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Abstract. We consider the model of finite automata with advice intro-
duced by Kiigiik et al. We show that there are languages, in particular
the language of palindromes, that cannot be recognized by DFA regard-
less of the size of advice. Also, we show that a DFA cannot utilize more
than exponential advice. We initiate the study of NFA with advice: we
show that, unlike the DFA, NFA can recognize all languages with advice
of exponential size. On the other side of the spectrum, with constant
advice, DFA are as powerful as NFA. We show that for any growing
function f, there are languages that can be recognized by NFA with
advice f(n), but cannot be recognized by DFA regardless of advice size.
We also ask what languages can be recognized with polynomial advice.
For NFA we show that this class is not closed under complementation,
and that it contains all bounded languages. Bounded languages over one-
letter words can even be recognized by DFA with polynomial advice. We
also give examples of languages that cannot be recognized by NFA with
polynomial advice. Finally, we show that increasing advice helps for NFA,
and for any advice of size f(n) < n we show that there is a language that
can be recognized by a DFA with advice f(n), but cannot be recognized
by an NFA with advice o(f(n)).

1 Introduction

Uniformity, i.e., the fact that a single, finitely-described, device is used to process
instances of arbitrary size, is a central property shared by all computation mod-
els deemed feasible. Understanding the role this restriction plays in the inherent
limitations of feasible computation models is one of the fundamental directions in
theoretical computer science. Models that are naturally defined as non-uniform
(like circuits), usually come with uniformity as an add-on requirement, and the
uniform and non-uniform versions can be compared. Turing machines are nat-
urally uniform, and their non-uniform version was introduced in the seminal
paper of Karp and Lipton [5] in the form of advice machines. The machine,
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together with the input word x of length n, is also provided an advice string
a(n), that does not need to be computable, but remains the same for all words
of length n. It is well known how fruitful the line of research investigating this
notion has been in understanding the fundamentals of computation. However,
since the main questions concerning Turing machines still remain unsolved, it
is natural to focus on their restricted versions for gaining better insight. While
there had been previous attempts to study non-uniform versions of automata
(e.g., Ibarra and Ravikumar [4] considered 2-way automata with growing sets of
states), Damm and Holzer [1] proposed the first model of finite automata with
advice along the lines of [5]: a one-tape finite automaton for which each input
word is prefixed by the advice string (see Definition 1). Since the advice is on the
same tape as the input, the automaton can use only constant advice. The class of
languages recognized by these devices is denoted REG/k where k is the length of
advice string, extending the notation REG for the class regular languages. Even
REG/1 can recognize some non-recursive languages (e.g., unary languages), and
there is a strict hierarchy REG/(k — 1) € REG/k. In order to overcome the
limitation to constant amount of advice, Tadaki et al. [7] consider advice of
length n written on separate track (see Definition2). We denote the class of

languages recognized by these automata FTE\G/ n to distinguish them from the

previous model. In [7] it is shown that Pﬁ*]\G/n = 1DLIN/O(n), i.e., the class of
languages recognized by a linear-time 1-tape deterministic Turing machine with
advice written on a separate track. Hence, the power of the Turing machine to
write information to the tape does not help in this case. The advice written on a
separate track overcomes the shortcomings of the model from [1], but it does not
allow to study other than linear size of advice. Freivalds [3], with the motiva-
tion to study the amount of nonconstructiveness in non-constructive arguments,
proposes a model of finite automata that use separate tapes to store the advice.
In his model (see Definition 3), the advice may be split into several tapes. How-
ever, the advice string of length m must be valid for all words of lengths up to
m. He considers deterministic automata with two-way input and advice tapes.
We denote the class of these languages .#(DFA)/f(n). Freivalds shows that
Z (DFA)/o(logn) = REG, but there are some non-recursive languages that can
be recognized with polylogarithmic advice. On the other hand .#(DFA)/(n2")
contains all languages, and there are languages that cannot be recognized with
advice 0(2™). We adopt the model by Kiigiik et al. [6] (see Definition 4) that com-
bines the models of Freivalds, and Tadaki et al. Denoted by .Z(DFA)/f(n), the
advice of length f(n) for a one-way deterministic FA is written on separate tapes
(in our results we consider only a single advice tape), and the advice is specific
for the inputs of given length. Kiiciik et al. showed that . (DFA)/exp(2u-input)
contains all languages, a hierarchy .Z(DFA)/(n¥) C Z(DFA)/(n**1), and a sep-
aration .Z(DFA)/poly C Z(DFA)/poly(2w-input). They also showed that the
language of palindromes, LpaL & -Z(DFA)/poly. They asked a question whether
exponential advice allows to recognize all languages (with one-way input), and,
in particular, whether Lpa € Z(DFA)/exp.
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Our Contribution

