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Abstract We consider the problem of finding an optimal data-driven modal decom-
position of flows with multiple convection velocities. To this end, we apply the shifted
proper orthogonal decomposition (sPOD) which is a recently proposed mode decom-
position technique. It overcomes the poor performance of classical methods like the
proper orthogonal decomposition (POD) for a class of transport-dominated phenom-
ena with large gradients. This is achieved by identifying the transport directions and
velocities and by shifting the modes in space to track the transports. We propose a
new algorithm for computing an sSPOD which carries out a residual minimization in
which the main cost arises from solving a nonlinear optimization problem scaling
with the snapshot dimension. We apply the algorithm to snapshot data from the sim-
ulation of a pulsed detonation combuster and observe that very few sPOD modes are
sufficient to obtain a good approximation. For the same accuracy, the common POD
needs ten times as many modes and, in contrast to the SPOD modes, the POD modes
do not reflect the moving front profiles properly.
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1 Introduction

Model reduction, see e.g. [2, 3, 11], is an essential requirement in almost all areas
of science and technology to obtain efficient multi-parameter simulations and, in
particular, optimization and control methods. Often the full-order model (FOM)
arises from a semi-discretization in space of a partial differential equation (PDE)
and the state dimension scales with the number of grid points which is typically
large. However, one is usually not interested in a detailed description of the complete
dynamics but often only in a low-dimensional manifold where the solution of interest
approximately evolves.

Model reduction for nonlinear dynamical systems is often based on mode decom-
position techniques as the proper orthogonal decomposition (POD) [3, 4, 24] or the
dynamic mode decomposition [14, 22]. Standard mode decomposition techniques
are based on the concept of representing the unknown solution as a linear combina-
tion of modes. More precisely, let ¢ be a function in space x and time ¢ representing
the state of the dynamical system, then a common model reduction ansatz is an
approximation

q (e )~ Y g (1) e (x) )

k=1

with space-dependent modes 1/, time-dependent coefficients, or amplitudes, oy, and
r is the number of modes.

While the amplitudes typically become the unknowns of the reduced-order model,
the modes have to be determined in advance. To determine the modes, one typically
simulates the system and computes space- and time-discrete snapshots of a numerical
approximation g, which are stored in a snapshot matrix X € R™*", i.e., [X];; =
gm(xi, tj)) = q(x;,t;) fori =1,...,mand j =1,..., n. With the coefficients of
the snapshot matrix one obtains a discrete analogue of (1) as

[X]; ~ > jwi @)
k=1
for j =1,...,n, where [X]; denotes the jth column of X, w; € R™ are coefficient

vector representations of the modes )y, and a; ; are the corresponding amplitudes
at time point ¢;.

A classical way to obtain modes and amplitudes is the POD which is based on a
singular value decomposition (SVD) of the snapshot matrix X. The POD representa-
tion is optimal in the sense that it minimizes the residual in the discrete representation
(2). The resulting reduced-order model is obtained as projection onto the span of the
so obtained modes.

In many applications the assumption that POD delivers a good approximation of
the form (1) or (2) with a small number r is valid and model reduction schemes like
POD lead to models with dimensions that are orders of magnitude smaller than those
of the full-order model [12].
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However, when the dynamics of the system features structures with high gradi-
ents that are propagating through the domain, then schemes of the form (1) typically
need a large number of modes to approximate the dynamics well, and hence model
order reduction is not very effective. To overcome this difficulty, recently, there have
been several suggestions for model reduction of such transport-dominated systems.
In [19] the authors use ideas of symmetry reduction to decompose the solution into
a frozen profile and a translation group accounting for the transport. The advan-
tages over standard model reduction schemes are demonstrated by means of the
Burgers’ equation. In [21] the authors present a method which is able to decompose
multiple transport phenomena. The main ingredients are SVDs of several shifted
snapshot matrices combined with a greedy algorithm. The method is cheap to apply
but it often needs more shifted modes than necessary, as illustrated with results for
the linear wave equation. For further references on model reduction for transport-
dominated problems, see [1, 5, 9, 13, 16, 23]. Most of these approaches consider
transport-dominated systems with only one transport velocity and assume periodic
boundary conditions. However, in many applications, multiple transport velocities
are encountered, e.g., by different waves propagating through the domain. To deal
with such phenomena, in [20] the shifted POD (sPOD) method has been proposed
to obtain mode decompositions suitable for multiple transport phenomena. This new
technique differs from (1) by shifting the modes in space into different reference
frames according to the different transports of the system, i.e.,

