved that polynomials over Zr can be used to obtain (approxi-
mately) d-wise independent classes for arbitrary fixed d ≥ 2. Here, we give the
relevant definitions and state the theorem, and refer the reader to [10] for the
proof. Unfortunately, the construction seems to be mainly of theoretical inter-
est. While it achieves higher independence without prime numbers or finite fields
being involved (and without tabulation [37], which requires longer tables of ran-
dom entries), the big disadvantage of the construction is that r has to be quite
large, which makes for slow evaluation. —As before, we assume that a universe
U = [u] and a range M = [m] are given.

Definition 3. Let d ≥ 2. A class H of hash functions from U to M is called
d-wise independent if for arbitrary distinct keys x0, . . . , xd−1 ∈ U and arbitrary
i0, . . . , id−1 ∈ M we have

Pr(h(xs) = is, for 0 ≤ s < d) =
1

md
,

for h chosen uniformly at random from H. For c ≥ 1, such a class is called
c-approximately d-wise independent if for each key x the hash value h(x) is
uniformly distributed in M and if for distinct x0, . . . , xd−1 ∈ U and arbitrary
i0, . . . , id−1 ∈ M we have

2 − c

md
≤ Pr(h(xs) = is, for 0 ≤ s < d) ≤ c

md
.

As before, we fix r = km for some positive integer k, and consider the ring
Zr = [r] with arithmetic modulo r. Further, fix d ≥ 2.

Definition 4. For a = (a0, . . . , ad−1) ∈ Zd
r define (arithmetic in Zr)

ga(x) =
∑

0≤μ<d

aμxμ, for x ∈ U,
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and

ha(x) = �ga(x)/(r/m)� , for x ∈ U.

Further, let

Hdeg-d
u,m,r = {ha | a ∈ Zd

r}.

Theorem 3. If r ≥ m · (u − 1)(
d
2), then Hdeg-d

u,m,r is c-approximately d-wise inde-

pendent for c = c(u,m, r, d) = (1 − m(u − 1)(
d
2)/r)−d. More precisely, h(x) is

uniformly distributed in [m], for each x ∈ U , and for arbitrary distinct elements
x0, . . . , xd−1 ∈ U and arbitrary values i0, . . . , id−1 ∈ M we have:

(a)
(

1 − m(u − 1)(
d
2)

r

)d

≤ Pr(h(xλ) = iλ, 0 ≤ λ < l)
1/md

≤
(

1 +
m(u − 1)(

d
2)

r

)d

;

(b) if u, m, and r are powers of the same prime number p ≥ 2, and r ≥
m(u/p)(

d
2), we even have d-wise independence, i.e.,

Pr(h(xλ) = iλ, for 0 ≤ λ < l) =
1

md
.

��

4.3 Two-Wise Independent Sampling

Here we describe how the function classes described before can be used for two-
independent sampling in the sense of Chor and Goldreich [8]. There one has a
finite set M = [m] and a set A ⊆ M of which one wants to find an arbitrary
element. The only operation available regarding A is a membership test “is
x ∈ A?” for x ∈ M . The most obvious search method is random sampling
(keep choosing random elements of M until an element of A is found); however,
this method has the disadvantage that in expectation (1/�) log |M | random bits
are needed, where � = |A| / |M | is the density of A in M (which sometimes is
small). In order to save random bits, one employs a 2-wise independent sequence
X0, . . . , Xu−1 of random variables, uniformly distributed in M . These elements
are tested one after the other, until an element of A is found (“success”). In [8],
Chor and Goldreich use finite fields based on prime numbers for constructing
such sequences. They show that the probability that the first j trials all fail
is bounded by 1/(j�). If H is an arbitrary 2-wise independent class of hash
functions from U = [u] to M , one can use Xi = h(i) for 0 ≤ i < u. The classes
studied in the present paper can be used immediately if m and u are powers of
the same prime number p and r ≥ um. This requires 2 log r random bits for the
coefficients a and b.

We wish to show with a slightly refined analysis that the classes Hlin
u,m,r can

be used for arbitrary M = [m] and U = [u] if one chooses r sufficiently large.
Let h be chosen uniformly at random from Hlin

u,m,r. We let

Xi = h(i), for 0 ≤ i < u.
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For given A ⊆ M we let

Yi =

{
1 if Xi ∈ A,

0 otherwise,

for 0 ≤ i < u. Since Xi is uniformly distributed, we have E(Yi) = 1/�.
For 0 ≤ j ≤ u, the number of successes one encounters in X0, . . . , Xj−1 is

Zj =
∑

0≤i<j

Yi.