We answer the question from [6], and show that Lpa_ cannot be recognized
by a DFA regardless of the advice size, i.e., Lpar & Z(DFA)/x (Corollary 1).
Moreover, we show that DFA cannot utilize more than exponential advice (The-
orem 3). Then we extend the model from [6] to nondeterministic FA, and show
that £ (NFA)/exp contains all languages (Theorem4). We also show that for
constant advice the nondeterminism doesn’t help, since .Z(NFA)/k = REG/k
(Theorem 5). Since NFA can recognize any language with exponential advice,
it is natural to ask which languages are in Z(NFA)/poly. We show that
Lpar ¢ ZL(NFA)/poly (Corollary 2) whereas coLpar € Z(NFA)/poly (The-
orem8), so .Z(NFA)/poly is not closed under complement. Moreover, since
Z(DFA) /x is obviously closed under complement, coLpa is an example of a lan-
guage that can be recognized nondeterministically with polynomial advice, but
cannot be recognized deterministically regardless of the advice size. We extend
this observation to show that for any growing function f, there is a language
that can be recognized by a NFA with advice O(f(n)), but cannot be recognized
by DFA regardless of advice (Theorem 6). Further, we show that any bounded
language can be recognized by NFA with polynomial advice (Theorem9), and
if the language is of the form L C a7 ---af, it can even be recognized deter-
ministically with polynomial advice (Theorem 10). Finally, we show a hierarchy
of advice lengths for NFA (Theorem 11), and even stronger result for sublinear
advice stating that for any advice of size f(n) < n there is a language that can
be recognized by a DFA with advice f(n), but cannot be recognized by an NFA
with advice o(f(n)) (Theorem 12).

2 Notation and Definitions

Let kDFA (resp. kNFA) denote a k-tape one-way deterministic (resp. nondeter-
ministic) finite automaton. We use the standard model of multi-tape automata
(see e.g., [2]) where the input words on each tape are delimited by special sym-
bols, and in each step, the automaton decides, based on the symbols on the tapes,
and the current state, which heads to advance and how to change the state. We
say that a tuple (wi,...,wg) € (X*)* is the input of the kDFA automaton A
if each w; is written on the respective tape. For an automaton A, let £(A)
be the language recognized by A. Let Z(kDFA) C (X*)F (resp. Z(kNFA)) be
the family of languages recognized by the respective automata. The symbol X
denotes a finite alphabet, X, := {0,1,...,n — 1}. Unless stated otherwise, our
automata will be 1-way. For technical clarity, we recall the definitions of the var-
ious approaches mentioned in the introduction. Damm and Holzer introduced
the advice string as a prefix of the input word:

Definition 1 (Damm and Holzer [1]). Let X be a finite alphabet, and let
a: IN — X* such that Vn, |a(n)| < f(n). For a language L, let oL = {a(|w])#w |
w € L}. Then

REG/f(n) :={L C X* | Ja, and a DFA A: aL = Z(A)NaX*}.
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Tadaki et al. considered the advice written on a separate track:

Definition 2 (Tadaki et al. [7]). For two words u = uy...u, € Xy,v =
V1 ...V, € X9 let m = (u1,v1)(u2,v2) ... (Un,v,) € X1 X Xo. Let X be a finite
alphabet, and let o: N — X* such that for each n € N, |a(n)| = n. For a

language L, let [§] = {[a(ﬁ”l)] | w e L}. Then

REG/n = {L C 5* | 3o, and a DFA A: m = Z(A)N (BD} .
Freivalds considered 2-way multitape machines with advice on several tapes,
such that the advice a(n) is valid for all words of length at most n:

Definition 3 (Freivalds [3]). Let, for each 1 < i <k, a;: N — X* such that
Vi, Y0 lag(n)| < f(n). Then

F(DFA)/f(n) :={L CX*|3k,01,...,ar, and a 2-way (k+ 1)DFA A,
weL=YVYm>|w|: (w,a1(m),...,ar(m)) € Z(A) and
wé¢ L=Vm>|w|: (w,a1(m),...,ar(m)) ¢ L(A)}.