Ny e
q(x, 1) 2 Y Toe (A°(0) D 0 () (x) 3)

=1 k=1

where 7, (+) is a shift operator defined on a periodic domain [0, L] via
Toer (A@®)) f (x, 1) := f((x + A(t)) mod L, 1),

N denotes the number of shifted reference frames, mod denotes the modulo operator
reflecting the periodicity of the domain, and A¢(¢) are time-dependent shifts which
track the locations of, e.g., different wave profiles over time. Similar to POD one
obtains a discrete analogue of (3) via

N re
[X1; 2 ) Toer (df) D a i )
=1 k=1
for j =1,...,n, where Ty is a discrete approximation of 7, and df are shifts

at discrete time points #;. In [20] a heuristic algorithm is proposed to compute a
decomposition of the form (4) in an iterative procedure, and it has been demonstrated
that this approach is very successful for several examples including two separating
vortex pairs and the linear wave equation. In the latter case the method needs less
modes than other methods such as e.g. [21] and also retrieves the known analytic
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solution. It should be mentioned that while we expect the shifted POD to perform well
for systems with a few dominant moving coherent structures, it may not be effective in
its current form for turbulent flows where also higher modes significantly contribute
to the dynamics.

In this paper, we propose an optimization procedure to compute an optimal decom-
position of the form (4). To this end, we generalize the cost functional that is used to
obtain the optimality of the POD method to the sPOD setting. We first consider the
optimization on the infinite-dimensional level, see Sect.2, and then present an algo-
rithm which computes the decomposition in the fully discrete setting, see Sects. 3
and 4. The computational cost is higher than for the method in [20] but the obtained
approximations are locally optimal in the sense that a residual is minimized.

The focus of our work is on obtaining an optimal mode decomposition which then
can be used for the construction of a reduced-order model, e.g., by a Galerkin pro-
jection. A rigorous treatment of non-periodic boundary conditions is also discussed
elsewhere.

To demonstrate the efficiency of the new approach, we present results for a pulsed
detonation combuster (PDC). The snapshot data originate from a data assimilation,
cf. [10], and exhibit multiple transport phenomena which interact nonlinearly with
each other and with the boundary.

2 Optimal sPOD Approximation

As a model problem for a partial differential equation whose solution features mul-
tiple transport velocities we consider the linear acoustic wave equation

Orp + preiOxu = 0,

3)

Ou + Cz/prefaxp = 0,
on a one-dimensional spatial domain §2 = (0, 1) with periodic boundary conditions.
Here, u is the velocity, p the density, p.s a reference density, and ¢ the speed of
sound. The analytic solution of (5) can be expressed as

[P (x, f)] =q_ (x+ct) [p ref} +qs (x —ct) [p;ff] : ©)

u(x,t) —c
where g_ and g are the Riemann invariants which are uniquely determined by the

initial conditions. In the following, we use p.f = 1 and ¢ = 1 and we consider the
initial conditions

x—05)\°
p(x,0) = po(x) =exp|— ( ) , u(x,0) =up(x) =0,

0.01
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Fig. 1 Linear wave equation: snapshots of the full-order solution for the density (left) and the
velocity (right)
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which represent a pressure pulse with large gradients. The analytic solution, see
Fig. 1, is hard to approximate by a classical POD approach, since the singular values
of the snapshot matrix, that is obtained by sampling the analytic solution, are decaying
very slowly, cf. Fig. 2. To demonstrate the difficulties that POD has for this problem
consider the relative approximation error

n

2

j=1

- [x),

2 n
/ 3 x| ()
j=1

of an approximation X of the snapshot matrix X, |-|| being the Euclidean norm.

In this model problem, to obtain a relative error of less than 1%, the POD needs
124 modes (cf. dashed lines in Fig. 2) although the analytic solution is simply repre-
sented by the sum of two shifted functions. Indeed, the analytic solution (6) can be
formulated within the more general representation (3) with only two modes and

Ny=2, ri=rn=1, Al(t)=-A%t)=t, of(t)=al@) =05,
T T
1) = po(0) [1 =17, ¢f () = po(0) [1 1] .
However, the question arises how to compute such a decomposition when only snap-

shot data are available. In this case the POD is optimal in the sense that it minimizes
the residual, i.e., it solves the optimization problem
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T 2
min [ f (q (x, t)—Zakawk(x)) dadr st (1), ;@) 0, = 8 (8)
0 2

fori, j =1,...,r, where § denotes the Kronecker delta. In this way the modes v;
form an orthonormal basis with respect to the L? inner product in 2.