Clearly, E(Zj) = j�. The crux of Chor and Goldreich’s method is to note that
from the two-wise independence of the Yi’s it follows that Var(Zj) ≤ E(Zj).
The Chebychev-Cantelli inequality Pr(X ≤ E(X) − t) ≤ Var(X) /(Var(X)+t2)
then implies that

Pr(Xi /∈ A for all i, 0 ≤ i < j) = Pr(Zj = 0) ≤ Pr(Zj ≤ E(Zj) − E(Zj))

≤ Var(Zj)
Var(Zj) + E(Zj)

2 =
1

1 + E(Zj)
2
/Var(Zj)

≤ 1
1 + E(Zj)

=
1

1 + j�
.

This is the desired bound on the failure probability of 2-wise independent sam-
pling.

We show that for all sufficiently large r the required bound Var(Zj) ≤ E(Zj)
is true even though the random variables X0, . . . , Xu−1 are only approximately
2-wise independent.

Lemma 3. If r ≥ u3/2m, then Var(Zj) ≤ E(Zj), for 0 ≤ j < u.

Proof. We calculate:

Var(Zj) =
∑

0≤i<j

Var(Yi) +
∑

0≤i,i′<j
i�=i′

Cov(Yi, Yi′) . (11)

Clearly, Var(Yi) = �(1 − �) for all i, 0 ≤ i < j. We analyze a summand of the
second sum in (11). Fix i �= i′. For s ∈ M , t ∈ M , let

χs(t) =

{
1 if t = s,

0 otherwise.

Then

Cov(Yi, Yi′) = E((Yi − �)(Yi′ − �))

= E

(( ∑

s∈A

(χs(Xi) − 1/m)
)(∑

t∈A

(χt(Xi′) − 1/m)
))

=
∑

s,t∈A

Cov(χs(Xi), χt(Xi′)) .

(12)



Revisiting Hashing via Integer Arithmetic Without Primes 273

For s, t ∈ A arbitrary we have

Cov(χs(Xi), χt(Xi′)) = E(χs(Xi) · χt(Xi′)) − E(χs(Xi)) · E(χt(Xi′))

= Pr(Xi = s ∧ Xi′ = t) − 1/m2 ≤ (cu,m,r − 1)/m2,

by Theorem 2(b). Since r ≥ (u−1)m, we have cu,m,r −1 ≤ 1/(4 �r/((u − 1)m)� ·
(�r/((u − 1)m)� + 1)) ≤ (um/r)2, and we get by summing up according to (11)
and (12):

Var(Zj) ≤ j�(1 − �) + j2 |A|2 (cu,m,r − 1)/m2

= j�(1 − �) + j2�2(cu,m,r − 1)

≤ j�(1 − �) + j2�2 · (um/r)2

≤ j�(1 − �) + j�2(u3/2m/r)2.

By the assumption r ≥ u3/2m we get Var(Zj) ≤ j�(1 − �) + j�2 = j� = E(Zj),
as desired. ��

4.4 “Collapsing the Universe” Without Finite Fields

Assume U = [u] is very large, meaning that if we represent keys as bit strings,
they are very long. Very often, in applications like dictionaries, one wishes to
replace a key x by a shorter key x′ in a range U ′ = [u′], where a “collapse
function” h : U → U ′ maps x to x′. For this to work, h must be one-to-one on
the set S ⊆ U of “relevant keys”. With the results from Sect. 4 it is easy to
find a good collapsing function with a description size of O(log u) bits. Collapse
functions with smaller description sizes can be constructed deterministically [19,
33], or, usually much simpler, in a randomized way [11,35]. In the latter case
the description size of h is O(log n + log log u) bits, and it requires choosing a
random prime of this bitlength or knowing a finite field with elements of this
bitlength. Here we demonstrate that class Hlin

u,m,r can be used to build collapse
functions with such a small description size on the basis of modular arithmetic
alone, without the need for prime numbers or finite field arithmetic.

Technically, assume S = {x0, . . . , xn−1} ⊆ U = [u] is given. We let
m =

⌈
n3 log u

⌉
. The size r of the ring Zr is chosen uniformly at random from

[m2, 2m2). Then �r/m� ∈ [m, 2m). (Since usually r is not a multiple of m, we
need to use the modified functions from Subsect. 3.1.) For the hash class Hlin

u,m,r

to function in a 2-wise independent way on S, we only require, to make the proof
of Theorem 2 work, that r is S-good in the following sense:

ΓS = max{gcd(xj − xi, r) | xi, xj ∈ S distinct} ≤ r/m.