We adopt the approach from Kiigiik et al., where the advice is on separate
tapes (in general, we allow multiple advice tapes) and is specific for words of
given length:

Definition 4. Let, for each 1 < i < k, a;: N — X* such that ¥n,|a;(n)| =
f(n). For a language L, let Lo, = {(w,a1(n),...,ax(n)) | w € Lyn = |w|} C
(X% Then

Z(DFA)/f(n)g :={L CX* | Jay,...,a, and a (k+ 1)DFA A:
L,=2%(A)NX}

We say that a (k + 1)DFA A recognizes language L with advice « if Lo, =
ZL(A)N X%, We can leave out k if k = 1. The class L(NFA)/f(n)x is defined
m a stmilar way.

We write £ (DFA) /%, if the size of the advice is unlimited, .Z(DFA)/expy
if it is at most exponential, and .Z(DFA)/poly, if it is at most polynomial
in the input length. We can further modify the automaton by giving specifi-
cations of the form rt-tape meaning that the tape is realtime, i.e., the head
moves in every step to the right, and the automaton stops after the head
reaches the end of the tape, or 2w-tape meaning that the head is 2-way.
So, e.g., Z(DFA)/o(n)(rt-input, 2w-advice) describes deterministic automata
with realtime input tape and 2-way advice tape of sublinear size. Note that the
requirement |a(n)| = f(n) comes with no loss of generality, since the advice can
always be padded with some new symbol. Also note, that we do not specify the
cardinality of the advice alphabet. While this may be of importance in some
cases, e.g., when studying advice of constant size, it has no effect on our results.
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3 Results

The model quickly becomes extremely powerful: with two advice tapes, or expo-
nential advice and 2-way input, all languages can be recognized. On the other
hand, a DFA cannot recognize some very simple languages even with fairly large
advice, and there is a hierarchy showing that additional advice size increases the
power. The following statements have been proven in [6]:

Theorem 1 (Kiigiik et al. [6]).

1. Z(DFA)/exp, = £ (DFA)/exp(2u-input, rt-advice) = 2%

2. For all k, £ (DFA)/(n*) C Z(DFA)/(nk*1).

3. LpaL € Z(DFA)/poly U Z(DFA)/ % (rt-input) where LpaL is the language
of palindromes Lpa. = {ww® | w € 23}.

In this paper, we focus our attention on machines with one advice tape, and
1-way input tape. In [6], the authors asked if Lpa. € £ (DFA)/x. We show that
it is not the case. In fact, our proof applies not only to LpaL, but to a slightly
more general class of languages described in the following definition. Informally,
the words consist of two parts of fixed lengths: an arbitrary request string, and
a response. There may be several responses to a given request. The required
property is that for any two requests there is a string that is a valid response for
exactly one of them.

Definition 5. Let {R,}°2, be a family of relations R,, C X5 x 21 for some
f:IN — IN, such that Vxg,x1 € X3, 2o # x1, there is a y € X such that
R, (x4,y) and ~Ry(x1—4,y) for some i € {0,1}. Let Ly be the language

L :={xy |z e X3, [yl = f(lz]), Rz (z,y)}
We call Ly a prefix-sensitive language for relation R.

Ezxample 1. Examples of prefix-sensitive languages are some well studied lan-
guages like

— LpaL = {wwR | w e Z*},

NUM< = {a#y | z,y € X3, |z| = |y|, [z]2 < [y]2} where [z]s € IN denotes
the number with binary representation x,

NUM < :=A{a#ty | z,y € X3, || = |y|, [z]2 < [yl2},

—{ww | w e T*}.