To extend this optimality of (8) to the more general decomposition (3), we consider
the optimization problem

N,

2
IIll(Iyl//( (x, z)—Z?;e, (a40) Zak(t)z/}k(x)) dxdt, )

where for the moment we assume that the shift frames A are available or can be
approximated before the optimization for the modes ¢ and their time amplitudes «
is carried out. Methods to estimate these shifts based on given snapshot data have
been discussed in [20].

In contrast to (8) and (9) is an unconstrained optimization problem without the
orthonormality restriction for the modes 7/;. The reason why we drop this orthonor-
mality requirement is that in a decomposition of the form (3) even linearly dependent
modes may lead to optimal approximations.

To illustrate the necessity to allow linearly dependent modes, consider again the
linear wave equation but this time only the density, i.e., take g (x, ) = p(x, t). In this
case a solution of the optimization problem (9) is obtained with

Ny=2, rn=r=1, A1) =-A*) =1,
() =ai(t) =05, Pl (x) =9PHx) = po(x),

i.e., there is an optimal approximation with linearly dependent modes v} = 7.
Thus, we omit orthogonality constraints on the modes in (9), at least when there
is more than one transport velocity.

3 Residual Minimization

In this section we discuss the optimization problem (9) with a general linear shift
operator 7, i.e., we consider

T N e 2
min// (q (x,t)—ZT(A‘(r))Zaﬁ(t)wf(x)> dxdz. (10)
va 0 0 =1 k=1
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The solution of the POD optimization problem (8) can be obtained by solving an
operator eigenvalue problem, which in the discrete setting corresponds to computing
an SVD. Since in the setting of (10), the modes may be linearly dependent, we have
to solve a nonlinear optimization problem instead. To this end, we apply numerical
optimization techniques on the discrete level but, prior to that, we analyze some
properties of (10).

First, it should be noted that the solution is in general not unique. This can be seen
by taking for instance the simple case where 7 = T; and g(x, 1) = q1(x + 1) +
q2(x —t) 4 cos(t)g3(x) with some arbitrary functions ¢; fori = 1,..., 3. Then, a
solution of (10) is given by

Ne=3, ri=rn=r=1 AGt)=-A%()=1t, A1) =0,
ajl(t)y =aj(t) =1, a@3(t) = cos(t), Yi(x)=qi(x), fori=1,...,3.

On the other hand, by making use of the trigonometric identities sin(x £¢) =
sin(x) cos(t) & cos(x) sin(¢), another solution is

Ne=3, n=rmn=mrn=1, A'O)=-A0)=1t, A’®)=0
ajt)=ai(t) =1, ojt) = cos(t),
7/)1 (x) = ¢;(x) +sin(x), fori=1,2, w‘?(x) = ¢3(x) — 2sin(x).

Both these solutions are optimal, since the cost functional is zero.

As discussed in Sect.l, many of the currently discussed model reduction
approaches for transport-dominated phenomena consider the case of only one trans-
port velocity (Ng = 1) and periodic boundary conditions. In this special case the cost
functional takes the form

P, «

T . 2
min//(q (x, 1) = Tper (A(f))zak(t)l/fk(x)> dxdz (11)
0 2 k=1

and one can enforce the modes to form an orthonormal basis, since orthogonality is
preserved under the action of the periodic shift operator, i.e.,

(Tper (A0) 11 (x), Tyer (A@) () 12 ) = (1 (). 5 @)) ) = 05 (12)

fori, j =1, ..., r. This follows, since 7, (-) is a unitary operator, cf. [7].
Since the adjoint operator of Tper(A) is given by Tper " (A) = Tper (—A), the opti-
mization problem (11) associated with the constraints (12) is equivalent to

[ENeY

T P 2
min/f (%er (—A@) q (x, 1) — Zak(t)wk(x)) dxdr, s.t.(12).
0 2 k=1
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Thus in this special case, the optimization problem leads to a POD of the transformed
function Zper (—A(2)) ¢ (x, t), which has been used, e.g., in [5].