If this is the case, we will have Pr(h(xi) = h(xj)) = O(1/m) = O(1/n3) for all
distinct xi, xj ∈ S, and hence Pr(h is not one-to-one on S) = O(1/n). Clearly,
for r being S-good it is sufficient that

gcd
( ∏

0≤i<j<n

(xj − xi), r

)
≤ r/m.
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The following lemma implies that among the numbers in [m2, 2m2) a constant
fraction is S-good.

Lemma 4. Let Y be a sufficiently large integer, and let L ≥ lnY . Then (at
least) a constant fraction of the numbers r in [L2, 2L2) satisfy gcd(r, Y ) ≤ r/L.

Proof. Let
A = AL,Y = {r ∈ [L2, 2L2) | gcd(r, Y ) > r/L}.

Then A ⊆ B ∪ CL, where

B = BL,Y = {r ∈ [L2, 2L2) | gcd(r, Y ) has a prime factor p > L}
and

CL = {r ∈ [L2, 2L2) | p ≤ L for all prime factors p of r}.

Indeed, if r ∈ [L2, 2L2) − (B ∪ CL), then r has a prime factor p > L that
does not divide Y , hence gcd(r, Y ) ≤ r/p < r/L. We must estimate the sizes
of B and CL. First note that Y has at most ln Y/ ln L prime factors larger
than L. Each such factor divides at most L2/L = L elements of [L2, 2L2); thus,
|B| ≤ L · ln Y/ ln L ≤ L2/ ln L.

In order to deal with CL, we give a lower bound on the size of the com-
plementary set DL = {r ∈ [L2, 2L2) | r has a prime factor larger thanL}. It
is well known that |DL| = (ln 2 − O(1/ log L)) · L2 (for L → ∞), the reason
being the following: For each prime number p ∈ (L,L2] the set of multiples of
p in (L2, 2L2) has size at least �L2/p� ≥ L2/p − 1. If we just add these figures,
numbers r ∈ [L2, 2L2) with two distinct prime factors p1, p2 > L are counted
twice. Note that in this situation we must have p1, p2 < 2L and r = p1p2; hence,
by the prime number theorem, there are only O((L/ log L)2) = O(L/(log L)2)
many such numbers r. The prime number theorem also entails that there are
only O(L2/ log L) many primes in (L, 2L2]. So we obtain:

|DL| ≥
∑

L<p≤L2

p prime

(
L2

p
− 1

)
− O

(
L

(log L)2

)
= L2 ·

∑

L<p≤L2

p prime

1
p

− O(L2/ log L).

A well-known theorem from analytic number theory [20, p. 351, Theorem 427]
says that

∑
p≤x,p prime1/p = ln lnx + B1 + E(x), where B1 is a constant and

E(x) = O(1/ log x). It follows that

∑

L<p≤L2

p prime

1
p

= ln lnL2 − ln lnL − O(1/ log L) = ln 2 − O(1/ log L) .

Summing up, we get that

|A| ≤ |B| + |CL| = |B| + (L2 − |DL|) = (1 − ln 2) · L2 + O(L2/ log L),

i.e., 69% of the r in [L2, 2L2) satisfy gcd(r, Y ) ≤ r/L, asymptotically. ��
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We apply Lemma 4 for L = m and Y =
∏

0≤i<j<n(xj − xi). Since
m = n3 ln u > ln Y , the assumptions are satisfied, and we conclude that asymp-
totically at least 69% of the r in [m2, 2m2) are S-good.

Remark 5. In the context of algorithms that offer higher reliability for the run-
ning time, like the real-time dictionary from [14], the probability bounds pro-
vided by Lemma 4 are too weak. At present, all reliable collapse functions that
only use O(log log u + log n) random bits involve the use of prime numbers.

5 Extensions and Applications

Smaller Pure Arithmetic Classes. Starting from the construction of Sect. 3,
Woelfel [41,42] succeeded in giving smaller hash classes with similar universality
properties, thus reducing the space, the number of random bits, and possibly
the evaluation time. In particular, he observed that it is sufficient to choose b
at random from k · [m] = {ik | 0 ≤ i < m} to achieve the results in Sect. 3.
Moreover, he showed that if r is a power of some prime p, one can have u as
large as r, and one still gets a 1-universal class of hash functions from [u] to
[m] with m = r/k, if one chooses a from 1 + p[r/p] and b from p�k/2	 · [p
k/2�]
uniformly at random. This class is both very efficient and small. Woelfel’s work
contains many more constructions for different universality concepts.