Theorem 2. Let L be a prefiz-sensitive language. Then L ¢ Z(DFA) /.

Before proving the theorem, let us introduce some notation. Let A be any
2-tape DFA with the set of states @, where s := |Q|, and advice «. For a fixed n
we shall consider words of length n+ f(n), and denote m := |a(n+ f(n))|. For an
i€{l,...,m}and a q € Q, we say that A is in internal configuration (i, q) if the
advice head of A is reading the i-th advice symbol and A is in state q. We define
the internal configuration graph G of A as the graph whose vertices are (i, q) for
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all such 7, ¢q. For each vertex (i, q), there are two outgoing directed edges, labelled
by symbols 0 and 1, respectively. Each of the edges may be additionally labelled
by +. These edges describe the behavior of A: An edge labelled by = € {0,1}
leads to (i',¢’) such that A moves to internal configuration (¢, ¢’) within one
computation step when the input head reads x. The edge is additionally labelled
by + if and only if A moves its input head in this step.

The internal configuration graph is completely defined by the transition func-
tion of A and the advice for input length n + f(n). Also, the behavior of A on
inputs of length n + f(n) is determined by the internal configuration graph.
When A is in internal configuration z = (4, ¢) and reads symbol z, it follows a
path in G induced by edges labelled by = which ends with an edge labelled by
z+, leading to internal configuration z’ and we say that x leads from z to 2.
The definition of leads to can be naturally extended to words from X75.

Lemma 1. Let z = (i,q) € G be arbitrary internal configuration of A. There
exist two words u,v € X% such that

1. u#wv,

2. neither u is prefix of v nor v is prefix of u,

3 1< |ul <284+2,1<|v]| <2s+2,

4. both w and v lead from z to the same internal configuration z'.

Proof. Consider all words over X5 of length exactly 2s + 1. Each of these words
leads from z to some (j,-). Let w be such word where j is minimal. Consider
each proper prefix p of w, including the empty word ¢; there are 2s 4 1 of them.
Thus, we have w = pzxg for some x € Xy, g € X% (see Fig. 1). Since p is prefix of
w, it leads from (i, q) into (i',q’), where i <4’ < j. Let x # 2/ € X5. The word
pz’g leads from (4, ) via (¢, ¢’) to (j', -), where j* > j. Thus, some edge outgoing
from some (7, ) is used by A when reading pz’g0. Let w’ be the longest prefix
of px’g0 such that an edge like this is used when reading the last symbol of w’.
It holds that pz’ is a prefix of w’. This ensures that any two w’ constructed for
different prefixes p are not a prefix of each other.

In this way, we have constructed 2s + 1 different words wf, ..., wh, ; and
any two of them satisfy conditions 1, 2, and 3. Since there are only 2s edges
outgoing from (j,-), we can apply the pigeonhole principle to find w), and wj},
which use the same outgoing edge. This implies that w/, and wj lead from z to
the same internal configuration z’. O

Proof (of Theorem 2). Let n := 4(s + 1)2. We prove that there are two input
words of length n + f(n), one in L and one not in L, which are both either
accepted or rejected by A.

Automaton A starts in internal configuration (1, gg). We construct a sequence
of internal configurations ¢ = (1,qg),c1, ..., Cas4+2 by invoking the claim to get
the next configuration from the previous one. In this way, we obtain, for each i,
some u; and v; satisfying all conditions from the claim that both lead from ¢;_4
to ¢;. We now have 2s + 2 pairs u;, v;. For each pair, ||u;| — |v;]| < 2s+ 1. Our
goal is to construct two different words of length at most 4(s + 1) that lead
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advieel [ [ [ [ [ [T TTTITITITTTTTIILT]

Fig. 1. Situation in the proof of Lemma 1: the word w = pzg leads to some configu-
ration (4, ). The word pz'g leads to some (5, ) for j° > j. Hence some prefix of pz'g
uses an edge outgoing from some (j,_). In the proof we use the words pz'g0 to cover
the case j' = j.

from (1, qp) to the same internal configuration. We consider two cases. First, if
|u;| = |vi| for some i, we can take uqus . .. u; and ujus . . . u;—1v;. Both such words
have equal length, lead from (1,qo) to c;, and their length is at most 4(s + 1)2.
In the second case, |u;| # |v;| for all i € {1,...,2s + 2}. By the pigeonhole
principle, there are two pairs such that ||u;| — |vi|| = |Ju;| — |v;]|. Without loss
of generality, let |u;| > |v;| and |u;| > |v;|. Then the words u; ...u;_1v; and
Uy ... Ui—1ViUiy1 - - - U; satisfy our condition.