In the general case of more than one transport velocity (N > 1), we have to solve
the optimization problem (10) numerically. Carrying out a discretization, we have to
solve the optimization problem

2

n Ny re
min >~ 061~ 37 (@) Y a3
j=1 =1 k=1
=J
where 7 is the number of snapshots. Introducing the notation
aj = [a}’j arll’j af’j af\;’”]T,
K;:= [T (dj])w{ T(d}) w) T (djz) w? ... T(djl-VS) wﬁVNSS],
the cost functional in (13) can be expressed as the least squares problem
- 2
7= |x); — K a3 (14)
j=1

Considering the dependency of J with respect to the amplitudes a; for fixed modes
w, the necessary optimality condition is given by

Vo, J = =2K] ([X]; — K;a;) =0,

or equivalently

K Kja; = K] [X]; (15)
for j =1, ..., n. The general solution of (15) is given by
aj = jalzj_,llU}:I [X]; + V;20;, (16)

where (3; is an arbitrary vector of suitable dimension, and the matrices V; 1, X} 1,
U;1,and V;, are defined via the SVD of K ;

.01V
sz[Uj,l Uj,2]|: 6 O] |:ij~; )
Js

where X; | contains the non-zero singular values of K; [8]. If the shifted modes
are linearly independent at a time point ¢, then V , is void and the solution (16) is
unique, otherwise (15) has infinitely many solutions.
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Substituting (16) into (14), the cost functional takes the form
- 2
J =Y X1, - U Ul X5
j=1

which only depends on the modes w hidden in the matrices U} ;. Simple calculations
show that minimizing J is equivalent to the minimization problem

.= . 2
min J = — > |UF, X ;. (17)
j=1
The gradient of J with respect to a mode w,f is given by
~ " T
vw,’f-] = Zaﬁ.jT (dj[) (1’” - UjleJ?:l) [X]J :
j=1

An algorithm to compute an optimal solution is presented in Sect. 4.

4 Algorithm and Implementation

Since it is a priori unclear how many modes are necessary to achieve a certain error
tolerance, we propose to solve the optimization problem (17) starting with a small
number of modes and iteratively adding modes in a greedy fashion, cf. Algorithm
1. To initiate the algorithm we choose a vector r’ € N containing the initial mode
numbers for each velocity frame and prescribed shifts a’f for each velocity frame and
discrete time step. The algorithm starts with computing a mode decomposition with
mode numbers r°. For this, the optimization problem (17) is solved with a nonlinear
optimization solver of choice, e.g., Newton’s method or quasi-Newton methods,
see e.g. [18]. Since the optimization problem scales with the full dimension, we
recommend an inexact Newton method or a limited-memory quasi-Newton method
which is more efficient [18]. Motivated by the case with one velocity frame and a
periodic shift operator discussed in Sect. 3, we choose the first [r°], singular vectors
of the transformed snapshot matrix

[T (=di) X1 -+ T (=d}) [X1]

as starting values for the modes of the ¢th velocity frame. Following this, in line 5
the relative error is compared with the tolerance and if the tolerance is not achieved,
then the algorithm continues by adding modes in a greedy manner. More precisely,
in the for loop in lines 7-11, we add one mode to each frame at a time, solve the
optimization problem (17), construct X, and compute the error. Subsequently, the
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errors corresponding to the different mode number vectors r”~! + ¢; are compared,
where e; € R™ denotes the ith unit vector, and only that mode is kept which results
in the smallest error. This while loop continues until the error is below the tolerance
or the maximum iteration number is reached.

Algorithm 1 sPOD algorithm based on residual minimization

Input: snapshot matrix X; initial mode numbers r9; shifts df for j=1,...,n and ¢ =
1, ..., Ng; routine for the calculation of 7 (-); error tolerance fol; maximum iteration number
Pmax
Output: modes w,f; amplitudes a,f_j forj=1,...,n,¢=1,...,Ng,andk =1,...,1¢

1: Solve (17) with mode numbers r° for the modes w

2: Compute the amplitudes a from (16)

3: Reconstruct X as in (4) and compute the error as in (7)

4: p=0

5: while (error > tol) and (p < pmax) do

6 p<p+1

7 fori =1: Ngdo

8 Solve (17) with mode numbers rP~1 + ¢; for the modes w

9: Compute the amplitudes a, X, and the error as in lines 2 and 3

10: tempError(i) <« error

11:  end for

12:  Find the index g for which tempError is minimal
13:  error < tempError(q)

14 rP «—rr-l 4 g

15: end while

The major computational cost of Algorithm 1 arises from the solution of the
optimization problems in lines 1 and 8 and depends on the chosen solver. The com-
putation time can be decreased significantly by performing the for loop in lines 7-11
in parallel. Another opportunity for a speedup is to use multigrid methods for the
optimization, see e.g. [17].