Lower Bounds on the Complexity of Multiplication. In [25], it is shown that
2-wise independent classes contain functions that are difficult to compute in
several respects (time-space tradeoff T · S = Ω(log u · log m); quadratic A · T 2

bounds for VLSI implementation; bounds for CREW PRAMs, boolean formulas,
and constant-depth circuits). All these bounds transfer to integer multiplication
in binary notation, by choosing r as a power of 2. Woelfel [43] and Bollig and
Woelfel [6] used linear classes for proving lower bounds on the complexity of
multiplication on several versions of branching programs, notably OBDDs. The
central observation was that the universality properties imply that there are
functions of the form x �→ �((ax + b) mod r)/m� with moderately large r and
U = [u] only of size m2 that are surjective. Bollig, Waack, and Woelfel [5] used a
similar approach for lower bounds for multiplication in more general branching
programs. Using similar hash classes, Sauerhoff and Woelfel [34] prove a time-
space tradeoff for unrestricted, deterministic multi-way branching programs that
compute the middle bit of integer multiplication.

Error-Correction Properties. For the purpose of constructing deterministic dic-
tionaries, Miltersen [27] and Hagerup, Miltersen, and Pagh [19] utilized error-
correction properties of 2-wise independent classes, in particular of the class
from [12] and the classes studied in the present paper.

Limitations for Cuckoo Hashing and Other Applications. Pǎtraşcu and Tho-
rup [31] proved that for min-wise hashing the linear classes fail badly. Diet-
zfelbinger and Schellbach [15,16] showed that using linear functions h(x) =
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((ax+b) mod p) mod m (for p = u prime) and h(x) = �((ax+b) mod r)/(r/m)�
as in this paper in the naive way for cuckoo hashing will lead to failure of the
data structure. On the other hand, Dietzfelbinger and Woelfel [17] showed how
to run cuckoo hashing [32] with polynomials of constant degree in combination
with lookup tables of random numbers as hash functions. With Aumüller these
authors showed [3] how to modify the construction so that 1-universal classes,
2-wise independent classes, and tables are sufficient, so that now cuckoo hashing
can be run with the linear classes from the present paper alone.

3SUM and Fine-Grained Complexity Inside P. 3SUM over an interval [u] of
integers, for sets of size n, is the following problem: Given three sets A,B,C ⊆
[u], all of size n, decide whether there are x ∈ A, y ∈ B, z ∈ C such that
x + y = z. Depending on the model of computation, this problem is thought
to have different complexities. The obvious deterministic algorithm (involving
sorting and repeated merging) takes time Θ(n2). If one specifies the model in
more detail, one may consider the word RAM (random access machine with
word length w). Here, randomization, bit-level parallelism, and other tricks make
it possible to solve the problem faster, see, e.g., the seminal paper by Baran,
Demaine, and Pǎtraşcu [4]. One tool in this faster (randomized) algorithm is
universal hashing. The authors utilize a 1-universal hash class of functions from
[u] to [m] that is “almost affine”, meaning that for every hash function h from
the class there is a constant ch such that for x, y, z ∈ [u] with x + y = z we have
h(x) +m h(y) ∈ {h(x + y) +m ch, h(x + y) +m ch +m 1}. (The offset ch is known
from affine functions in vector spaces.) It is not hard to see (see Wang [39], who
also considers k-SUM) that our class Hlin

u,m,r has this property. A second property
that is needed is 1-universality, from which it follows that the number of keys
mapped to overfull buckets is close to its expectation. The same kind of hash
function was used in many works on low-level complexity, e.g., [1,22,30,38], in
arguments that prove conditional lower bounds for dynamic data structures and
string and graph problems.2

Upper Bound on Bucket Size. Knudsen [21] showed that the expected bucket
sizes created by Hlin

u,m,r on a set S of size |S| = m is O(m1/3).

Efficiency. Thorup [36] and Dahlgaard et al. [9] experimentally explore the effi-
ciency of different hash classes. Our class Hlin

u,m,r, for u,m, r powers of 2, turns
out to be very fast, in particular for values that combine well with the word
length of the computer. One should beware, however, that the class must be
used only for purposes where its suitability has been proved.

Acknowledgment. The author is grateful to Carl Pomerance for helping with the
proof of Lemma 4 and to a reviewer for a careful reading of the manuscript and helpful
suggestions.

2 It should be noted that although the class of functions x �→ (ax mod p) mod m for
primes p is not suitable, the class of functions x �→ (ax mod p)/ �p/m� is also almost
affine and (1 + 1

m
)-universal, so it could also have been used for this application.
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