Thus, we have some two different words of equal length, no longer than
n = 4(s + 1)2, that lead from (1,qo) to the same internal configuration. We
can arbitrary pad both words to have length exactly n to obtain u # v such
that |u| = |v| = n that lead from the initial internal configuration to the same
internal configuration. Since L is prefix-sensitive, there is a y € X7 such that
uy € L and vy € L, or vy € L and uy ¢ L. However, uy and vy are either both
accepted or both rejected by A. a

Using Theorem 2, we can show that several languages cannot be recognized
by DFA, regardless of the advice size. In particular:

Corollary 1. Lpa. & Z(DFA)/*.

An interesting question to ask is what is the maximal advice that a DFA is
able to use. We can show that advice above 29" cannot be utilized:

Theorem 3. .Z(DFA)/x = £ (DFA) /20",

Proof. Let A be an s-state DFA with advice « recognizing some language L with
advice using alphabet X}, for some k, and let £ = s** + 1. We show that L can
be recognized by A using advice of length less than £(nk™ + 1) = 200",
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Suppose, for the sake of contradiction, that |a(n)| > ¢(nk™ 4 1) for some n.
We construct a modified advice function o/ such that o/ (n') = a(n’) for n' # n,
and |&/(n)| < |a(n)], and show that A recognizes the same language with advice
a, and o'.

Suppose, without loss of generality, that A always moves both its heads to
the ends of the respective tapes. Also, suppose that A in each step moves at
least one head. Partition the advice string a(n) into blocks of size £. For each of
the k™ possible input words w of length n consider the computation of A on w
with advice a(n). If the head on the input tape moves at least once while the
head on the advice tape scans block B, mark B as relevant. Since each word w
can mark at most n blocks, there are at most nk™ relevant blocks overall. Since
|a(n)| > €nk™, there is some block B that was not marked relevant by any word.

For each word w, the automaton A enters block B in state ¢, reading sym-
bol a,, on the input tape. Then for the consecutive ¢ steps it moves only the
advice head, going through a sequence of states g, = qq(ul), qq(uz), e qq(f). Since
the input head does not move, this sequence is fully determined by (aw,qw),
so there are only ks distinct sequences. For an index 4, consider the vector

n = (qu,qgg, . .,qgin) where {wn,...,wgn} = X7, Since there are ks dis-
tinct sequences, there are at most s** possible values of 7;, and because £ > s**,

there are two indices ¢, j, such that for each w € X7 it holds qf,f) = qf,f). This
means that if the advice string a(n) is shortened by leaving out the part of block
B starting from index ¢ + 1, and continuing until (and including) index j, the
automaton A will behave exactly the same way. O

It remains open whether advice of exponential size can actually be utilized
by a DFA. From Theorem 1 we know that for any polynomial n*, there is a
language that needs advice O(n*), but we are not aware of any example of a
language that would require more than polynomial advice.

3.1 Nondeterministic Automata

Next we turn our attention to nondeterministic automata, which have not been
studied with respect to advice before. With no restriction on the advice size, it
is easy to see that NFA can recognize all languages:

Theorem 4. .Z(NFA)/f(n) = 2", where f(n) = (n + 1)|X|*. In particular,
any language L can be recognized by an NFA with advice of size (n+1)|L N X"|.

Proof. Let L C X* be any language. The advice function
a(n) = #urFw# - #w,

where {wq,...,w.} = LNX™. The 2-tape NFA automaton just scans the advice
tape, stops nondeterministically on some symbol #, and checks the input tape
with the advice. O
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In [6] it has been proven that .Z(DFA)/k(2w-input) = REG/k. Again, it is
easy to observe that to constant advice, the nondeterminism is not more powerful
than determinism:

Theorem 5. .Z(NFA)/k = REG/E.