Most parts of Sect. 3, as well as Algorithm 1 are valid for general matrix functions
T which do not necessarily have to be associated with a shift operation. Thus, the use
of matrix functions which simulate other effects like rotation or dilation is possible,
however, this topic is not within the scope of this paper.

Instead, in Sect. 5 we use a shift operator with constant extrapolation, i.e.,

fx—A@),t) for0<x—A@) <L,
T (A@®) f (x, 1) == f(0) forx — A1) <0,
f (L) forx — A(t) > L.

Such a shift operator has proven to be well-suited for moving shock waves, cf. [20].
For the discrete analogue 7;. on a uniform grid with mesh width 4, we distinguish
between two cases: If the shift is a multiple of %, then T, (-) is defined as
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(18)

with k € N. If the shift is not a multiple of 7 we use an interpolation scheme, i.e.,
for instance, a linear interpolation like 7.(0.54) = 0.5(7.(0) + 7. (h)). Similarly, a
shift matrix function for the periodic case has been introduced in [21].

5 Test Case: Pulsed Detonation Combuster

As a realistic test example, we consider density, velocity, pressure, and effective
species snapshot data of a Pulsed Detonation Combuster (PDC) with a shock-
focusing geometry where the effective species ranges from O (burned) to 1 (unburned).
The data is based on a simulation of the reactive, compressible Navier-Stokes equa-
tions where physical parameters have been adjusted by a data assimilation, see [10].
The density and species snapshots are depicted in Fig. 3.

In the snapshots of the species we observe a reaction front propagating through
the domain. The density snapshots show initially two transports, the reaction front
and a leading shock, slightly diverging before they converge again and interact.
This deflagration to detonation transition (DDT) is caused by a nozzle at around
x = 0.2, cf. [10]. Following this, the reaction front and the leading shock continue as
a detonation wave moving to the right. At the same time, a reflected wave is moving
to the left before being reflected at the boundary. When it reaches the nozzle again,
another partial reflection is visible. The velocity and pressure snapshots look similar.

Before we apply Algorithm 1 we need to find good candidates for the shifts
corresponding to the transports of the system. Here, we focus on the four most
dominant transports: the reaction front, the leading shock, the reflected wave, and
the partial reflection at the nozzle which is referred to as re-reflected wave in the
following. We track these transports based on the snapshot data without any a priori

re-reflected wave

10— 1 !
0.8 0.8 0.8
reflected wave ‘
0.6 / detonation wave 0.6 08
= £ ppT .
0.4 4 b | 0.4 104
\ reaction front
0.2 leading shock 0.2 0.2
0 0 i
0 0.5 1

0 0.5 1
X X

- N W s 0D~

Fig. 3 PDC: snapshots of the full-order solution for density (left) and species (right)
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Fig. 4 PDC: tracked shifts 17 -,
for the different transports
0.8
-
rd
e
0.6 o
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0.2t 4 | Reflected wave
e Re-reflected wave |
0
0.5 0 0.5

A

knowledge of their velocities. The reaction front is the easiest to detect, since it is
clearly visible in the species snapshots as a large gradient. To track it, we determine
the location of the maximum in each column of the difference matrix whose jth
column is defined as the difference between the j + Ist and jth column of the
species snapshot matrix. The resulting tracked shift is depicted in Fig. 4, solid line.
Here, negative shift values occur since the reaction front is shifted such that it is
centered in the middle of the computational domain.

The tracking of the other transports works similarly, but is a little more elaborate
since we need to distinguish them from each other. To this end, we restrain the region
of the computational domain where the location of the maximum slope is computed.
This subregion depends on both the considered transport and time interval. In our
tests, this decomposition in subregions has been done manually based on the velocity
snapshots. The corresponding tracked shifts are depicted in Fig.4. In addition, we
also add a frame with zero velocity to account for the structures that we cannot
capture well by the other velocity frames.

We apply Algorithm 1 with a shift operator with constant extrapolation as in (18)
with Lagrange polynomials of degree three for the interpolation. In addition, we
specify tol = 0.01, pm.x = 1, and r®=1[11110],ie., one mode for each of the
non-zero velocity frames. The nonlinear optimization problem is solved using the
MATLAB package HANSO which is based on a limited-memory BFGS method
[15]. Moreover, to avoid parasitic structures in the approximation of the species, we
force those parts of the modes which correspond to the species and to other transports
than the reaction front, to be zero.