Proof. Obviously, .Z(NFA)/k O REG/k. The other inclusion is easy to see,
too. Any 2-tape NFA with advice tape of constant size can be transformed into
a normal form where it first (deterministically) reads the content of the tape,
stores it in the state, and continues to work (nondeterministically) on the input
tape. We can use standard subset construction to turn this automaton into a
deterministic one that first reads the advice for either the prefix of the input or
a separate advice tape. O

Unlike DFA, NFA can recognize all languages with exponential advice, but
are not more powerful than DFA’s when equipped with constant advice. One
may ask where is the threshold when NFA become more powerful. We show that
it is just above the constant:

Theorem 6. Let f(n) =w(l). There is a language L € L (NFA)/o(f(n)) such
that L ¢ £ (DFA) /x.

Proof. Choose a function g(n) such that g(n)29() = o(f(n)), e.g., g(n) :=
loglog f(n). Let L := {v | v = wwR#*, |w| = g(|v|)}. From Theorem 4 it follows
that LpaL can be recognized by a NFA with advice a such that |a(n)| = O(n2%).
Moreover, to recognize L, one can utilize the advice a(2g(n)), which is of size
o(f ().

On the other hand, L is a prefix-sensitive language in terms of Definition 5,
so due to Theorem 2, L ¢ £ (DFA) /. O

Interesting classes of languages are those that can be recognized by NFA (or
DFA) with polynomial advice. While we don’t know whether DFA can utilize
more than polynomial advice, we show that NFA can. In particular, NFA can
recognize all languages with exponential advice, but cannot recognize with poly-
nomial advice (even with two-way advice tape) many prefix-sensitive languages.
To state the next theorem, we use a subclass of prefix-sensitive languages:

Definition 6. A prefiz-sensitive language L is called strictly prefix-sensitive, if
there is a function d: X5 — X*, such that for each x € X3, it holds R, (z,d(x))
(i.e., |d(z)| = f(|z]), zd(z) € L), and for any two xo,x1 € KT, xo # 21 it holds
R, (z;,d(x;)), and =Ry, (x1—4,d(z;)) for some i € {0,1}.

Note that all the languages from Example 1 are strictly prefix-sensitive: for
NUM >, consider the function d(x) = #x. Similarly, for NUM . the function
d(x) = #y such that [y]s = [z]s + 1 fulfills the previous definition.

Theorem 7. Let L be a strictly prefix-sensitive language. Then
L ¢ £ (NFA)/poly(2w-advice).
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Proof. Consider a 2-tape NFA A with polynomial advice «. For a fixed n, con-
sider all words w € X"/(") such that w = zd(x), x € X%, w € L, and select
one accepting computation v, of A on w (using the advice a(n + f(n))). After
reading x in 7, let A be in state ¢, and the advice head be on the i,-th
symbol. Since there are only polynomially many pairs (g, %), there are two
words z1,z2 € X§ such that A is in the same state with the same position
on the advice tape after reading z; and x5 in the respective accepting compu-
tations Y, , Yw,. Since L is strictly prefix-sensitive, without loss of generality
x1d(z1) € L, zod(x1) ¢ L. Since the automaton is 1-way, and the advice is fixed,
there is an accepting computation on zod(z1) with the same prefix as 7,,,. Thus,
x2d(z1) € L — a contradiction. |

Corollary 2. Lpa. & Z(NFA)/poly.
On the other hand,
Theorem 8. coLpaL = {a,b}* — LpaL € Z(NFA)/O(n?).

Proof. We construct a nondeterministic automaton A with quadratic advice o
that recognizes coLpaL. For odd n, let the advice a(n) = $. A immediately
accepts in this case.

For even n, let the advice

a(n) = #urffwa# - - #Hwo #

where w; = 0°7110"7210°~1. Note that |w;| = n so the advice is of length O(n?).
The automaton A nondeterministically selects one word w;, and uses it to check
the input symbols on the positions indicated by ones in w;. If they differ, A
accepts. O

One class of languages that can be accepted by NFA with polynomial advice
is the class of bounded languages:

Theorem 9. Let wy,...,wx € X*. Let L be any bounded language L C
wi---wj. Then L € L (NFA)/poly.