In this test case we have to deal with data of physical variables with highly different
scales. To avoid that the approximation of the physical variable with the highest scale
becomes dominant we scale the snapshots such that the snapshot matrices of the
different physical variables have the same Frobenius norm. We build the snapshot
matrix X for Algorithm 1 by concatenating the scaled snapshot matrices of the
different physical variables.
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Fig. 5 PDC: comparison between full-order solution (left column), sSPOD approximation with 7
modes (middle column), and POD approximation with 7 modes (right column). The top row shows
the results for the density, the bottom row for the species
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Algorithm 1 terminates after 3 iterations in the while loop with an error of 0.71%
and r3> =[31111], ie., two modes have been added to the reaction front and
one mode to the zero velocity frame. This means that we meet the error tolerance
with 7 modes in total. The sSPOD approximation for the density and the species is
depicted in Fig. 5, middle column. Although some deviations to the full-order solution
are visible, the SPOD captures the dynamics well and the dominant transports are
clearly distinct. This becomes even more striking when comparing it to the POD
with the same number of modes which is plotted in Fig.5, right. As is common in
the POD literature, we first subtracted the mean value of each row of the snapshot
matrix to center the data around the origin, cf. [6]. The POD approximation of the
density features a high peak in the region of the DDT while the other structures
are hardly recognizable. For the species, the reaction front is at least indicated, but
blurred, and further distortions are visible especially near the DDT. To obtain a POD
approximation of the same accuracy as the SPOD with 7 modes, 73 POD modes are
needed for this example.

Another advantage of the sSPOD becomes clear when looking at the POD and sPOD
modes. In Fig. 6 the first sPOD mode for the species in the reaction front frame is
depicted and compared to the first POD mode. While the sSPOD mode clearly reveals
the reaction front as a jump in the middle, the POD is rather smooth and does not
show any structure resembling a reaction front.

In Fig.7 the first sSPOD mode for the density is depicted for the reaction front,
leading shock, and reflected wave and compared to the first three POD modes. The
latter ones mainly focus on the DDT which agrees with Fig. 5, top right, while the
moving fronts are not captured. The sSPOD modes are not as clear as in Fig. 6 but still
each of them features a clear front profile in the middle (marked by dashed lines)
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Fig. 6 PDC: comparison of first POD mode and first sSPOD mode for the species
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Fig. 7 PDC: comparison of first sSPOD modes (top row) for the reaction front, the leading shock,
and the reflected wave (from left to right) and first three POD modes (bottom row, from left to right)
for the density

corresponding to the sharp fronts visible in Fig. 3. Thus, the sPOD modes capture the
principal transport phenomena dominating the PDC dynamics properly. However,
especially at the left boundary they differ strongly: The mode for the reflected wave,
top right in Fig. 7, reveals a flat profile at the left boundary. This is due to the fact that
this part of the mode is not used in the SPOD approximation, since the corresponding
shift, depicted in Fig. 4, does not attain values greater than —0.16. The modes for the
reaction front and the leading shock reveal some oscillations at the left boundary. A
possible reason for this is the use of the shift operator with constant extrapolation
which provides the values at the boundaries of the mode with a disproportionate
weight.
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6 Summary and Outlook

‘We have presented a new algorithm for computing a shifted proper orthogonal decom-
position (sPOD) based on a residual minimization applied to snapshot data. We have
applied the algorithm to snapshots determined from a pulsed detonation combuster
(PDC) and compared the results with the standard proper orthogonal decomposition
(POD). The sPOD yields a reasonable approximation of the snapshots with only very
few modes. In contrast, the POD approximation with the same number of modes is
blurred and the dynamics is not captured well. Moreover, the SPOD modes clearly
reveal the front profiles of the different transports, whereas the POD is not suitable
for identifying structures in this test case. In comparison to the heuristic sSPOD algo-
rithm proposed in [20], the new algorithm is based on a residual minimization and
hence at least locally optimal. A drawback of the new algorithm is that it is more
expensive than the POD and the original sSPOD approach of [20]. The reason is that
a large-scale nonlinear optimization problem has to be solved.

The results of the new sPOD algorithm look promising in terms of both the number
of required modes and the physical structures identified by the sSPOD modes. The
use of the sSPOD modes to obtain a reduced-order model via projection is currently
under investigation. With this projection framework and the sPOD modes presented
in this paper, we aim for constructing dynamic reduced-order models for the PDC
for investigating different operating points in an efficient way. Further interesting
research directions are a rigorous treatment of non-periodic boundary conditions
and an optimization of the shifts together with the modes and the amplitudes.
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