Proof. Tt is easy to see that a bounded language contains at most (n + 1)
O(n*) words of length n. The result follows from Theorem 4. O

We don’t know whether bounded languages can be recognized with polyno-
mial advice by DFA, but an important subclass of bounded languages can:

Theorem 10. There is a DFA Ay such that for any language
LCO1*--(k—1)*C X}

there is an advice o, such that |a(n)| < cn*~ for some ci, and Ay, recognizes
L with advice a.
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Proof. The proof is by induction on k. For k = 1, any language over unary
alphabet contains at most one word for each n, so advice of size 1 is sufficient. Let
L C0*1*---(k—1)*. For a word w, and a language L, let wL := {wu | u € L}.
Denote L; the language L; C 1*2* - - - (k — 1)* such that 0°L; = LN0{1,... . k—
1}*. Obviously, L = U2, L;, and each L; is a bounded language over alphabet
Xk—1 (under a renaming of the symbols). By induction, each language L; can
be recognized by some DFA A;_; with advices a; such that |a;(n)| < cp_nF—2
for some ci_1. Construct the advice function « such that

a(n) = 0ag(n)0aq(n — 1)0az(n —2)0 - - - O, —1(1)0ay, (0).

Note that |a(n)| < (n + 1)cg_on* "2 4+ n +1 < ¢n*~! for some c;. The DFA
Ay, recognizing L with advice a works as follows: while the input symbol is 0, it
scans the advice tape for the next occurrence of 0. If the input symbol is not 0, it
simulates the automaton Aj_; with the current advice. Note that the transition
function of A does not depend on the language L, so it fulfills the statement of
the theorem. O

3.2 Hierarchies

In [6] it was shown that for all k, Z(DFA)/(n*) C Z(DFA)/(n**1). We show a
similar hierarchy for NFA:

Theorem 11. Let f,g: N — IN be such that f(n)log(f(n)) = o(g(n)) and
g(n) <n2%. Then £ (NFA)/f(n)(2w-advice) C .Z(NFA)/g(n).

Proof. We repeat the ideas from Theorems 6 and 7 in a more specific way. Fix two
functions f, g from the statement of the theorem. Note that lim, ., g(n) = oc.
Let h be a function such that

h(n) := max{z | 2z + 1)2° < g(n)}.
Since (2h(n) + 1)2"™) < 723 it holds 2h(n) < n. Consider the language
L = {wuwR#n =2k | e Zg(n),n € IN},
where #0 is defined as empty string. First, we show that
L ¢ Z(NFA)/f(n)(2u-advice).

Let us suppose, for the sake of contradiction, that L is recognized by some NFA
A with advice |a(n)| < f(n). Let s be the number of states of A. We show that
for all large enough n it holds

sf(n) < 2M™, (1)

Assume, for the sake of contradiction, that sf(n) > 2" for arbitrary large n.
Since sf(n) > 2™ it holds log s 4 log f(n) > h(n), so log f(n) > h(n) — log s.
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Also recall that f(n) > 2"™) /5. We have

(n) (n)
Fn)log () = F(n)(h(m) — log 8) = 2 h(m) — 2

MM+ yp(n)  2MMlogs  g(n) 2™ logs
= — > —
8s S 8s S

log s

where the last inequality comes from the fact that 4h(n) > 2(h(n)+1)+1, which
is satisfied for h(n) > 2/3, and 2"("™+1(2(h(n) + 1) + 1), which follows directly
from the definition of h(n). Thus, we get

g(n) (9(n) 2kt 10g8> . g(n)

f(n)log f(n) > T 165 s = 16s

(2)

where the last inequality holds since for large enough n we have 2"("16log s <
2/ (2h(n) + 1) < g(n). However, f(n)log(f(n)) = o(g(n)), so (2) cannot hold
arbitrary large n — thus we have proven (1).

Now fix a large enough n. |L N X%| = 2", For each w € Eg(n) choose one
accepting computation v, of A on wwR#"~2"(") Let A be in state ¢, after
reading the prefix w in 7,, and its advice head is on position ,,. Since there
are sf(n) pairs (qu,iw), and sf(n) < 2™ there must be two words w # w’
with the same pair (g, iw) = (qu’, tw ), which means there is also an accepting
computation for ww'R#n—2hm),

On the other hand, it is easy to observe that L € .Z(NFA)/g(n): an advice of

length 2"(") (2h(n)+ 1) is enough to describe all palindromes ww®, w € 2;“"). O
For sublinear advice we give a stronger result:

Theorem 12. Let f,g: N — IN be such that f(n) < n, g(n) = o(f(n)). Then
there is a language Ly C {a,b}* that does not depend on g such that Ly €
Z(DFA)/f(n) and Ly ¢ Z(NFA)/g(n).

Proof. We shall present a language Ly C X5, such that for each n, Ly contains
exactly one word of length n, called w,. Moreover, this word is of the form
wy, € Zg(n)O”*f(”). This immediately implies that Ly € Z(DFA)/f(n). In the
rest of the proof we show how to specify w,, such that Ly ¢ Z(NFA)/g(n) for
any g(n) = o(f(n)).

It is sufficient to prove the claim for NFA’s with binary advice alphabet: If
there exists an NFA with advice alphabet of size k that accepts Ly with advice
g(n) = o(f(n)), there also exists a NFA with binary advice alphabet that accepts
Ly with advice g(n)logk = o(f(n)).

Consider a fixed enumeration A, As,... of all 2-tape NFA’s with binary
advice alphabets. For a given 2-tape NFA A, we call a word v € X3 a n-singleton
word for A, if A when equipped with v as advice, accepts exactly one word u of
length n (among all words of length n), and w is of the form Eg(")O”_f(").
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Now we describe how to select w, for a given n. Let d, be the maximum
integer such that 2d,, + 1 < f(n), i.e., d,, := [(f(n) — 1)/2]. Consider the first
29n automata in the fixed enumeration. Since there are at most 2%»*! binary
words of length at most d,,, there are at most 24»+9n+1 possible pairs (A4,v) such
that v is n-singleton for A, |v| < d,. Since d,, + d,, + 1 < f(n), there is a word
wy, € 22f (™ guch that w,, is never accepted as a single n-letter word by any of
the first 2% automata, with advice of size at most d,,.

Finally, we show that language Ly defined as above is not in .Z(NFA)/g(n).
Assume, for the sake of contradiction, that there is an automaton A = A; that
recognizes Ly with some advice « of size |a(n)| = g(n). Obviously, a(n) is n-
singleton for A, for any n. Since g(n) = o(f(n)), there is some large enough 7
such that g(n) < d and dz > logj. Hence, A with advice a(7) accepts ws as
the single n-letter word. However d; > logj means wy is never accepted as a
single n-letter word by any of the first j automata with any advice of size at
most dj, thus it is not accepted with any advice of size g(2). O

4 Conclusion and Open Questions

We showed that there are languages that cannot be recognized by DFA, regard-
less of advice size. Moreover, we showed that DFA cannot utilize more than
exponential advice. However, we don’t know any example of a language, where
advice of exponential size is needed. Indeed, it may be the case that any lan-
guage that can be recognized by DFA with advice, can be recognized also with
polynomial advice. In particular, it would be interesting to know if all bounded
languages can be recognized by DFA with polynomial advice.

We initiated the study of NFA with advice. We showed that there are lan-
guages that cannot be recognized with polynomial advice, but any language can
be recognized with exponential advice. It is a natural task to characterize the
languages in Z(NFA)/poly.

Also, Kiigiik et al. showed in [6] that the language

EQUAL; = {w € T3 | #o(w) = #1(w) = #2(w)}

cannot be recognized by a DFA with linear advice, but it can be recognized
by a randomized FA with 1-sided bounded error with linear advice. It would
be interesting to know whether randomization can help for larger advices: in
particular, what languages can be recognized by randomized FA with polynomial
advice.

Finally, one of the features of the model from [3] is that it is concerned only
for the size of the advice, which can be split into several tapes. In our model,
DFA with two advice tapes with exponential advice can recognize all languages,
however, the power of multi-tape DFA’s with limited advice is to be considered.
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